用户名: 密码: 验证码:
基于纯电动轿车的两档双离合器式自动变速器控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纯电动汽车是世界公认的节能减排技术之一,目前发展纯电动汽车已成为各国政府和汽车行业的共识,其研发已成为汽车行业的热点。纯电动汽车传动系统作为关键组成部分,也受到各汽车厂家和研究机构的重视。DCT是目前深受关注的自动变速器之一,和AMT一样,具有较高的传递效率,同时DCT还可以实现换档过程中无动力中断,有更好的动力性和换档舒适性,其中干式DCT比湿式DCT拥有更高的传递效率。目前国内关于纯电动汽车的研究,主要集中在对固定速比减速器的参数匹配和优化方面,纯电动轿车用的自动变速器还处于研发阶段。本文开发了具有自主知识产权的纯电动汽车两档双离合器式自动变速器,并对其控制技术进行了研究,其主要内容如下:
     (1)介绍了DCT的结构原理,对各种自动变速器进行了对比,阐述了DCT的优势。对纯电动汽车传动系统的结构和研究现状进行了介绍和分析,最后给出了本文的主要研究内容。
     (2)提高电动汽车的性能,有很多方法,比如提高电机的性能、提高电池性能、使用新材料减轻汽车重量等。但是在电机和电池不变的前提下,可以通过合理的匹配传动系统的参数来改善电动汽车的性能。从动力性和经济性两个方面对纯电动汽车性能评价指标进行了介绍,并给出了我国对纯电动汽车的性能要求。同时也从动力性和经济型两个方面提出了电动汽车传动系统档位数和速比设计的原则。针对本文所研究开发的纯电动汽车JF-EV,设计了固定速比减速器和两档DCT传动系统参数,并用ADVISOR对其进行了仿真计算,结果显示使用两档自动变速器的电动汽车可以提高续驶里程6%,0-60 km /h的加速时间缩短1.3s,并且增加了爬坡能力。为了进一步提高本文所研究电动汽车的性能,利用遗传算法和ADVISOR软件对两档DCT的速比进行了优化,给出了遗传算法的具体使用过程,该算法的适应度计算应用ADVISOR软件来实现,并比较了速比优化前后电动汽车的主要性能,结果显示,电动汽车的动力性和经济性都有所提高。
     (3)干式双离合器是两档DCT的重要组成部分,两档DCT的换档过程是通过干式离合器的分离与结合来实现的,研究干式离合器的特性,是保证离合器控制精度的前提,对两档DCT的控制具有重要意义。深入分析和研究了干式离合器膜片弹簧的负荷特性,并利用A-L法对负荷特性进行了计算。针对干式离合器的结合过程,分析了其扭矩传递特性,建立干式离合器扭矩模型。对主要影响扭矩特性的参数进行了分析,包括:温度和磨损的影响。
     (4)对所开发的两档DCT的电液执行机构关键元件比例流量阀的结构和特性进行了建模与分析。对两档DCT的电子控制单元、各功能模块、相关电路及参数选择进行了设计与分析。由于执行机构和离合器本身的非线性,并且控制过程中存在干扰因素,因此传统的控制理论很难保证对分离轴承移动速度的跟踪精度,本文引入了CMAC神经网络补偿控制算法,并设计了其相应的智能控制器。
     (5)两档DCT的换档控制包括两个方面:一是确定换档规律,即决定什么时候换档;二是确定换档过程中离合器扭矩的变化规律,即怎么换档。总结了自动变速器的换档品质的评价指标,对换档时双离合器不同重叠度的影响进行了分析。考虑到纯电动汽车和两档DCT的特性,制定了经济性换档规律和动力性换档规律,并对纯电动汽车在特殊工况下的换档模式进行了研究。针对电动汽车两档DCT的升降档过程,提出了换档控制策略,并对换档过程中的电机控制进行了研究。
     (6)为了验证两档DCT换档过程的控制效果和JF-EV纯电动汽车的性能,对整车进行了试验研究。对纯电动汽车JF-EV的控制系统组成和各分控制器的功能进行了分析,并设计了整车CAN通讯网络。在此基础上开发了基于CAN总线的数据采集显示软件EV-View,并介绍了软件的工作原理。最后对电动汽车进行了加速试验、爬坡试验、道路能耗试验和换档试验。试验结果表明,JF-EV电动汽车可以满足动力性的要求,节能效果明显,同时证明了两档DCT换档控制方法能得到较好的换档品质。
The pure electric car is one of the engergy saving technology which is recognized by the whole world. At present time, government of each country and automotive industry have agreed on developing pure electric car, and its development has become hot spot of automotive industry. Powertrain system is the key part of pure electric car, and it’s valued by more and more automotive companis and institues. DCT is the most concerned about in the automatic transmission. It has the advantage of AMT, and it can shift under the power on, so it has better power performance and comfortable adaptability. At present, the researches about pure electric car in our cou ntry are match and optimization on fix ratio reduction gear. No one has studied automation transmission which used in pure electric car, and there has never been a automatic transmission. This essay proposed a two gears DCT automation transmission system applied to pure electric car. And also proposed the CMAC nerve network control to slove the dry clutch control problem.The article’main contents are as follows.
     (1)Introduced the structure and the development state of the pure electric car powertrain, and made analysis about it. Introduced some transmissions of pure electric car. Also introduced DCT’s structure and principle. Base on the comparing various automation transmissioms, expressed the advantages of DCT. Summarized pure electric car requirements for automatiom transmission. Finally, show the main contents of this article.
     (2)There are several methods to improve the performance of electric car. For example, improving the performance of the motor, improving the performance of the battery and reducing the mass of car. But our research is match parameters of the prowertrain system to improve the performance. The performance evaluating indicator of pure electric vehicle was presented from two aspects: dynamic property and economic property, and the pure electric vechicle performance needs of our country were given. At the same time, the principle of the gear number and ratio design of transmission system of EV was introduced from two aspects mentioned before. In connection with the pure electric vechicle JF-EV this article involved, reduction gear with fixed ratio and transmission system parameter was designed, and its simulation was done by ADVISOR. The results showed that the performances of electric vechicle with two gears DCT were better in all aspects than electric vehicle with fixed ratio reduction gear. The concept of genetic algorithm was introduced, and the contents and use methods of genetic algorithm tool box. Taking two-gears DCT as example, the use process of genetic algorithm was illustrated, and the ratio of two-gear DCT was optimized combining with ADVISOR. Lastly, certain performances of EV with and without optimation were compared. The result indicated that the travel distance was improved after the ratio of EV had been optimized under the premise of the dynamic property.
     (3)The dry clutch is the important part of two gears DCT. Controlling the dry clutch’move can make the transmission shift. The research of dry clutch characteristics is the key of control clutch better. Analysised and studied of the dry clutch diaphragm spring load characteristics, and calculated. load characteristics by A-L method. Established the dry clutch torque model about the combination process of dry clutch. Analysised various parameters which effect torque characteristics, including: reverse shock absorber, temperature and wear. And put forward the model of the clutch torque correction method.
     (4)The principle of actuator of two gears DCT was presented, and the structure and characteristic of proportional flow valve was introduced. The electric control unit of two gears DCT was designed, introducing the function and designed electric circuit. Because of the control system is nonlinear and there are some interferees, the traditional control system is difficult to ensure the control precision. This essay proposed the CMAC nerve network control method to slove the dry clutch control problem. And designed the intelligent controller.
     (5)The shift control of two gears DCT includes two parts. One is shift rule, another is moving rule of clutch. The evaluating indicator for shifting quality of two-gears DCT was summarized and analysed the effect of different overlap. In this paper, the pure electric car used two parameters type shift rule. According to the characteristics of pure electric car, developed the best economic optimum shift rule and the best power optimum shift rule. Finally, researched the up-shift and down-shift process of two gears DCT, and the control method for dry clutch was proposed. While the motor coordination control in shifting process was studied.
     (6)Analyzed the electric vehicle control system components and functions of the sub-controller of JF-EV. Based on the CAN of JF-EV, developed the data acquisition display software EV-View, and described the software works. Finally, did accelerated test, hill climbing test and shift test. The results showed that, JF-EV electric car meet the dynamic requirements and had a better shift quality.
引文
[1]李兴虎.电动汽车概论[M].北京:北京理工大学出版社,2005.
    [2]陈清泉,孙逢春,祝嘉关.现代电动汽车技术[M].北京:北京理工大学出版社,2002.
    [3]中国社会经济调查研究中心.中国纯电动汽车行业市场调查分析报告[R].北京:中国社会经济调查研究中心,2008.
    [4]明轩.富士重工推出STELLA插电式纯电动汽车[J].新能源汽车,2010,(3):44-46.
    [5]明轩.Leaf日产纯电动汽车[J].新能源汽车,2010,(2):44-45.
    [6]雷达,吴志红,朱元等.四轮独立驱动纯电动汽车的高速CAN网络设计[J].微特电机,2007,(7):34-62.
    [4]万沛霖.电动汽车的关键技术[M].北京:北京理工大学出版社,1998.
    [7]王海达.中国首款纯电动汽车名叫“奔奔i”[N].重庆日报,2009-12-7(01).
    [8]国家发展和改革委员会产业协调司.节能与新能源汽车技术政策研究课题成果汇编[G].2009.
    [9]李佩珩,易翔翔,侯福深.国外电动汽车发展现状及对我国电动汽车发展的启示[J].北京工业大学学报,2004,30(1):49-54.
    [10] General Motors EV1. Wikipedia.
    [11] Ren Qinglian,Crolla David,Morris Adrian. Effect of geared transmissions on electric vehicle drivetrains[C].2009 ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference.
    [12] Eberleh B, Hartkopf Th. A high speed induction machine with two speed transmission as drive for electric vehicles[C]. SPEEDAM 2006.
    [13] Yang YeePien, Wang TsanJen. Electronic gears for electric vehicles with wheel motor[J]. IECON 2005.
    [14] Ohmae Tsutomu, Marumoto Katsuzi, Yamamura Hirohisa, etal. METHODS AND CHARACTERISTICS OF AUTOMATIC GEAR CHANGE CONTROL OF ELECTRIC VEHICLE[J]. Electrical Engineering in Japan.
    [15] Fu Hong, Tian Guangyu, Chen Yaobin, etal. A novel control scheme of propulsion motor for integrated powertrain of electric bus[C]. 5th IEEE Vehicle Power and Propulsion Conference. 2009.
    [16]西南大学.电动车自适应传动传感两档变速电动轮毂:中国,200610054546.0[P].2006-10-27.
    [17]西南大学.智能化两档自动变速电动轮毂:中国,200710093128.7[P].2007-12-13.
    [18]西南大学.侧挂离合片式两档自适应电动轮毂:中国,200810069421.4[P].2008-3-3.
    [19]锦州汉拿电机有限公司.一种两档位电动车动力总成:中国,200910220327.9[P].2009- 11-26.
    [20]比亚迪股份有限公司.一种纯电动汽车四轮驱动控制系统:中国,200510021565.9[P]. 2005-08-25.
    [21]夏云.电动汽车动力驱动系统的研究现状和应用前景(1)[J].微电机,2003,36(3):52-54.
    [22]夏云.电动汽车动力驱动系统的研究现状和应用前景(2)[J].微电机,2003,36(4):47-49.
    [23]孙逢春,程夕明.电动汽车动力驱动系统现状及发展[J].汽车工程,2000,22(4):220-224.
    [24] Hamilton David B. lectric Propulsion Power System Overview[C]. IEEE1996.
    [25] Kim Yoon Ho, Ha Hoi Doo. Design of Interface Cricuits with Electrical Battery Models[C], IEEE,1997.
    [26] Wootaik Lee, Daeho Choi, Myoungho SunWoo. Modelling and simulation of vehicle electric power system[J]. Journal of Power Sources,2002,109:58-66.
    [27]陈志雄,钟绍华.基于Advisor的纯电动汽车动力性能仿真[J].上海汽车,2008,(1):8-11.
    [28]程莹,冯能莲,李克强.ADVISOR混合动力电动汽车仿真系统的二次开发和应用[J].汽车工程,2004,26(3): 249-252.
    [29]余志生.汽车理论[M].北京:机械工业出版社.
    [30]刘磊,刚宪约.汽车仿真软件ADVISOR[J].农业装备与车辆工程,2007,187(2):40-43.
    [31]张翔,钱立军,赵韩等.电动汽车仿真软件进展[J].系统仿真学报,2004,16(8):1621-1623.
    [32]张翔,赵韩,钱立军等.电动汽车仿真软件ADVISOR的应用[J].交通科技与经济,2004,23(3):40-43.
    [33]张翔.电动汽车建模与仿真[D].合肥:合肥工业大学,2002.
    [34]曾小华,王庆年,王伟华等.基于ADVISOR软件的双轴驱动混合动力汽车性能仿真模块开发[J].汽车工程,2003,25(5):424-426.
    [35]曾小华,王庆年,李骏等.基于ADVISOR2002混合动力汽车控制策略模块开发[J].汽车工程,2004,26(4):394-416.
    [36]邹广才,罗禹贡,杨殿阁.基于ADVISOR二次开发的混合动力越野车仿真分析[J].汽车工程,2007,29(5):404-408.
    [37]张铁臣.电动汽车动力性的仿真[D].石家庄:河北工业大学,2004.
    [38] Wootaik Lee, Daeho Choi, Myoungho Sunwoo. Modelling and simulation of vehicle electric power system[J]. Journal of Power Source, 2002, 109:58-66.
    [39]曹明柱,冯能莲,夏传超等.电动汽车的建模与仿真[J].2006,33(2):277-280.
    [40]廖权来,徐韵锋.电动汽车的改装设计初探[J].汽车研究与开发,1999,(1):20-24.
    [41]陈伟.电动汽车的动力学建模与仿真研究[D].长春:吉林大学,2001.
    [42]王保华,孙厚为.双离合器变速器汽车建模与仿真[J].湖北汽车工学学院学报,2008,22(3):1-4.
    [43]王震坡,姚利民,孙逢春.纯电动汽车能耗经济性评价体系初步探讨[J].北京理工大学学报,2005,25(6):479-484.
    [44]刘清虎,郭孔辉.动力参数的选择对纯电动汽车性能的影响[J].湖南大学学报(自然科学版),2003,30(3):62-64.
    [45]余金凤.电动汽车动力性初步研究[D].洛阳:河南科技大学,2003.
    [46]刘灵芝,张炳力,汤仁礼.某型纯电动汽车动力系统参数匹配研究[J].合肥工业大学学报(自然科学版),2007,30(5):591-593.
    [47]杨祖元,秦大同,孙冬野.电动汽车传动系统参数设计及动力性仿真[J].重庆大学学报(自然科学版),2002,25(6):19-22.
    [48]姜辉.电动汽车传动系统的匹配及优化[D].哈尔滨:哈尔滨工业大学,2006.
    [49]姬芬竹,高峰.电动汽车驱动电机和传动系统的参数匹配[J].华南理工大学学报(自然科学版),2006,34(4):33-37.
    [50]姬芬竹,高峰,周荣.纯电动汽车传动系参数匹配的研究[J].汽车科技,2005,(6):22-25.
    [51]尹冰声,孙跃东.罚函数法在汽车传动系统最优匹配中的应用[J].机械设计与制造,2004,(06):4-5.
    [52]杨磊.纯电动汽车能耗经济性研究[J].农业装备与车辆工程,2007,(9):24-26.
    [53]姬芬竹,高峰,吴志新.纯电动汽车传动系参数的区间优化方法[J].农业机械学报,2006,37(3):5-7.
    [54]朱正礼,殷承良,张建武.基于遗传算法的纯电动轿车动力总成参数优化[J].上海交通大学学报,2004,38(11):1907-1912.
    [55]文孝霞,杜子学.基于遗传算法的汽车动力传动系匹配设计变量优化[J].重庆交通学院学报,2005,24(2):128-130.
    [56]杜发荣,吴志新.电动汽车传动系统参数设计和续驶里程研究[J].农业机械学报
    [57]葛安林.车辆自动变速理论与设计[M].北京:机械工业出版社,1993.
    [58]李军求,孙逢春,张承宁等.BFC6100-EV电动大客车动力传动系统参数设计[J].北京理工大学学报,2004,24(4):311-314.
    [59]李国良,初亮.采用交流感应电机的电动汽车动力传动系统的合理匹配[J].吉林大学学报(自然科学版),2001,31(4):6-11.
    [60] Weinstock R A, Krein P T. Optimal sizing and selection of hybrid electric vehicle components[Z]. Power Electronics Specialists Conference, 24th Annual IEEE,1993.
    [61]何洪文,余晓江,孙逢春.电动车辆设计中的匹配理论研究[J].北京理工大学学报,2002,22(6):704-707.
    [62] Kenji Morita. Automotive power source in 21st century[J]. JSAE Review, 2003, 24:3-7.
    [63]何仁,商高高.汽车动力传动系统参数的优化方法[J].江苏理工大学学报(自然科学版),2000,21(6):61-64.
    [64]钱立军,吴伟岸,赵韩等.混合动力汽车传动系优化匹配[J].农业机械学报,2005,36(9):5-8.
    [65]曾虎,黄菊花.纯电动汽车的电机与变速器匹配[J].装备制造技术,2010,(2):40-42.
    [66]杨峰,傅俊.纯电动汽车经济性比较与分析[J].武汉理工大学学报(信息与管理工程版),2009,31(2):286-288.
    [67]郭秋鉴.感应电机的效率最优控制[J].陕西工学院学报,2004,20(4):54-57.
    [68]江发潮,陈全世,曹正清.机械式自动变速器的离合器优化控制[J].清华大学学报(自然科学版),2005,45(2):242-245.
    [69]牛铭奎.干式DCT离合器温度模型及其灰色预测控制研究[D].吉林大学博士研究生学位论文,2008.
    [70]金伦,程秀生,孙俐等.双离合器自动变速器仿真研究[J].汽车技术,2005,(8):4-7.
    [71] E.博特,U.欣里希森,A.沙姆沙.自动双离合器变速箱的换档控制方法:2003380109880.6[P],2006.
    [72]衣超,姜宏暄.比例流量阀在离合器控制系统中的应用[J].液压与气动,2008,(12):63-65.
    [73]金伦.双离合器自动变速器建模与控制策略的研究[D].吉林大学博士研究生学位论文,2006.
    [74]牛铭奎,程秀生,高炳钊,葛安林,徐彩琪.双离合器式自动变速器换档特性研究[J].汽车工程,2004第4期:453-457.
    [75] Toshimichi Minowa,Tatsuya Ochi,Hiroshi Kuroiwa. Smooth gear shift control technology for clutch-to-clutch shifting[J].SAE Paper.1999-01-1054,1999.
    [76] J. C. Wheals,C. Crewe,M. Ramsbottom,S. Rook,M. Westby. Automated manual transmissions-a european survey and proposed quality shift metrics[J].SAE Paper.2002-01-0929,2002.
    [77] Xiaofeng Yin,Jingxing Tan,Yulong Lei,Anlin Ge. Combined control strategy for engine rotate speed in the shift process of automated mechanical transmission[J].SAE Paper.2004-01-0427,2004.
    [78]文韶,秦大同,胡建军.DCT电控单元嵌入式软件编程接口库设计[J].重庆工学院学报,2009,23(6):14-18.
    [79]赵玉省.双离合器自动变速器系统的综合控制[D].重庆:重庆大学,2009.
    [80]王保华,张同宝.DCT离合器结构探索性设计与分析[J].湖北汽车工业学院学报,2009,23(2):1-4.
    [81]吴光强,杨伟斌,秦大同等.双离合器式自动变速器控制系统的关键技术[J].机械工程学报,2007,43(2):13-21.
    [82] G. Ercole,G. Mattiazzo,S. Mauro,M. Velardocchia,F. Amisano. Co-operating clutch and engine control for servoactuated shifting through fuzzy supervisor[J].SAE Paper.1999-01-0746,1999.
    [83] Hideki Wakamatsu,Tatsuyuki Ohashi,Shouji Asatsuke,Yoshiharu Saitou. Honda’s 5 speed all clutch to clutch automatic transmission[J].SAE Paper.2002-01-0932,2002.
    [84] M. Goetz,M. C. Levesley,D. A. Crolla. Integrated powertrain control of gearshifts on twin clutch transmissions[J].SAE Paper.2004-01-1637,2004.
    [85] Y. Zhang,X. Chen,X. Zhang. Dynamic modeling and simulation of a dual-clutch automated lay-shaft transmission[J]. Transactions of the ASME. MARCH 2005 Vol 127:302-307.
    [86] Xubin Song,Jason Liu,Daniel Smedley. Simulation study of dual clutch transmission for medium duty truck applications[J].SAE Paper.2005-01-3590,2005.
    [87] Shushan Bai,Robert L. Moses,Todd Schanz,Michael J. Gorman. Development of a new clutch-to-clutch shift control technology[J].SAE Paper.2002-01-1252,2002.
    [88]顾小忠.大众车系OAM型7档双离合器自动变速器结构分析[J].汽车维护与修理,2009,(12):36-40.
    [89]崔东伟.电动干式双离合器控制技术研究[D].长春:吉林大学,2009.
    [90]张建国,雷雨龙,宗长富等.干式DCT轿车离合器操纵系统仿真与试验[J].汽车技术,2010,(3)::51-54.
    [91]秦大同,赵玉省,胡建军.干式双离合器系统换档过程控制分析[ J].重庆大学学报,2009,32(9):1016-1023.
    [92]倪春生,鲁统利,张建武.摩擦片磨损对干式双离合器自动变速器换档特性的影响[J].上海交通大学学报,2009,43(10):1545-1554.
    [93]刘振军,董小洪,秦大同等.双离合器自动变速换档品质分析与控制[J].重庆大学学报(自然科学版),2010,33(5):29-34.
    [94]姚晓涛,秦大同,刘振军.双离合器自动变速器起步控制仿真分析[J]. .重庆大学学报(自然科学版),2007,30(1):13-17.
    [95]葛林,周文华,徐航.CAN通讯网络在汽车中的应用研究[J].汽车技术,2000,(11):1-4.
    [96]梁洁,王艳,殷天明.基于S1D13506的纯电动汽车智能显示设计实现[J].电子元器件应用,2006,(5):130-132.
    [97] BOSCH.CAN SPECIFICATION(Version 2.0).
    [98]周能辉.基于CAN总线的纯电动轿车动力总成控制器的开发研究[D].天津:天津大学,2004.
    [99]李捷.CAN总线在纯电动汽车中的应用[D].天津:天津大学,2003.
    [100]徐丹旭,王艳,殷天明.纯电动汽车CAN总线通信液晶显示系统[J].电气自动化,2009,31(6):146-147.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700