用户名: 密码: 验证码:
电厂锅炉辐射换热模型化和掺烧褐煤的试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为缓解东北地区电站燃煤供应紧张问题,充分利用价格低廉而储藏丰富的褐煤,本文开展了烟煤锅炉掺烧褐煤的研究工作。针对在中储式制粉系统烟煤锅炉中大比例掺烧褐煤时,制粉系统容易出现爆炸、干燥出力不足以及因混煤热值降低影响锅炉带大负荷等问题,在系统分析和理论计算基础上,本文提出利用转向室与磨煤机入口之间的压差,在不需要其他动力设备的情况下,抽取中温炉烟掺入中储式制粉系统的改造技术。在锅炉辐射换热模型化方面,对考虑各向同性散射特性的辐射换热区域法进行了较深入的分析与研究,进一步论证了该项改造技术的可行性。
     在辐射换热的各种数学模型中,区域法的机理严密,精度最高,迄今为止仍被作为其他辐射传热计算模型的检验基准。本文以区域法的辐射交换面积为基础,对于一维体系,导出了各向同性散射介质中辐射直接交换面积的解析表达式,便于准确地分析辐射换热问题。将二维和三维规则体系的辐射直接交换面积积分函数分别归结为四类基本形式,有益于程序结构的条理化、编程的简化和错误的查找。对于规则的二维和三维封闭体系,以形心距为线索和充分利用广义对称性,免除了辐射直接交换面积的大量重复计算。
     在辐射交换面积叠加处理方法基础上,本文从辐射传热机理出发,定义了散射热流密度这一新概念,并给出其矩阵表达式,引入到辐射全交换面积的推导过程中。得出各向同性散射介质参与条件下辐射全交换面积各分块矩阵以及总矩阵的合成。由于散射热流密度的物理意义明确,使得推导过程十分简单,便于对辐射全交换面积物理意义的理解与分析。
     在辐射换热网络法基础上,参照表面分析方法,借助于容积散射热阻和等效发射率,在三元体系中定性分析了散射介质参与的辐射换热问题。分析表明,当考虑参与介质的散射特性时,由于容积单元散射热阻的存在,使得容积单元与其他换热单元之间总热阻增大,因此介质的散射削弱了辐射热交换。模拟结果还表明,考虑参与介质的散射特性后,容积单元-容积单元的辐射全交换面积增大,表面单元-容积单元的辐射全交换面积减小;参与介质的散射作用越强,忽略介质散射导致的计算误差越大。
     本文以清河发电责任有限公司8号炉HG-670/140-9型自然循环煤粉锅炉为研究对象,建立了各向同性散射介质参与的区域法辐射换热模型,模拟结果表明锅炉掺烧褐煤和中温炉烟再循环利用后,低温燃烧对缓解锅炉严重结焦十分有利,从而论证了中储式制粉系统锅炉掺烧褐煤改造技术的可行性。经现场试验研究,本文提出制粉系统末端湿烟气含氧量不大于16%的防爆技术指标是可行的。灰色综合评判结果进一步表明该技术能够实现在中储式制粉系统烟煤锅炉中大比例掺烧褐煤。本文的研究成果同时解决了此类型锅炉普遍存在的再热蒸汽温度偏低和过热器吸热量不足的技术问题。
When the coal powder blended with high content of lignite burned in the bituminous boilers with bin-feeder coal pulverizing systems, which is extensively being used in the power plants, it is very common to see the problems of the coal powder exploration, the insufficient drying output and the undercapacity caused by the low-heat value of the blended coal. In order to enable this combustion technology with low-heat value lignite which is cheaper and abundant in northeastern part of China, based on the systematic analysis and theoretical calculation, a new method to mix some hot flue gas from the reversing chamber into the coal pulverizing system by the local pressure difference without any extra pumping equipment is proposed in the industrial application. In the modeling of the radiant heat transfer in the combustion chamber with zone method, a relatively thorough analysis is conducted, in which the isotropic scattering media is well considered.
     Within all the state-of-art mathematical models of the radiation heat transfer, the zone method is the most accurate and robust, which is commonly being used as the reference to verify the other models. In this study, based on the radiant exchange area of the zone method, a 1-D analytical expression is deducted for the direct exchange area which subjects to the scattering participant media. This formula is much convenient to accurately analyze the radiant heat transfer in scattering media. The integration functions of the radiant exchange area in the 2-D and 3-D systems are summarized into four categories, which is helpful to the structural programming, program simplification and program debug. In the regular 2-D or 3-D system, an effective calculation method is proposed based on the principles of general symmetry of the matrix of direct exchange areas and the equal distances of the geographic center, which can avoid the huge calculation of the direct exchange areas.
     Based on both the superposition method and the radiation heat transfer mechanism, the Scattering Heat Flux Density is proposed and defined in the radiant exchange area calculation. The matrix expression is applied in the calculation of the total heat exchange areas. The individual matrix equations and total matrix equations of total exchange areas are derived in an enclosure with isotropic scattering media. Due to the clear physics and the simple deduction, this Scattering Heat Flux Density is very useful in the analysis of total radiant heat exchange area.
     With the volume scattering resistance and the equivalent volume emissivity in the three-element system, the radiant heat transfer in scattering media is analyzed qualitatively based on the radiation network method and the surface analysis method. The analytical results show that, when the scattering media is involved, the radiant heat transfer between the volume unit and surface unit is degraded because of the scattering thermal resistance of the volume unit. It is also shown that, when the scattering media is presented, the volume-to-volume total radiant exchange area becomes greater, while the surface-to-volume total exchange area becomes smaller, compared with those without the scattering media involved. The stronger the scattering effect of the participant media, the larger error from the calculation without scattering effect considered.
     The radiant heat transfer with zone method in isotropic scattering media is established to simulate the temperature profile of the HG-670/140-9 boiler with natural circulation in Qing-He Electric Power Generation Co. Ltd. The numerical simulations show that the low-temperature combustion with blending lignite and recirculating hot flue gas can relieve the slag growing. The feasibility of this new combustion solution is verified. The measurement results show that, the oxygen content of the wet gas is below 16% at the outlet of the coal pulverizing system, which is safe in terms of coal powder explosion. Through the grey relation analysis, it is feasible to blend the coal powder with large ratio of lignite in the bituminous boiler with bin-feeder coal pulverizing system. With this new combustion method, the other common problems in the similar types of the boilers, such as the lower temperature of reheated steam and the insufficient heat absorption of the superheater, can be solved too.
引文
1. 赵振新,朱书全,马名杰,等.中国褐煤的综合优化利用[J].洁净煤技术,2008,14(1):28-32.
    2. Coelho P J, Goncalves J M, Carvalho M G. Modeling of radiative heat transfer in enclosures with obstacles[J]. Journal of Heat and Mass Transfer,1998,41 (4):745-756.
    3. Christian S, Roland K, Stefan F. Evaluation of an improved hybrid six-flux/zone model for radiative transfer in rectangular enclosures[J]. Journal of Heat and Mass Transfer,1995,38 (18):3428-3431.
    4. Fleck J A. The calculation of nonlinear radiation transport by a Monte Carlo method[A]. Technical Report UCRL-7838,1961.
    5. Fleck J A. The calculation of nonlinear radiation transport by a Monte Carlo method:Statistical Physics [J]. Methods in Computation Physics,1961,1:43-63.
    6. Howell J R, Perlmutter M. Monte Carlo solution of thermal transfer through radiant medium between gray walls [J]. Journal of Heat Transfer,1964,89:116-122.
    7. Perlmutter M, Howell J R. Radiant transfer through a gas between concentric cylinders using Monte Carlo method [J]. Journal of Heat Transfer,1964,89:169-179.
    8. 孙昭星.锅炉燃烧室辐射传热的Monte-Carlo解法[J].电机工程学报,1984,4(2):49-58.
    9. Gupta R P, Wall T F, Truelove J S. Radiative scatter by fly ash in pulverized-coal-fired furnaces: application of the Monte Carlo method to anisotropic scatter[J]. Journal of Heat and Mass Transfer, 1983,26 (11):1649-1660.
    10.邢华伟,盛锋柳.用Monte-Carlo法计算辐射直接交换面积[J].计算物理,1998,15(6):35-41.
    11.邢华伟,郑楚光,柳朝晖.计算辐射换热的Monte-Carlo-Zone方法[J].燃烧科学与技术,1997,4(4):379-384.
    12.邢华伟,阮剑,郑楚光.各向异性散射介质的辐射传热分析[J].热能动力工程,1999,17(3):263-323.
    13.何诚.DRESOR法求解一维各向异性散射性介质中的辐射传递方程[D],华中科技大学,硕士学位论文,2005.
    14. Zhou H C, Chen D L, Cheng Q. A new way to calculate radiative intensity and solve radiative transfer equation through using the Monte-Carlo method[J]. Journal of Quantiative Spectroscopy and Radiative Transfer,2004,83 (3):459-481.
    15. Zhou H C, Cheng Q. The DRESOR method for the solution of the radiative transfer equation in gray plane-parallel medium[A]. Proceedings of the Fourth International Symposium on Radative Transfer, New York:Begell House, Inc.2004:181-190.
    16. Chandrasekhar S. Radiative Transfer[M]. Dover Publications, 1960:87-94.
    17. Fiveland W A. Three-dimensional radiative heat transfer solutions by the discrete-ordinates method[J]. ASME HTD,1987 (72):9-18.
    18. Adams B S, Smith P J. Three-dimensional discrete-ordianates modeling of radiative transfer in a geometrically complex furnace[J]. Combustion Science and Techenology,1993,88:293-308.
    19. Jamaluddin A S, Smith P J. Predicting radiative transfer in axisymmetric cylindrical enclosure using the discrete ordinates methods[J]. Combustion Science and Technology,1988,62:173-186.
    20. WeiXiaoli, XuTongmo, Huishien. Three-dimensional radiation in abosorbing-emitting-scattering medium using the discrete-ordinates approximation[J]. Journal of Thermal Science,1998,7 (4): 277-263.
    21. Thurgood C P, Pollard A, Becker H A. The quadrature set for the discrete-ordinates method[J]. Journal of Heat Transfer,1995,117:1068-1070.
    22.李本文,魏小林.离散坐标SRAPN法与TN法的比较[J].计算物理,1998,15(6):735-741.
    23. Truelove J S. Three-dimensional radiation in absorbing-emitting-scattering medium using the discrete-ordinates approximation[J]. Journal of Quantitative Spectroscopy and Radiative Transfer,1988,39:27-31.
    24.刘林华,谈和平,余其铮.吸收散射性三维矩形介质内辐射源项的反问题[J].工程热物理学报,2000,21(1):71-75.
    25. Park H M, Yoon T Y. Solution of the inverse radiation problem using a conjugate gradient method [J]. Journal of Heat and Mass Transfer,2000,43:1767-1776.
    26. Park H M, Yoo D H. A multidimensional inverse radiation problem of estimating the strength of a heat source in participating medium[J]. Journal of Heat and Mass Transfer,2000,44:2949-2956.
    27.刘林华,谈和平,余其铮.燃烧室内三维温度场的辐射反问题[J].燃烧科学与技术,1999,5(1):160-164.
    28.刘林华.炉内传热过程的数值模拟及过热器超温问题的研究[D],哈尔滨:哈尔滨工业大学,1996.
    29.魏小林,徐通模,惠世恩.用改进的离散坐标法计算炉内三维辐射传热[J].燃烧科学与技术,2000,6(2):140-144.
    30.罗侠,聂宇宏,张卫军.非灰气体离散坐标法模型的比较[J].材料与冶金学报,2003,2(2):32-36.
    31.吴垣,杨卫波.用离散坐标法求解矩形炉内三维辐射换热[J].能源技术,2003,25(4):22-26.
    32.刘林华,余其铮.求解辐射传递方程的离散坐标法[J].计算物理,1998,15(3):42-47.
    33.齐宏,阮立明.离散格式对辐射换热有限体积法精度的影响[J].哈尔滨工业大学学报,2005,37(12):1621-1724.
    34. Raithby G D, Chui E H. A finite-volume method for predicting a radiant heat transfer in enclosures with participating medium[J]. Journal of Heat Transfer,1990,112:415-423.
    35. Chui E H, Raithby G D, Hughes P M J. Prediction of radiative transfer in cylindrical enclosures by the finite volume method[J]. Journal of Thermophyics,1992,6 (4):605-611.
    36. Kim M Y, Baek S W. Numerical analysis of conduction, convection and radiation in a gradually expanding channel[J]. Numerical Heat Transfer, Part A,1996,29 (7):725-740.
    37. Baek S W, Kim M Y, Kim J S. Nonorthogonal finite-volume solutions of radiative heat transfer in a three-dimensional enclosure[J]. Numerical Heat Transfer, Part B,1998,34 (4):419-437.
    38. Chui E H, Raithby G D. Implicit solution scheme to improve convergence rate in radiative transfer problems[J]. Numerical Heat Transfer,1992,22:251-272.
    39.贺志宏,谈和平,刘林华.有限体积法求解圆柱形散射介质内辐射与导热耦合换热[J].工程热物理学报,2000,21(3):338-341.
    40.贺志宏,谈和平,刘林华.有限体积法解多场耦合下散射性非灰介质内的辐射换热[J].化工学报,2001,52(7):434-439.
    41.阮立明,郝金波,谈和平.散射相函数对一维介质内辐射传递的影响规律[J].计算物理,2006,19(6):517-520.
    42.郝金波,阮立明,谈和平,等.有限体积法求散射性介质辐射传递及耦合换热[J].哈尔滨工业大学学报,2002,34(2):161-165.
    43.贺志宏,刘林华,谈和平,等.炉内辐射换热过程的有限体积法[J].动力工程,1999,19(4): 265-268.
    44.贺志宏,刘林华,谈和平.有限体积法求解圆柱形散射介质内辐射与导热耦合换热[J].工程热物理学报,2000,21(3):338-341.
    45. Baek S W, Byun D Y, Kang S J. The combined Monte-Carlo and finite-volume method for radiation in a two-dimensional irregular geometry[J]. Journal of Heat and Mass Transfer,2000,43:2337-2344.
    46.徐晓,陈义良,刘林华,等.FVM结合PDF方法研究湍流射流火焰中的辐射[J].中国科学技术大学学报,2005,35(4):549-555.
    47. Hottel H C, Cohen E S. Radiant Heat exchange in a gas-filled enclosure:allowance for nouniformity of gas temperature[J]. AIChE. Int. J,1958,4(1):3-14.
    48. Noble J J. The zone method:explicit matrix relations for total exchange areas[J]. International Journal of Heat and Mass Transfer,1975,18:261-269.
    49. Naraghi M H N, Chung B T F. A unified matrix formulation for the zone method:a stochastic approach[J]. International Journal of Heat and Mass Transfer,1985,81:245-251.
    50.孙鸿斌,刘斌.炉膛辐射换热辐射直接交换面积的等分递推算法[J].钢铁,1992,27(1):53-58.
    51.杨本林,刘斌,孙鸿斌.炉膛辐射换热辐射直接交换面积的实用区域算法[J].冶金能源,1992,11(3):36-40.
    52.陈海耿,宁宝林.用流法计算辐射全交换面积[J].东北大学学报,1995,16(3):273-276.
    53.邢华伟,盛锋,柳朝晖,等.用Monte-Carlo法计算辐射直接交换面积[J].计算物理,1998,15(6):753-756.
    54.严向奎,唐建华.延迟焦化炉辐射换热辐射直接交换面积的计算[J].新疆石油学院学报,2000,12(4):71-74.
    55.邢华伟,阮剑,郑楚光.混合模拟方法分析散射介质的辐射换热[J].华中理工大学学报,1998,26(10):84-86.
    56.董芃,洪梅,秦裕琨.大型煤粉锅炉炉膛传热工程化三维数值计算方法及其应用[J].动力工程,2000,20(2):606-610.
    57.陈海耿,宁宝林.辐射全交换面积的Monte-Carlo算法[J].冶金能源,1991,10(1):27-33.
    58.任雁秋,李义多.封闭体系内表面区域间辐射总交换面积的Monte-Carlo方法计算[J].工业炉,1995,3:49-54.
    59.温良英,刘成全,徐楚韶.高温炉膛内的辐射传热研究[J].工业加热,1998,3:9-11.
    60.陈硕,潘克煜,刘明安.用蒙特卡罗法计算柴油机缸内辐射全交换面积[J].车用发动机,1998,4(2):19-24.
    61. Larsen M E, Howell J R. The exchange factor method:an alternative basis for zone analysis of radiating enclosures[J]. ASMEJ. Heat Transfer,1985,107:936-942.
    62. Liu H P, Howell J R. Scale modeling of radiation in enclosures with absorbing/emitting and isotropically scattering media[J]. ASMEJ. Heat Transfer,1987,109:470-477.
    63. Maraghi M H N, Chung B T F, Litkouhi B. A continuous exchange factor method for radiative exchange in enclosures with participating media[J]. ASME J. Heat Transfer,1988,110:456-462.
    64. Naraghi N H N, Ligtkouhi B. Discrete exchange factor solution of radiative heat transfer in three-dimensional enclosures[J]. Heat Transfer Phenomena in Radiation, Combustion and Fires, ASME J. Heat Transfer,1989,106:221-229.
    65. Charette A, Larouche A, Kocaefe Y S, et al. Application of the imaninary planes method to three-dimensional system[J]. International Journal of Heat and Mass Transfer,1990,33 (12): 2671-2681.
    66. Charette A, Larouche A. The imaninary planes method for the calculation of radiative heat transfer in industrial furnaces[J]. The Canadian Journal of Chemical Engineering,1989,67 (3):378-384.
    67. Dong Peng, et al. Application of the Imaginary plane method in numerical simulation of radiative heat transfer in participating media[J]. Transport in Phenomena Science and Technolony, Beijing:Higher Education Press,1992:559-564.
    68.董芃,陈晓东,薛文,等.计算辐射传热的二阶假想面法[J].哈尔滨工业大学学报,1997,29(3):51-53.
    69.洪梅,董芃,秦裕琨.大型煤粉锅炉炉膛传热分体式计算方法研究[J].哈尔滨工业大学学报,2000,32(3):90-94.
    70.章明川,赵宗让.一种新的电站锅炉燃烧室三维辐射传热数学模型[J].燃烧科学与技术,1997,3(4):376-378.
    71.韩小海,赵宗让,章明川.电站锅炉炉膛传热过程数学模型及模拟计算[J].中国电机工程学报,1997,17(1):18-22.
    72.韩小海,章明川.电站锅炉炉膛传热数值计算方法的研究[J].热能动力工程,1998,13(73):23-27.
    73.张腾飞,罗锐,冯文,等.炉膛辐射传热数学模型及其仿真[J].中国电机工程学报,2003,23(10):215-219.
    74.张腾匕,罗锐,任挺进.锅炉炉内传热燃烧过程仿真[J].系统仿真学报,2004,16(4):613-616.
    75.林立新,陈鸿复,邱夏陶.火焰炉热交换模型-区域法的改进[J].北京钢铁学院学报,1987,9(4):66-72.
    76.马丽群,陈汉.封闭漫射灰腔内辐射模型的应用[J].上海交通大学学报,1999,33(3):305-308.
    77.聂宇宏,陈海耿.非灰气体中段法辐射全交换面积的推导[J].东北大学学报,1997,18(5):546-549.
    78.聂宇宏,陈海耿,杨泽宽.非灰气体中辐射直接交换面积的计算[J].计算物理,1997,14(3):345-347.
    79.聂宇宏,陈海耿,杨泽宽.非灰气体中辐射全交换面积的计算[J].计算物理,1997,14(2):202-206.
    80.聂宁宏,李本文,陈海耿,等.非灰气体中辐射全交换面积的均匀离散射线法[J].工程热物理学报,1996,17(5):34-38.
    81.李本文,陈海耿,宁宝林,等.复杂炉型内有非均质参与的热过程数学模型[J].化工学报,1996,47(6):273-279.
    82.聂宇宏,陈海耿,杨泽宽.灰带模型与段法结合的新方法[J].东北大学学报,1996,17(5):521-524.
    83.陆大有.工程辐射传热[M].北京:国防工业出版社,1988:280-281.
    84. Wall T F, Bhattacharya S P, Zhang D K, et al. The properties and thermal effects of ash deposits on coal-fired furnaces[J]. Progress in Energy and Combustion Science,1993,19:487-504.
    85. Brewster M Q, Kunitomo T. The optical constants of coal char and limestone[J]. Journal of Heat Transfer,1984,106:6940-7240.
    86. IM K M, Ahluwalia R K. Radiation properties of coal combustion products[J]. Journal of Heat and Mass Transfer,1993,36 (2):365-372.
    87. Menguc M P. Determing the radiative properties of pulverized coal particles from experiments[R]. DE-FG2-87PC79916.
    88. Grosshandler W L, Monteiro S L P. On the spectral emissitivity of pulverized coal and char[J]. Journal of Heat Transfer,1986,106:6940-7240.
    89. Solomon P R. The spectral emittance of pulverized coal and char[C].21S symp, (Int.) on combustion, The combustion institute PA,1986.
    90.余其铮.燃煤锅炉中有关煤辐射特性的实验研究[A].机械工业技术发展基金技术总结报告,1991.
    91.刘林华,余其铮,阮立明,等.煤粉燃烧产物的辐射特性[J].动力工程,1996,16(6):14-24.
    92. Lee S C, Tien C L. Optical constants of soot in hydrocarbon flames[C].18th Symp. (Int.)on Combustion, Combustion Institute, Pittsburgh,1986.
    93. Lee S C,余其铮, Tien C L. Radiation properites of soot diffusion flames[J]. Journal of Quantiative Spectroscopy and Radiative Transfer,1982,27 (4):412-427.
    94. Lyons R B, Wormhoudt J, Gruninger J. Scattering of radiation by particles in low-altitude plumes[J]. J. Spacecraft and Rocke,1983,20 (2):189-192.
    95. Beiting E J. Light scattering by nonspherical particles[M]. New York:Academic Press,2000.
    96. Yang P, Liou K N, Mishchenko M I, et al. Efficient finite-difference time-domain scheme for light scattering by dielectric particles[J]. Application to Aerosols Applied Optics,2000,39:3727-3737.
    97. Kalashnikova O V, Sokolik I N. Modeling the radiative properties of nonspherical soil-derived mineral aerosols[J]. Journal of Quantitative Spectroscopy and Radiative Transfer,2004,87:137-166.
    98. Bourrely C, Chiappetta P, Torresani B. Light scattering by particles of arbitrary shape:a fractal approach[J]. Journal of the Optical Society of America,1986,3 (2):250-255.
    99. Wauben W M, De Han J F, Hovenier J W. Influence of particle shape on the polarized radiation in planetary atmospheres[J]. Journal of Quantitative Spectroscopy and Radiative Transfer,1993,50(3): 237-246.
    100.余其铮,阮立明.煤在燃烧过程中各种产物辐射特性的研究[J].动力工程,1993,13:54-59.
    101. Dominique Baillis, Jean-Francois Sacadura. Thermal radiation properties of dispersed media theoretical prediction and experimental characterization[J]. Journal of Quantitative Spectroscopy and Radiative Transfer,2000,67:327-363.
    102.孙鸿宾,殷小静,杨晶.辐射换热[M].北京:冶金工业出版社,1996:152-377.
    103. Changsik Kim, Noam Lior. Easily computable good approximations for spectral radiative properties of particle-gas components and mixture in pulverized coal combustors[J]. Fuel,1995,74 (12): 1891-1902.
    104. Blokh A G. Heat Transfer in Steam Bowler Furnaces [M]. Hemisphere Publishing Corporation,1988: 136-144.
    105. Foster P J, Howarth C R. Optical constants of carbons and coals in the infared[J]. Carbon,1968, 86:719-729.
    106.余其铮,谈和平,阮立明,等.灰微粒子的光学常数和衰减系数[J].工程热物理学报,1993,14(4):449-452.
    107.吴景兴,陈海耿,马金凤,等.200MW机组锅炉制粉系统掺混中温炉烟技术改造可行性研究[J].中国电力,2006,39(3):22-25.
    108.林宗虎,徐通模.实用锅炉手册[M].北京:化学工业出版社,2004:326-402.
    109.锅炉机组热力计算—标准方法[M].上海:上海工业锅炉研究所编印,2001.
    110.火力发电设备技术手册[M].北京:机械工业出版社,2000:3-46.
    111.DL/T 5203-2005,火力发电厂煤和制粉系统防爆设计技术规程[S].北京:中国电力出版社,2005.
    112.DL/T 5145-2002,火力发电厂制粉系统设计计算技术规定[S].北京:中国电力出版社,2002.
    113. Ohtake K, Okazaki K. Optical CT measurement and mathematical prediction of multi-temperature in pulverized coal combustion field[J]. International Journal of Heat and Mass Transfer,1983,31 (1): 397-405.
    114.蔡小舒,罗武德.光谱法测量煤粉火焰温度和黑度的研究[J].工程热物理学报,2000,21(6):779-783.
    115.宁宝林,陈海耿.考虑炉围遮蔽作用的段法数学模型[J].工业炉,1986,1:40-46.
    116.宁宝林,尚德义.关于封闭体系辐射传热单向辐射直接交换面积的研究[J].东北工学院学报,1981,2(3):33-44.
    117.李本文,宁宝林.辐射直接交换面积的数论网格法[J].东北工学院学报,1993,14(3):281-284.
    118.李本文,宁宝林.二维辐射直接交换面积的均匀离散射线法[J].东北大学学报,1994,15(1):104-107.
    119.孙鸿斌,刘斌.炉膛辐射换热辐射直接交换面积的等分递推算法[J].钢铁,1992,27(1):53-58.
    120.杨本林,刘斌,孙鸿斌.炉膛辐射换热辐射直接交换面积的实用区域算法[J].冶金能源,1992,11(3):36-40.
    121.沈九宾,李本文,陈海耿.广义对称性与辐射直接交换面积[J].计算物理,2002,19(1):30-33.
    122. Hottel H C, Sarofim A F. Radiative Transfer[M]. New York:Mc Graw-Hill,1967:365-436.
    123. Modest M F. Radiant Heat Transfer[M]. New York:McGraw-Hill,1993:641-659.
    124. Bremaud, Pierre. Markov Chains[M]. New York:Springer,2001:124-136.
    125. Doob J L. Stochastic Processes[M]. New York:John Wiley,1953:341-359.
    126. Papoulis A, Pillai S U.概率、随机变量与随机过程[M].西安:西安交通大学出版,2004:565-629.
    127.刘林华,余其铮,阮立明,等.燃烧产物辐射特性的误差对炉内辐射换热计算精度的影响[J].燃烧科学与技术,1998,4(1):104-111.
    128.余其铮.辐射换热原理[M].哈尔滨:哈尔滨工业大学出版社,2000:54-69.
    129. Leckner B. Spectral and total emissivity of water vapor and carbon dioxide[J]. Combustion and Flame,1972,19:33-44.
    130.余其铮,鲍亦令.燃烧室中的二氧化碳与水蒸汽的辐射率,传热传质论文集[M].北京:科学出版社,1986:83-88.
    131.邢华伟,邓先和,郑楚光.燃烧气体产物辐射特性的计算模型[J].华南理工大学学报,2001,29(4):25-29.
    132. Modak, AT. Radiation from Products of Combustion[J]. Fire Research,1979,1:339-361.
    133.李庆扬,王能超,易大义.数值分析[M].武汉:华中理工大学出版社,1993:118-141.
    134.聂宇宏.非灰介质参与的辐射换热研究[D],沈阳:东北大学,1996.
    135.常宝成,吴占松,许立冬.用于故障诊断的锅炉一维温度分布模型[J].动力工程,1997,17(2):32-36.
    136.DL/T467-2004,电站磨煤机及制粉系统性能试验[s].北京:中国电力出版社,2004.
    137.DL/T469-2004,电站锅炉风机现场性能试验[S].北京:中国电力出版社,2004.
    138.邓聚龙.灰色控制系统[M].武汉:华中科技大学出版社,1998:261-278.
    139. Kun-Li Wen, John H Wu. The grey-fuzzy relational model and its application to welding flaw identification[J]. The Journal of Grey System,1995,7 (4):331-338.
    140. Liu Xiaotao, Yong Qidong. Grey relation analysis of optimizing multi-objective complex alternatives: the 2-order grey relational analysis[J]. The Journal of Grey System,1997,9 (4):379-385.
    141. Xu Zhongxiang, Wu Guoping, Hou Weiguo, et al. The sliding grey relational method for delineating regions containing oil and gas[J]. The Journal of Grey System,1996,8 (3):275-282.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700