用户名: 密码: 验证码:
三维编织C/C复合材料的疲劳行为以及损伤演变研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
C/C复合材料综合了碳材料的高温性能和复合材料优异的力学性能,具有比重轻、高比强度和比刚度、优异的烧蚀性能和摩擦性能、良好的抗热震性能、低蠕变、高温下强度保持率高以及生物相容性好等一系列优异的性能,它既可以作为功能材料、又可以作为高温结构材料使用,是目前唯一可用于2800℃以上高温的复合材料。其中,以碳纤维三维编织物为增强体制得的C/C复合材料,由于其一次编织成型、不需要缝合和机械加工,纤维贯穿材料的长、宽、高三方向形成三维整体网状结构,可更有效地提高厚度方向的强度和抗冲击损伤的性能,从而克服了一维和二维增强体的结构缺陷,因此已成为航天、航空等高科技领域的重要新型材料。作为理想的高温结构材料,三维整体编织C/C复合材料在服役过程中不可避免地涉及疲劳加载的情况,而疲劳损伤的逐步积累会在某一循环次数下导致材料的突然断裂,这种断裂往往无明显征兆,危害性极大,因此对其疲劳行为进行研究具有十分重要的意义。在本论文中,以C/C复合材料疲劳行为及损伤扩展为核心内容,主要研究分为六部分:弯弯疲劳行为研究、拉拉疲劳行为研究、疲劳损伤演变及强化机制研究、切口试件疲劳行为研究、疲劳加载对断裂韧性的影响、材料热膨胀规律及高温强化机制的研究。
     研究了三维整体编织C/C复合材料的弯弯疲劳行为,测定了三维整体编织C/C复合材料的弯弯疲劳寿命(S-N)曲线以及疲劳加载过程中的载荷-挠度回滞曲线,通过试件实物照片和SEM疲劳断口分析,探讨了在不同应力水平下,材料的损伤模式。揭示了纤维与基体界面的滑动磨损在疲劳失效中起重要的作用,应力水平的高低控制着这种滑动磨损的程度和速度。
     通过夭折实验(实验进行到一定周次中止)以及SEM疲劳断口分析,研究了拉拉疲劳加载对三维整体编织C/C复合材料性能的影响。测定了三维整体编织C/C复合材料的疲劳寿命(S-N)曲线。发现拉拉疲劳加载不但使材料的拉伸强度增强,使其弯曲强度也得以强化,但疲劳强化存在有极限水平。并且,随疲劳循环次数的增加,材料的断裂也由脆性转化为假塑性模式。
     根据三维整体编织C/C复合材料自身的结构特点,选择X-ray衍射以及电阻检测作为无损检测手段,辅以SEM扫描电镜观察,对该材料在疲劳加载过程中的显微结构演化进行了的全面、深入的研究。发现了疲劳加载不但使纤维/基体之间的界面弱化,同时还具有增加碳层面间距、表观微晶尺寸减小以及消除界面残余热应力的功效,这些微观结构的变化都将使C/C复合材料的性能得以提高。提出了低应力作用下的疲劳加载实际上是C/C复合材料“疲劳训练”过程的观点。
     考察了切口三维整体编织C/C复合材料的静态力学性能以及疲劳行为。发现三维整体编织C/C复合材料在静载以及疲劳加载条件下对切口均无敏感性,而疲劳载荷则会进一步降低材料对切口的敏感性,在断裂过程中,会不断出现应力松弛和应力提高的交替现象。切口材料在静态弯曲时的断裂模式以复合材料的“裂纹扩展模式”为主,虽然在断裂时,材料也表现出界面损伤、纤维拔出的现象,但主要还是由垂直于加载方向的单一裂纹主导的断裂模式,表现出脆性断裂的特征。而切口试件的疲劳断裂,却是表现出多种损伤形式:裂纹扩展方向偏转,基体的松散、基体中的分层裂纹、裂纹尖端的塑性变形等等,材料的断裂模式以复合材料的“总体损伤模式”为主。
     研究了疲劳加载对C/C复合材料断裂韧性的影响。试验结果发现疲劳加载使C/C复合材料断裂韧性显著提高,提高幅度达4.5倍。
     全面的考察了三维整体编织C/C复合材料从室温到1300℃温度范围内的热膨胀行为,发现三维整体编织C/C复合材料从室温到100℃的温度范围内,CTE受材料密度和孔隙的制约,呈负膨胀状态;在高于100℃以后的温度范围内,材料的热膨胀变化规律则由碳纤维和碳基体的热膨胀行为以及界面热应力共同决定的,是纤维和基体相互限制、相互竞争的结果。与常温相比,三维整体编织C/C复合材料在高温下不但材料的承载能力显著提高了,材料的应变能力也有大的增加,但并不会随温度的升高而无限升高,在基体裂纹达到愈合状态时,强度将达到极限值。高温时由于材料内部摩擦阻尼和碳本身的内摩擦行为的共同作用,材料的内摩擦随温度上升而增加,使界面承载能力加大。
Carbon/carbon composites(C/C composites) are the only material that can maintain high strength and toughness up to high temperatures of more than 3000 K. Thus, it has been considered as the most promising candidate for high temperature structural material for various purposes. As preferred high-temperature structural materials, the potential applications for C/C composites are bound to involve fatigue loads. Therefore, a clear understanding of the behavior of these composites under fatigue loads is necessary. In the recent years, research studies on the fatigue behavior of C/C composites have been performed; however, the results of these studies were still insufficient to establish the design criteria for load-bearing structures. In particular, the influence of fatigue loading on mechanical properties of C/C composites is not well understood. Thus, the usage of C/C composites is still limited to heat resistant components of spacecraft, rocket nozzles and nuclear reactors, etc. Therefore, in this present study, attention was mainly focused on the fatigue behaviors and damage evolution of 3D integral braided C/C composites, and some new contributions are summarized as follows:
     In the 3D reinforcement performs, Carbon fibers were braided into a rectangular strip(with width of 6.5mm and thickness of 3.5mm) by a four-step method using 1K T-300 carbon fibers, in which the braided angle was 22°and the fiber volume fraction was 45%. In the 3D reinforcement performs, Carbon fibers were braided into a rectangular strip(with width of 6.5mm and thickness of 3.5mm) by a four-step method using 1K T-300 carbon fibers, in which the braided angle was 22°and the fiber volume fraction was 45%. 3D integral braided C/C composites have been prepared by an isothermal chemical vapor infiltration(CVI) process, and their flexural and tensile fatigue behaviors were examined under load control at a sinusoidal frequency of 10 Hz.
     In the present study, the stress-fracture cycles(S-N) relationships of these composites in bend and tensile fatigue mode were obtained. The load-displacement curves and the fracture surfaces of specimens at various fatigue cycles were observed in order to identify the micro-damage induced during fatigue loading. Finally, the mechanisms responsible for strength enhancement after fatigue loading was discussed based on the experimental evidence.
     For the flexural fatigue behavior study, attention was focused on the effect of applied stress on damage mode of 3D integral braided C/C composites under bend-bend fatigue loading. The flexural fatigue limit of the C/C was examined. The fracture surfaces and cross-sections of the original and fatigued C/C composites at various level of applied stress were observed. It is revealed that the interfacial sliding abrasion play an important role in the fatigue failure process, and the extent and speed of sliding abrasion were controlled by the level of applied stress; for the tensile fatigue behavior study, the results show that the strength of specimens was enhanced with increase in tensile fatigue cycles and applied stress, but the fatigue enhancement was not boundless and would decline gradually.
     With the help of modern nondestructive testing (NDT) technology, the fatigue damage and fatigue enhancement have been investigated deeply and entirely. Considering the structure character of 3D integral braided C/C composites, X-ray diffraction method (XRD) and electrical resistance monitoring, assisted with scanning electron microscopy (SEM), is selected from several available NDT means after practical trials. It is testified experimentally that X-ray diffraction method (XRD) and electrical resistance monitoring is suitable for non-microcosmic defect detection during fatigue loading process of C/C composites. With these NDT technology, it has found that the augment of interlaminar distance, the decline of graphitization degree and microcrystalline stack and the release of remain thermal stress have contributed to the enhancement of strength of C/C composites under fatigue loading.
     The flexural performances of un-notch and notch C/C composites have been experimentally studied before and after fatigue loading. The sensitivity of notch and the domino offect of notch have been analyzed.
     In addition, the effect of fatigue loading on the fracture toughness and fracture behaviors of a 2.5 dimensional tightly woven C/C composites (2.5D C/C composites) was investigated by using the compact tension (CT) test. The fracture surfaces of CT specimens were observed using a scanning electron microscope (SEM) and a digital camera respectively. The compliance curves and the crack growth resistance curves (R-curves) showed that the fracture toughness of C/C composites was increased evidently after fatigue loading. The fiber-matrix interface was weakened during fatigue loading by analyzing the fracture morphology of the specimen. The weakened interfaces relaxed the stress concentration of the tip of cracks, increased the resistances of crack expansion process effectively, improved the fracture energy remarkably, prolonged the destroying time, and reinforced the damage capacity of the material such that the fracture toughness of the composites was enhanced by fatigue loading.
     Meanwhile, the flexural properties and damage modes have been investigated at 1000℃, 1300℃, 1700℃and room temperature respectively, and the strength improvement mechanism at the high-temperature was discussed according to the character of the thermal expansion rules and load-displacement curves as well as the fracture morphology of C/C composites. The results show that flexural properties at high temperature are super!or greatly to these at room temperature. The enhancement of internal" friction is the main reason for the increasing strength of C/C at high temperature.
引文
[1] 曹晓明,武建军,温鸣编著.先进结构材料.化学工业出版社,北京,2005
    [2] 方李莉.新工艺文化论.清华大学出版社,1995:93
    [3] 北京科技情报所编.世界新技术的今天与明天.学术期刊出版社,1989:1
    [4] 堂三昌南,山本良一编,邝心湖译.尖端材料.电子工业出版社,1987:2
    [5] 乔松楼,乐俊淮,苏雨生.新材料技术.中国科学技术出版社,1994:1
    [6] 李继宗.现代科学技术概论.复旦大学出版社,1994:365
    [7] 王克秀.固体火箭发动机复合材料基础.宇航出版社,1994:9
    [8] 师昌绪.新型材料与材料科学.科学出版社,1988:11
    [9] 贺福,王茂章.碳纤维及其复合材料.科学出版社,1995:200
    [10] 李贺军.碳/碳复合材料.新型碳材料,2001,16(2):79-80
    [11] 韩红梅,张秀莲,李贺军等.碳/碳复合材料高温力学行为研究.新型碳材料,2003,18(1):20-24
    [12] 陈强,李贺军,李爱军等.人工神经网络建模在抗烧蚀碳/碳复合材料基体改性研究中的应用.新型碳材料,2004,19(4):275-281
    [13] 薛辉,李贺军,侯向辉等.压力梯度CVI工艺制备2D碳/碳复合材料的弯曲断裂行为.新型碳材料,2004,19(4):289-293
    [14] J Neumeister, S Jansson, F Leckie. The effect of fiber architecture on the mechanical properties of carbon/carbon fiber composites. Acta Mater, 1996, 44(2): 573
    [15] R Shi, H J Li, Z Yang, M K Kang. Textures, interface and fracture ofa 1D-C/C prepared by CVD. ACTA Mater, 1996, 9(6): 665-667
    [16] 孙乐民,李贺军,张守阳.沥青基碳/碳复合材料的弯曲断裂特性.新型碳材料,2001,16(3):28-31
    [17] R A Meyer. Overview of International Carbon-Carbon Composite Research. 8th Annual Conference on Material Technology, Structure Carbon, 1992: 147-158
    [18] J E Sheehan. Carbon-Carbon Composites. Annu Rev Mater Sci, 1994, 24: 19-44
    [19] K Okuyama, K Matsuura. Carbon Fiber-Reinfored Carbon/Carbon Composite Material. US 5077130, 1991
    [20] 李贺军,罗瑞盈,杨峥.C/C复合材料在航空领域的应用研究现状.材料工程,1997,(4):8-10
    [21] 高燕,宋怀河,陈晓红.C/C复合材料的研究进展.材料导报,2002,16(7):44-47
    [22] 赵枫,王典亮,韩杰才,杜善义.三向碳/碳复合材料的高温断裂特征.碳素,1993,(1):32-34
    [23] Main Commercial Aircraft Carbon Brakes Operators Market Status, Messier Bugatti Co., 1995. 4
    [24] 王兰英.CLVI-C/C复合材料的制备、组织及性能的研究.西北工业大学博士学位论文,2005
    [25] Fitzer E, B Terwiesch. Carbon-carbon composites unidirectionally reinforced with carbon and graphite tiber. Carbon, 1972, 10(4): 383-390
    [26] 石荣.热解碳C/C复合材料的组织与力学性能研究.西北工业大学博士学位论文,1997
    [27] 李蕴新,张绍维,周端发.碳/碳复合材料.材料科学与工程,1996,14(2):6-1
    [28] 罗瑞盈.碳碳复合材料快速CVD工艺、结构性能及应用研究.西北工业大学博士学位论文,1995
    [29] LiHejun. A New Fabrication Technique of C/C Composites. The Int. Conf on New Mater and process, Oct. 1995
    [30] 李铁虎.基体改性碳/碳复合材料的制备结构与性能研究.西北工业大学博士学位论文,1993
    [31] 田军,薛群基,王齐祖.碳纤维的表面处理对其力学性能和结构的影响.合成纤维,1998,27(1):10-12
    [32] 韩红梅.C/C复合材料的力学性能及损伤演变研究.西北工业大学博士学位论文,2002
    [33] Hiroshi Hatta, Keiji Suzuki, Tetsuro Shigei, et al. Strength improvement by densification of C/C composites. Carbon, 2001, 39: 83-90
    [34] D D Edie. The effect of processing on the structure and properties of carbon fibers. Carbon, 1998, 36(4): 345-362
    [35] S M Oh, J Y Lee. Effects of matrix structure on mechanical properties of carbon/carbon composites. Carbon, 1988, 26(6): 769-776
    [36] 赵稼祥.日本C/C复合材料的现状与发展.高科技纤维与应用,1998,1:23-25
    [37] S. Kimura. High Temp. -High Press., 1981, 13: 193
    [38] 乔松楼,乐俊淮,苏雨生.新材料技术.北京:中国科学技术出版社,1994:1
    [39] 内田胜也著,石行,朱立群译.高物性新型复合材料.北京:航空工业出版社,1992:85
    [40] 王茂章,贺福,碳纤维的制造、性质及其应用,北京:科学出版社,1984:3
    [41] J.德尔蒙特.碳纤维和石墨纤维复合材料技术.北京:科学出版社,1987:59
    [42] 张和善.国外航空结构材料发展概况—先进复合材料.航空制造工程,1997,(12):6
    [43] O. Siron, J. Lamon. Damage and Failure Mechanisms of 3-Directional Carbon/Carbon Composites under Uniaxial Tensile and Shear Loads. Acta Mater, 1998, 46(18): 6631-6643
    [44] 张立同,李贺军,成来飞等.航空超高温复合材料的现状与发展.第九届全国复合材料学术论文集.北京:世界图书出版公司,1996:51
    [45] S S Tzeng, W C Lin. Mechanical behavior of two-dimensional behavior Carbon/Carbon composites with interface carbon layers. Carbon, 1999, 37: 2011-2019
    [46] Q Gu, P Ketturnen. Carbon-carbon composites. Materials Science and Engineering, A234-236, 1997: 223-225
    [47] Torsten Windhorst, Gordon Blount. Carbon-carbon composites: a summary of recent developments and applications. Materials & Design, 1997, 18: 11-15
    [48] 王中光译.材料的疲劳.北京:国防工业出版社,1993:56-88
    [49] 徐濒.疲劳强度.北京:高等教育出版社,1988:50-99
    [50] 郑修麟.材料的力学性能.西安:西北工业大学出版社,2004:171
    [51] 陈传尧.疲劳与断裂.武汉:华中科技大学出版社,2002:1-7
    [52] 李嘉禄,杨红娜,冠长河.三维编织复合材料的疲劳性能.复合材料学报,2005,22(4):172-176
    [53] 高镇同,熊峻江.疲劳学的研究进展.北京航空航天大学学报,1996,22(3):245-248
    [54] 乔生儒.复合材料细观力学性能.西安:西北工业大学出版社,1997:124-145
    [55] 束德林.工程材料力学性能.北京:机械工业出版社,2003:250
    [56] 郑修麟.工程材料的力学行为.西安:西北工业大学出版社,2004:297
    [57] 陈祥宝.先进树脂基复合材料的发展,航空材料学报,2000,20(1):46-54
    [58] J S Chew. Solid rocket propulsion applications for advance polymers[R]. ADA 240864
    [59] 何新波,曲选辉,叶斌.SiC_f/SiC复合材料的制备与力学性能.无机材料学报,2005,20(3):677-683
    [60] 孙万昌,李贺军,白瑞成,黄勇.微观组织结构对C/C复合材料力学行为的影响.无机材料学报,2005,20(3):671-676
    [61] S Surech. Fatigue of Materials. Cambrige: Cambrige University Press, 1991
    [62] 张文龙,陈嘉颐,吴桢干,张帆,顾明元.(AL_2O_3)_f/AL复合材料在强界面结合下的疲劳损伤模式.复合材料学报,2003,20(1):106-110
    [62] 冼杏娟,李瑞义.复合材料破坏分析及微观图谱.北京:科学出版社,1993:10-14
    [63] 田振辉,谭惠丰,谢礼立.橡胶复合材料疲劳破坏特性.复合材料学报,2005,22(1):32-35
    [64] 黄争鸣,张若京.复合材料结构受横向载荷作用的强度问题.复合材料学报,2005,148-159
    [65] 翟宏军,姚卫星.纤维增强树脂基复合材料的疲劳剩余刚度研究进展.力学进展,2002,32(1):69-80
    [66] 齐红宇,温卫东.先进纤维增强复合材料疲劳寿命的预测.纤维复合材料,2001,2(3):3-6
    [67] 冼杏娟.纤维增强复合材料的破坏机理.力学进展,1986,16(2):229-235
    [68] 许德刚,沈亚鹏.各向异性材料疲劳损伤模拟.应用力学学报,1996,13(4):131-136
    [69] 顾怡,姚卫星.疲劳加载下纤维复合材料的剩余强度.复合材料学报,1999,16(3):98-102
    [70] 程光旭,韦玮,李光哲.复合材料疲劳损伤演化的两阶段模型.机械工程材料,2000,24(5):1-4
    [71] 金宏彬.复合材料疲劳S-N曲线建模.玻璃钢/复合材料,1999,(6):18-20
    [72] 童小燕,万小朋,孙秦,姚磊江,王梦龙.复合材料的疲劳寿命预测.机械强度,1995,17(3):94-100
    [73] 杜双明,乔生儒,纪岗昌,韩栋.3D-C/SiC复合材料在室温和1300℃的拉拉疲劳行为.材料工程,2002,(9):22-25
    [74] 顾怡.FRP疲劳累积损伤理论研究进展.力学进展,2001,31(2):193-201
    [75] 吴德隆,王江,王淑范,张忠.复合材料损伤分析及其本构关系.导弹与航天运载 技术,2001,251(3):28-32
    [76] 瑞麦施·塔尔瑞加著.复合材料疲劳(丹麦),航空工业出版社,1990
    [77] C R Thomas. Essentials of Carbon-Carbon Composites. The Royal Society of Chemistry, Trowbridge, Wiltshire, 1993
    [78] J. D. Buckley, D. D. Edie. Carbon/Carbon Materials and Composites. Noyes Publications, 1993
    [79] Han Hong mei, Li Hejun, et al. Science in china(series E), 2003, 46(4): 337-342
    [80] Yasuhiro Tanabe, Takuya Yoshimura, Tomoyuki Watanabe, Toshiharu Hiraoka, et al. Fatigue of C/C composites in bending and in shear modes. Carbon, 2004, (42): 1-6
    [81] A K Roy. Tensile fatigue behavior of a coated two-dimensional carbon/Carbon composite laminate. J Compos Technol Res, 1996, (18): 202-208
    [82] A. Ozturk. The influence of cyclic fatigue damage on the fracture toughness of carbon/carbon Composites. J Bionmed Mater Res, 1996, 27A: 641-646
    [83] A. Ozturk, Moore R E. Tensile fatigue behavior of tightly woven carbon/carbon composites. Composites, 1992, (23): 39-46
    [84] H. Mahfuz, M Maniruzzaman, J Krishagopalan, A Hague, et al. Effect of stress ratio on fatigue life of carbon/carbon composites. Theoretical and Applied Fracture Mechanics, 1995, (24): 21-31
    [85] J C Williams, S W Yurgartis, J C Moosbrugger. Interlaminar shear fatigue damage evolution of 2D carbon/carbon composites. J Comp Mater, 1996, 30(7): 785-799
    [86] K Goto, H Hatta, D Katsu, T Machida. Tensile fatigue of a laminated carbon/carbon composites at room temperature. Carbon, 2003, (41): 1249-1255
    [87] 吴德隆,沈怀荣.纺织结构复合材料的力学性能.长沙:国防科技大学出版社,1998:5-10
    [88] D Brookstein. Braiding of a three-dimensional article through select fiber placement[P]. U S Patent: 5123458, 1994: 10-23
    [89] R Mc Connell, P Popper. Complex shaped braided structures[P]. U S Patent: 4719837, 1988: 1-19.
    [90] 李嘉禄,肖丽华,董孚允.立体多向编织结构对复合材料性能的影响.复合材料学报,1996,13(3):71-75
    [91] 修英姝,陈利,李嘉禄.三维编织复合材料制件的细观单胞分析.复合材料学报,2003,20(4):63-66
    [92] 李嘉禄,孙颖,李学明.二步法方型三维编织复合材料力学性能及影响因素. 复合材料学报,2004,21(1):90-94
    [93] 卢子兴,杨振宇,李仲平.三维编织复合材料力学行为研究进展.复合材料学报,2004,21(2):1-7
    [94] 徐可,许希武,汪海.三维四向编织复合材料的几何建模及刚度预报.复合材料学报,2005,22(1):133-138
    [95] B Thielicke. Mechanical properties of C/C composites. Key Engineering Materials, 1999, (164): 145-150
    [96] K Upadhya, K M Yang, F P Hoffman. Materials for ultrahigh temperature structural applications. The American Ceramic Society Bulletin, 1997(12): 51-56
    [97] E Fitzer. The future of carbon-carbon composites. Carbon, 1987, 25(2): 163-90
    [98] J D Zhang. In: Engineering Basic of Carbon Materials. Beijing: Metallurgy Industry Publishing Company, 1992: 16-23.
    [99] 梁军,陈晓峰,旁宝军,杜善义.多向编织复合材料的力学性能研究.力学进展,1999,29(2):197-210
    [100] 梁军,杜善义,韩杰才,刘连元,万捷.含缺陷三维编织复合材料热膨胀系数计算.宇航材料学报,1998,19(1):90-93
    [101] 唐国笠,闰允杰,陈锡花,卢子兴,陆萌,冯志海.多向编织碳纤维复合材料的断裂及微观形貌.清华大学学报(自然科学版),1999,39(10):4-7
    [1] 李贺军.碳/碳复合材料.新型碳材料,2001,16(2):79-80
    [2] J Neumeister, S Jansson, F Leckie. The effect of fiber architecture on the mechanical properties of carbon/carbon fiber composites. Acta Mater, 1996, 44(2): 573
    [3] L Donald Schmidt, E Kenneth, Davidson, L. Scott Theibert. Unique Applications of Carbon/Carbon Composites Materials(Part 1). SAMPE Journal, 1999, 35(3): 29
    [4] E Bruneton, B Narcy, A Oberlin. Carbon/carbon composites prepared by a rapid densification process Ⅱ: Structure and textural characterizations. Carbon, 1997, 35(10-11): 1599-1611
    [5] 吴德隆,沈怀容.纺织结构复合材料的力学性能.长沙:国防科技大学出版社,1998
    [6] 马力.编织与层压复合材料的性能比较.第十一届全国复合材料学术会议论文集.合肥:中国科学技术大学出版社,2000
    [7] 张守阳.新型CVI法制备C/C复合材料工艺及机理研究.[博士学位论文].西安:西北工业大学,2000
    [8] 周少荣,乔生儒,白世鸿.C/C复合材料室温及高温断裂韧性的测试表征.材料工程,1994,(4):28-31
    [9] 韩红梅,李贺军,魏建峰,等.疲劳载荷下C/C复合材料的基体皱褶现象研究.中国科学E辑,2003,33(7):614-618
    [10] O Siron, J Lamon. Damage and failure mechanisms of a 3D carbon/carbon composite under uniaxial tensile and shear loads. Acta Mater, 1998, 46(18): 6631-6643
    [11] Yasuhiro Tanabe, Takuya Yoshimura, et al. Fatigue of C/C composites in bending and shear modes. Carbon, 2004, (42): 1-6
    [12] A G Evana, F W Zok. Review the physics and mechanics of fibre-reinforced brittle matrix composites. J. Mater. Sci., 1994, (29): 3857-3896
    [13] 孙文训,黄玉东,张致歉.C/C复合材料的界面演化规律.材料研究学报.2000,14:137-140
    [14] A K Roy. Tensile fatigue behavior of a coated two-dimensional carbon-carbon composite laminate. J Compos Technol Res, 1996, 18: 202-8
    [15] I Mostafa, A Moet. Effect of processing on the fracture toughness of two-dimensional carbon-carbon composite. J Mater Sci Lett, 1996, 15: 755-758
    [16] A Ozturk, R E Moore. Tensile fatigue behaviour of tightly woven carbon/carbon composites. Composites, 1992, 23: 39-46
    [17] H Mahfuz, M Maniruzzaman, J Krishnagopalan, A Hague, M Ismail, S Jeelani. Effects of stress ratio on fatigue life of carbon-carbon composites. Theor Appl Fract Mech, 1995, 24: 21-31
    [18] A Ozturk. The influence of cyclic fatigue damage on the fracture toughness of carbon-carbon composites. J Biomed Mater Res, 1996, 27A: 641-6
    [19] T Fend, J Goering. Strength and fatigue behavior of 2D-carbon/carbon composites under shear conditions. Ceram Trans, 1994, 46: 165-76
    [20] K Goto, H Hatta, D Katsu, T Machida. Tensile fatigue of a laminated carbon-carbon composite at room temperature. Carbon, 2003, 41: 1249-55
    [21] T Sogabe, S Yoda, I Ioku, T Araki, T Oku. Mechanism of delayed fracture of polycrystalline graphite. J Soc Mater Sci Jpn, 1985, 34: 1437-40 [in Japanese]
    [22] JUTEM(Japan ultra-high temperature material research center), A NEDO report on durability of super heat-resistant composites under ultra-high temperatures. NEDO, 1994, 35-7[in Japanese]
    [23] R O Ritchie, R H Dauskardt. Cyclic fatigue of ceramics. J Ceram Soc Jpn, 1991, 99: 1047-62
    [24] M Okazaki, A J Mc Evily, T Tanaka. On the mechanism of fatigue crack growth in silicon nitride. Metall Trans, 1991, 22A: 1425-6
    [25] 张文龙,陈嘉颐,吴桢干,张帆,顾明元.(AL_2O_3)_f/AL复合材料在强界面结合下 的疲劳损伤模式.复合材料学报,2003,20(1):106-110
    [26] Kawakubo T, Goto A. Cyclic fatigue behavior of ceramics at room temperature. J Soc Mater Sci Jpn, 1987, 36: 1253-8[in Japanese]
    [27] A Ueno, H Kishimoto, S Ookawara, T Kondo, A Yamamoto. Crack propagation behavior of small crack of polycrystalline alumina and effects of cyclic load and grain size on bridging. J Soc Mater Sci Jpn, 1994, 43: 183-9[in Japanese]
    [28] Xianghui Hou, Hejun Li, Can Wang, Zhengang Zhu, Jian Shen. Internal friction behavior of carbon-carbon composites. Carbon, 2000, 38: 2095-2101
    [1] A Ozturk. The influence of cyclic fatigue damage on the fracture toughness of carbon/carbon composites. Compoties Part A, 1996, 27A: 641-646
    [2] H Mahfuz, M Maniruzzaman, J Krishagopalan, A Haque, M Ismail, S Jeelani. Effects of stress ratio on fatigue life of carbon/carbon composites. Theoretical and Applied Fracture Mechanics, 1995, 24: 21-31
    [3] D Surya, Pandita, Ignaas Verpoest. Tension-tension fatigue behaviour of knitted fabric composites. Composits Structure, 2004, (64): 199-209
    [4] H T Hanh. Fatigue behaviour and life prediction of composite laminates. In: Tsai SW, editor. Composite materials: testing and design(fifth conference). American Society for Testing and Materials, 1978, 674: 383-417
    [5] H T Hanh, R Y Kim. Fatigue behaviour of composite laminate. J Compos Mater, 1976, 10: 156-180
    [6] R Talreja. Fatigue of composite materials: damage mechanisms and fatigue life diagrams. Proc R Soc London A, 1981, 378: 461-475
    [7] Ken Goto, Hiroshi Hatta, Daisuke Katsu, Terufumi Machida. Tensile fatigue of a laminated carbon-carbon composite at room temperature. Carbon, 2003, (41): 1249-1255
    [8] 韩红梅.C/C复合材料的力学性能及损伤演变研究.西北工业大学博士学位论文,2002
    [9] Lewis, J Y Lee, Fracture behavior of two-dimensional carbon/carbon composites. Carbon, 1989, 27(3): 423-430
    [10] Y Kogo, H Hatta, H Kawada, T Machida. Effect of stress concentration on tensile fracture behavior of carbon-carbon composites. J Comp Mater, 1998, 32(13): 1273-1294
    [11] K R Turner, J S Speck, A G Evans. Mechanism of deformation and failure in carbon-matrix composites subject to tensile and shear loading. J Am Ceram Soc, 1995, 78(7): 1841-1848
    [12] F Namiki, Y W Chou. Tensile behavior of a quasi-isotropic carbon-carbon composite. J Am Ceram Soc, 1998, 81(1): 113-120
    [13] W W Stinchcomb, K L Reifsnider. Fatigue damage mechanisms in composite materials: a review. In: Fong JT, editor. Fatigue mechanisms, American Society for Testing Material, 1979: 762-787
    [14] T Fujii, S Amijima, K Okubo. Microscopic fatigue processes in plain weave glass fiber composites. Compos Sci Technol, 1993, 49:327-333
    
    [15] S D Pandita, G Huysmans, M Wevers, I Verpoest. Tensile fatigue behaviour of glass-plain weaves fabric composites in on and off axis directions. Composites A, 2001,32A:1533-1339
    
    [16] H Hatta, Y Kogo, T Tanimoto, T Morii. Static and fatigue fracture behavior of C/C composites. In: Proc of 4th Japan Int SAMPE Symposium, 1995:368-373.
    
    [17] C Tallaron, D Rouby, P Reynaud, G Fantozzi. Improvement of cyclic fatigue analysis by the use of a tensile master curve in carbon/carbon composites. Key Eng Mater, 1999, 164-165:329-332
    
    [18] A Ozturk, R E Moore. Tensile fatigue behavior of tightly woven carbon-carbon composites. Composites, 1992, 23:39-46
    
    [19] F E Heredia, S M Spearing, A G Evans, P Mosher, W A Curtin. Mechanical properties of continuous fiber reinforced carbon matrix composite and relationship to constituent properties. J. Am. Ceram. Soc, 1992, 75(11):3017-3025
    
    [20] B Trouvat, X Bourrat, R Naslain. Toughening mechanism in C/C minicomposites with interface control. Extended Abstracts and Program of Carbon '97 Vol.11, Am Carbon Soc, 1997:536-537
    
    [21] H Hatta, K Suzuki, S Somiya, Y Sawada. Strength improvement by densification of carbon-carbon composites. Carbon, 2001, 39:83-90
    
    [22] M Mizuno, S Zhu, Y Nagano, Y Sakaida, Y Kagawa, M Watanabe. Cyclic-fatigue behavior of SiC/SiC composites fiber at room and high temperatures. J Am Ceram Soc 1996, 79(12):3065-3077.
    
    [23] S F Shuler, J W Holmes, X Wu, D Roach. Influence of loading frequency on the room-temperature fatigue of a carbon/SiC-matrix composite. J Am Ceram Soc, 1993, 76(9):2327-2336.
    
    [24] N Chawla, Y K Tur, J W Holmes, J R Barber, A Szweda. High-frequency fatigue behavior of woven-fiber-fabric-reinforced polymer-derived ceramic-matrix composites. J Am Ceram Soc, 1998, 81 (5):1221-1230
    
    [25] Y Kogo, H Hatta, A Okura, Y Obayashi, Y Sawada, M Fujikura. Strength and toughness of C/C composite at elevated temperature. Trans Tokyo Inst Polytech, 1994, 17(l):50-58
    
    [26] A G Evans, F W Zok. Review: The physics and mechanics of fibre-reinforced brittle matrix composites. J Mater Sci, 1994, 29:3857-3896
    [27] M D Thouless, O Sbaizero, L S Sigl, A G Evans. Effect of interface mechanical properties on pullout in a SiC-fiber reinforced lithium aluminum silicate glass-ceramic. J Am Ceram Soc, 1989, 72(4):525-532
    
    [28] T Chang, T Nakagawa, A Okura. Studies on a new manufacturing process of carbon fiber reinforced carbon matrix (C/C) composites. Report of the Institute of Industrial Science, the University of Tokyo, 1991, 35(8):456-462
    [1] 束德林主编.工程材料力学性能.机械工业出版社,2004,第二版
    [2] 曹晓明,武建军,温鸣编著.先进结构材料.化学工业出版社,2005
    [3] S. Ragan and G. T. Emmerson, Carbon, 1992, 30(3): 339
    [4] J D Buckley, D D Edie. Carbon-Carbon materials and compostites. ParkRidge, N. J., Noyes, Pub. 1993: 3
    [5] E K GAMSTEDT. Effects of Debonding and Fiber Strength Distribution on Fatigue-Damage Propagation in Carbon Fiber-Reinforced Epoxy. Journal of Applied Polymer Science, 2000, 76: 457-474
    [6] 韩红梅.C/C复合材料的力学性能及损伤演变研究.[博士学位论文].西安:西北工业大学,2002
    [7] Y Z Pappas, Markopoulos, V Kostopoulos. Failure mechanisms analysis of 2D carbon/carbon using acoustic emission monitoring, NDT & International, 2001, 31(3): 157-163
    [8] N J Gianaris, R E Green. Statictical methods in material manufacturing and evaluation. Material Evaluation, September, 1999: 944-951
    [9] R Singh. Three decades of NDT reliability assessment and demonstration. Materialn Evaluation, July, 2001: 856-860
    [10] 李志君.先进复合材料的无损检测.宇航工艺技术,2000,5:28-31
    [11] 刘松平,郭恩明.复合材料无损检测技术的现状与展望.航空制造技术,2001,3:30-32
    [12] 陈积樊,刘松平,张斌.加入世贸组织后的我国无损检测.无损检测,2001,23(7):295-297,312
    [13] R M Aoki, P Schanz. NDI assessment of CMC(C/C-SiC) manufacturing. Insight, 1999, 41: 173-175
    [14] S F Burch. X-ray computerized tomography for quantitative measurement of density variations in materials. Insight, 2001, 43: 29-31
    [15] Zheng Yong, Fu Gangqiang. X-ray computed tomography for failure analysis investigations of aerospace. CT theory and Applications, 2000, 9: 112-115
    [16] 常铁军,祁欣.材料近代分析测试方法.哈尔滨工业大学出版社,2000
    [17] E A Birt. The application of X-radiography to the inspection of composites. Insight, 2000, 42: 152-157
    [18] S Wang and D D L Cheng. Self-monitoring of strain and damage by a carbon-carbon composite. Carbon, 1997, 35(5): 621-630
    [19] 石川敏功,长冲通著,陆玉峻,李杰,刘建东译.新碳素工业.哈尔滨工业大学出版社,1990.8
    [20] 李圣华.炭和石墨制品(上册).北京:冶金工业出版,1983:48-57
    [21] 稻坦道夫.碳素技术,1985,(6):15
    [22] 姚广春主编,冶金碳素材料性能及生产工艺,北京:冶金工业出版社,1992:6
    [23] Masakazu Adachi,Hiroshi Shioyama,等.900-2800K多晶石墨电阻率与温度的关系.炭素技术,1991,(4):18-20
    [24] R C Tatar, S Rabii. Electronic properties of graphite: A unified the oretical study. PhysRevB, 1982, 25(6): 4126-4141
    [25] R D Sherman, L M Middleman, S M Jacobs. Electron. transport processes in conductor-filled polymers. Polym Eng Sci, 1983, 23(1): 36-46
    [26] 石荣.热解碳基C/C复合材料的组织与力学性能研究.西北工业大学博士论文,1997
    [27] 武井武,河岛千寻编,梁济博译.新碳素材料.兰州:兰州碳素厂研究所,1981
    [28] 马宝钿,杜百平,朱维斗,李年.电阻法检测疲劳损伤及预测修复效果探讨.理化检验.物理分册,2002,38(13):493-495
    [29] 张福勤,黄启忠,黄伯云,巩前明,陈腾飞.C/C复合材料石墨化度与导电性能的关系.新型炭材料,2001,16(2):45-48
    [30] 李崇俊,马伯信,霍肖旭.炭/炭复合材料石墨化度的表征(Ⅰ).新型炭材料,1999,14(1):19-24
    [31] 肖纪美.材料学的方法论.北京:冶金工业出版社.1994
    [32] 候向辉.C/C复合材料快速CVI致密化技术及模拟研究.西北工业大学博士论文,1998
    [33] 王茂章,贺福.碳纤维的制造、性能及其应用.北京:科学出版社,1984:273
    [34] H Marsh, M M Escandell, F R Reinoso. Semicokes from pitch pyrolysis: mechanisms and kinetics. Carbon, 1999, 37: 363-390
    [35] G Savage. Carbon-Carbon Composites. Chapman & Hall, London, 1993: 63
    [36] O Siron, J Lamon. Damage and Failure Mechaninisms of A 3-Directional Carbon/Carbon Composites under Uniaxial Tensile and Shear Loads. Acta Mater., 1998, 46(18): 6631-6643
    [37] 张美忠,李贺军,李克智.三维编织C/C复合材料预制体结构模拟.材料科学与工程学报,2004,22(5):634-636
    [38] B W Roser. Mechanics of Fiber Strengtherning, Composite Materials. Ohio, Matals Park: ASM, 1965
    [39] 吴人洁编.复合材料,天津大学出版社,2000
    [40] 刘畅,魏永良,崔红,苏君明,成会明,周本濂.炭纤维增强炭基复合材料的界面,炭素技术,1999,3:28
    [41] 李航月.残余压应力场中二维和三维疲劳短裂纹的扩展.西安交通大学博士学位论文,1997
    [42] Yasuo Kogo, Yoshie Iijima, Naohiro Igata. Enhancement of internal friction of carbon-carbon composites by selective oxidation. Joural of Alloys and Compounds, 2003, 355: 154-160
    [1] I Milne. The Importance of the Management of Structure Integrity, Engineering Failure Analysis. 1994, 1 (3): 171-181
    [2] E Smith. Normalised effective K versus Lr failure assessment diagrams as applied to a flaw in the vicinity of a stress concentration, Int. J. Eng. Sci., 2000, 38:1153-1159
    [3] G Pluvinage. Fatigue and fracture emanating from notch: the use of the notch stress intensity factor. Nuclear Eng. & Design, 1998, 185:173~184
    [4] 郑修麟.切口件的断裂力学.第一版.西安:西北工业大学出版社,2000
    [5] 肖纪美.金属的韧性与韧化.上海:上海科学技术出版社,1982
    [6] T J Mackin, T E Purcell, M Y He, A G Evans. Notch sensitivity and stress redistribution in three ceramic-matrix composites. J Am Ceram Soc 1995, 78(7):1719-28
    [7] H J Lin. Failure strength of woven fabric composites with drilled and moulded holes. Compos Sci Technol, 1994, 52:571-576
    [8] 黄志明,石德珂,金志浩.金属力学性能,西安:西安交通大学出版社,1986
    [9] M Kawai, M Morishita, K Fuzi, T Sakurai, K Kemmochi. Effects of matrix ductility and progressive damage on fatigue strengths of unnotched and notched carbon fiber plain woven roving fabric laminates. Composites, 1996, 27A:493-502
    [10] S Mohamed: Aly Hassan, Hiroshi Hatta, Shuichi Wakayama, et al. Comparison of 2D and 3D carbon/carbon composites with respect to damage and fracture resistance. Carbon, 2003, 41:1069-1078
    [11] G E Griesheim, P B Pollock, Yen SC. Notch strength and fracture of 2-D carbon-carbon composites. J Am Ceram Soc 1993, 76(4):944-56
    [12] 郑修麟,赵康,鄢军辉,王泓.车由向压缩载荷下陶瓷切口的断裂强度表达式.中国机械工程,2003,7
    [13] 束德林主编.工程材料力学性能.北京:机械工业出版社.2003
    [14] 郑修麟主编.材料的力学性能.西安:西北工业大学出版社.2004
    [15] F E Heredia, S M Spearing, T J Mackin, M Y He, A G Evans, P Mosher, P Bronsted. Notch effects on carbon matrix composite. J Am Ceram Soc, 1994, 77(11):2817-27
    [16] G Lawcock, L Ye, Y W Nai. Novel fiber reinforced metal laminates for aerospace applications, Notched strength and fatigue behavior. SAMPE J., 1995, 31(3):67-75
    [17] J E Lindhagen, L A Berglund. Application of bridging law concepts to short-fiber composites, part2: Notch sensitivity. Composites Sci. & Tech., 2000, 60:885-893
    [18] L Ye, A Afaghi khatibi, G Lawcock, Y W Mai. Effect of fiber/matrix adhesion on residual strength of notched composite laminates. Composites, Part A., 1998, 29A: 1525-1533
    [19] W P Keith, K T Kedward. Notched strength of ceramic-matrix composites. Composite Sci. & Tach., 1997, 57:631-635
    [20] T Fett, D Hertel, D Munz. Strength of notched ceramic bending bars. J. Mater. Sic.Letter, 1999, 18:289-293
    [21] T Hoshide, J Murano, R Kusaba. Effect of specimen geometry on strength in engineering ceramics. Eng. Fract. Mech., 1998, 59(5):655-665
    [22] J Xiao, C Bathias. Fatigue behaviour of unnotched and notched woven glass/epoxy laminates. Compos Sci Technol, 1994, 50:141-8
    [1] 束德林主编.工程材料力学性能.北京:机械工业出版社.2003
    [2] 周少荣,乔生儒,白世鸿.C/C复合材料室温及高温断裂韧性的测试及表征.材料工程,1999,4:28-31
    [3] J Delmonte. Technology of carbon and graphite fiber composites. Van Nostrand Reinhold Company, 1981: 102
    [4] 余荣镇编译.断裂韧性.北京:科学技术出版社,1968:12-18
    [5] 纪岗昌,乔生儒,杜双明,李玫.3D-C/SiC复合材料断裂韧性的研究.机械科学与技术,2003,22(2):272-274
    [6] M Gomina, D Themines, J L Chermant, F Osterstock. An energy evaluation for C/SiC composite materials.Journals of Fracture, 1987, 34:219-238
    [7] M Rmili, D Rouby, G Fantozzi. Energy toughness parameters for a carbon fiber inforced carbon composite. Composites Science and Technology, 1990, 37:207-221
    [8] M Bouquet, J M Birbis, J M Qemosset. Toughness assessment of ceramic matrix composites.Composites science and technology, 1990, 37:223-248
    [9] K H Schwalbe, B Hayes, K Baustlan, A Cornec. Validation of the fracture mechanics Test method EGF Pl-87(ESIS PI-90/ESIS P1-92).Fatigue Fracture Eng. Mater. Struct, 1993, 16 (11): 1231-1284
    [10] 崔振源.断裂韧性测试原理和方法.上海科学技术出版社,1981
    [11] Mototsugu Sakai, Tatsuya Miyajima, Michio Inagaki. Fracture toughness and fiber bridging of carbon fiber reinforced carbon composites.Composites Science and Technology, 1991, 40(3):231-250
    [12] S. Sato, A Kurumada, H Komatsu. Tensile properties and fracture tounghness of carbon-fiber felt reinforced carbon composites at high temperature. Carbon, 1989, 27(6):791-967
    [13] 徐永东,张立同,成来飞,朱文超.CVI法制备三维碳纤维增韧碳化硅复合材料.硅酸盐学报,1996,24(5):485-490
    [14] 冉宏星,崔红,郝志彪,李瑞珍.几种喉衬材料断裂韧性的比较.新型碳材 料,2002.17(1):30-35
    [15] 李崇俊,马伯信,金志浩.二维C/C复合材料的断裂韧性研究.固体火箭技术,2003,26(1):67-70
    [16] 廖晓玲,李贺军,韩红梅,李克智C/C复合材料的疲劳行为研究.材料科学与工程学报,2005,23(3):453-456
    [17] 屈乃琴,王国宏等.先进复合材料的研究现状及其应用.中国钼业,1995,19(59):26-34
    [18] A G Evana, F W Zok. Review the physics and mechanic of fibre-reinforced brittle matrix composites. J.Mater.Sci., 1994, 29: 3857-3896
    [19] M F Kanninen, C H Popelar. Advanced Fracture Mechanics, Oxford Engineering-Science. Series 15, Oxford-UniversityPress. NewYork, 1985,Ch.6
    [20] 陈昌麒.材料学科中的固体力学.北京航空航天大学出版社,1994:266
    [21] 孙燕君译著.断裂力学实验技术.中国铁道出版社,1983:20
    [22] J. M.Whitney, I. M.Daniel, et al. Experimental Mechanics of Fiber Reinforced Composites Materials.Prentice-hall, 1984
    [23] 张双寅,刘济庆.复合材料结构的力学性能.北京理工大学出版社,1992:434
    [1] 李贺军.碳/碳复合材料.新型碳材料,2001,16(2):79-80
    [2] 韩红梅,张秀莲,李贺军,岳珠峰.碳/碳复合材料高温力学行为研究.新型碳材料,2003,18(1):20-24
    [3] R I Baxter, R D Rawlings, N Iwashita, Y Sawada. Effect of chemical vapor infiltration on erosion and thermal properties of porous carbon/carbon composite thermal insulation. Carbon, 2000, 38(3):441-449
    [4] C J Li, B X Ma, H Z Jin. New development of carbon/carbon composites. China Mater Sci Eng, 2000, 8(3):135-140
    [5] 候向辉.C/C复合材料快速CVI致密化技术及模拟研究.西北工业大学博士学位论文,1998
    [6] J X Zhao, K H Ding, J X Wei. Research on thermophysical properties and anti-thermal-vibration properties of C/C composites. Acta Mater Compos Sinica, 1987, 4(4):45-50
    [7] Z Tan, G W Guo. In: Thermophysical Properties of Engineering Alloys. Beijing: Metallurgy Industry Press, 1994:2-10
    [8] T G Xi. Thermophysical Properties of Inorganic Materials. Shanghai: Shanghai Science and Technology Press, 1981: 110-114
    [9] Z D Guan, Z T Zhang, J S Jiao. In: Physical Performances of Inorganic Materials. Beijing: Tsinghua University Press, 1992:131-150
    [10] S Elomari, M D Skibo, A Sundarrajan, H Richards. Thermal expansion behavior of particulate metal-matrix composites. Comp Sci Technol, 1998,58(3-4):369-376
    [11] S Lemieux, S Elomari, J A Names, M D Skibo. Thermal expansion of isotropic Duralcan metal-matrix composites. J Mater Sci, 1998, 33(17): 4381-4387
    [12] J X Zhao, K H Ding, J X Wei. Research on thermo physical properties and anti-thermal-vibration properties of C/C composites. Acta Mater Compos Sinica, 1987, 4(4):45-50
    [13] Laifei Cheng , Yongdong Xu, Litong Zhang, Qing Zhang. Effect of heat treatment on the thermal expansion of 2D and 3D C/SiC composites from room temperature to 1400℃. Carbon, 2002, (41): 1645-1687
    [14] Ruiying Luo, Tao Liu, Jinsong Li, Hongbo Zhang, Zhijun Chen, Guanglai Tian. Thermophysical properties of carbon/carbon composites and physical mechanism of thermal expansion and thermal conductivity. Carbon, 2004, (42): 2887-2895
    [15] 赵枫,王典亮,韩杰才,杜善义.三向碳/碳复合材料的高温断裂特征[J].碳素,1993,(1):32-34
    [16] E Bruneton, C Tallaron, N Gras-Naulin, A Cosculluela. Evolution of the structure and mechanical behaviour of carbon foam at very high temperatures.Carbon, 2002, 40:1919-1927
    [17] Li He-jun, Hou Xing-hui, Chen Yi-xi. Densification of unidirectional carbon/carbon composites by isothermal chemical vapor infiltrition. Carbon, 2000, 38(3): 423-427
    [18] J M Jamet, P J Lmicq, G H Schiroky. Composite then'no-structures: an overview of the French experience. In: Naslain R, editor, High temperature ceramic matrix composites, Bordeaux: Woodhead, 1993:215-229
    [19] T Laux, T Ullmann, M Auweter-Kurtz, H Hald, A Kurz. Investigation of thermal protection materials along an X-38 re-entry trajectory by plasma wind tunnel simulations. In: 2nd International Symposium on Atmospheric Reentry Vehicles and Systems, France: Arcahon, 2001:1-9
    [20] P Schanz, W Krenkel. Description of the mechanical and thermal behavior of liquid siliconized C/C. In: Naslain R, editor, High temperature ceramic matrix composites, Bordeaux: Woodhead, 1993:715-724
    [21] W Cheng, S Zhao, Z Liu, Z Feng, C Yao, Y Yu. Thermal expansion in 3-D braided fiber composites: experimental and numerical results. In: Y Zhang, editor, 13th International Conference on Composite Materials, Beijing: Science and Technical Documents Publishing House, 2001:440
    [22] RY Luo, CL Yang, JW Cheng. Effect of preform architecture on the mechanical properties of 2D C/C composites prepared using rapid directional diffused CVI processes. Carbon, 2002, 40:2221-2228
    [23] J Neumeister, S Jansson, F Leckie. The effect of fiber architecture on the mechanical properties of carbon/carbon fiber composites. Acta Mater, 1996, 44(2): 573
    [24] R Y Luo, X L Huai, J W Qu, H Y Ding, SH Xu. Effect of heat treatment on the tribological behavior of 2D carbon/carbon composites. Carbon 2003, 41:2693-2701
    [25] 张青,成来飞,张立同,徐永东.高温处理对3D C/SiC复合材料热膨胀性能 的影响.复合材料学报,2004.21(4):124-128
    [26] O Siron, J Lamon. Damage and failure mechanisms of a 3-D carbon/carbon composite under uniaxial tensile and shear loads. Acta Mater, 1998, 46(18): 6631-6643
    [27] R Y Luo. Friction performance of C/C composites prepared using rapid directional diffused CVI processes. Carbon, 2002, 40:1279-1285
    [28] O Siron, G Chollon, H Tsuda, H Yamauchi, K Maeda, K Kosaka. Microstructural and mechanical properties of filler-added coaltar pitch-based C/C composites: the damage and fraction process in correction with AE wave form parameters. Carbon, 2000, 38:1369-1389
    [29] S M Oh, J Y Lee. Effect of matrix structure on mechanical properties of carbon/carbon composites. Carbon, 1988, 26:769-776
    [30] 韩红梅.C/C复合材料的力学性能及损伤演变研究.西北工业大学博士学位论文,2002
    [31] Y Yosida. High-temperature shrinkage of single-wailed carbon nanotube bundles up to 1600 K. J Appl Phys, 2000, 8(7):3338-3341
    [32] Xiang hui Hou, He jun Li, Can Wang, Zhen gang Zhu, Jian Shen. Internal friction behavior o f carbon-carbon composites. Carbon, 2000, 38: 2095-2101
    [33] Ju lius Jortner. Macroporosity and interface cracking in multi-directional carbon-carbons. Carbon, 1992, 30(2):153-163
    [34] 张均,徐永东.连续纤维增韧碳化硅基复合材料内耗特征及机制.无机材料学报,2002,12:34-38

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700