用户名: 密码: 验证码:
溶胶—凝胶技术在纺织品多功能整理中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
溶胶-凝胶技术作为材料制备中的新方法之一,在纺织品功能整理中的应用研究也越来越受到人们的重视。采用金属醇盐或无机盐化合物作前驱物,控制一定反应条件,醇解或水解缩合成溶胶,溶胶整理到纺织品上形成透明的金属或非金属氧化物薄膜,赋予织物特殊的性能。这种方法不论是在溶胶形成阶段还是在织物表面形成氧化物薄层后,都能方便的进行物理或化学改性,实现溶胶-凝胶技术在自清洁、防紫外线、抗菌、抗静电纺织品制备上的应用。金属氧化物溶胶体系不存在毒害问题。因此,溶胶-凝胶技术具有安全性、多面性,在纺织品上的应用使功能纺织品的制备具有可行性,而且有着广阔的发展空间。
     纳米TiO2是一种催化活性高、氧化能力强的无机纳米材料,将其应用在纺织品上,可赋予织物抗菌、自清洁、紫外防护、抗静电等多种功能,是当前纺织行业研究的热点。本文在国内外相关研究的基础上,将自制的含钛复合水溶胶在溶胶阶段对织物进行多功能整理,探讨纳米TiO2用于纺织品多功能整理的新途径。
     首先,本文研究了基于钛醇盐二氧化钛水溶胶的制备,以钛酸丁酯为前驱体,以乙酸为催化剂能够制备稳定、可控、均一的纳米二氧化钛水溶胶。在形成溶胶的有效pH值范围内,钛溶胶浓度越低,体系的pH值越低,放置温度越低,溶胶稳定性越好。同时,溶胶的平均粒径随pH值、温度及溶胶浓度的升高而增大。放置时间越长,溶胶的平均粒径和粘度越大,凝胶化趋势越高。通过研究确定了稳定二氧化钛水溶胶的制备工艺条件,其最佳工艺配方如下:钛酸丁酯与乙酸的摩尔比为1:5,无水乙醇用量0.02mol,反应物或溶剂H2O与钛酸丁酯的摩尔比r值>90。
     其次,本文研究了水溶胶摩尔浓度、TiO2/znO摩尔比、掺杂Ag+、La3+及其掺杂量、陈化时间、测试条件、皂洗次数等因素对整理后棉织物抗菌效果的影响,结果表明:随着水溶胶摩尔浓度的增加,整理后试样抗菌效果越明显,但摩尔浓度过大,抗菌效果反而降低,适宜的摩尔浓度为0.2-0.3mol/L;TiO2/ZnO复合水溶胶整理后棉织物抑菌效果要优于纯TiO2或纯ZnO,TiO2/ZnO摩尔比为2:1较为适宜;掺Ag+复合水溶胶整理棉织物的抑菌效果随着掺Ag+量的增大有较大幅度的提高,继续增大掺Ag+量,抑菌率则提高程度较小,并趋向一固定值,考虑银为重金属,用量过大会造成重金属污染,所以TiO2/ZnO水溶胶掺Ag+量应控制在0.5%以内;掺0.3%La3+-TiO2/ZnO水溶胶整理后织物抗菌性能最好;陈化后TiO2/ZnO水溶胶整理棉织物的抗菌性降低;有光、无光条件下对比实验表明:有光条件下TiO2/ZnO水溶胶整理试样抗菌效果良好,但无光条件下抗菌效果大幅下降;掺入适量Ag+后在有光、无光条件下都具有良好的抗菌效果;TiO2/ZnO复合水溶胶整理棉织物抗菌性能具有一定的耐洗性,随着皂洗次数增加,抑菌率有一定的下降,皂洗60次后,抑菌率仍保持在70%;本文还探讨了影响涤纶抗静电整理效果的因素,得出:随着水溶胶摩尔浓度的增大,整理后涤纶织物的抗静电性略有提升,浓度以小于0.3mol/L为宜;TiO2/ZnO摩尔比为1:1时,抗静电性最好;掺La3+0.5%水溶胶整理后涤纶织物的抗静电性大幅提高;掺Ag+水溶胶整理后涤纶织物抗静电性反而下降,且掺Ag+量越大,抗静电性越差,还是不掺Ag+为好;经多次皂洗后抗静电性有不同程度的下降,但是与未处理的涤纶织物相比,抗静电性仍然有着较明显的改善。
     最后,本文在国内外相关研究的基础上,将自制的La3+/TiO2-SiO2水溶胶在溶胶阶段对织物进行自清洁、抗紫外和抗静电整理,探讨纳米TiO2用于纺织品多功能整理的新途径。
     本文以钛酸正四丁脂、正硅酸乙酯、乙酸和醋酸镧为原料,采用无醇、少酸工艺,室温条件下制备出La3+/TiO2-SiO2水溶胶,探讨了TiO2与SiO2摩尔比、掺镧量等因素对溶胶稳定性的影响规律。将这种用于棉织物的自清洁和抗紫外整理,研究了水溶胶摩尔浓度、TiO2/SiO2摩尔比、掺杂La3+及其掺杂量、陈化时间、测试条件、皂洗次数等因素对整理后棉织物自清洁和防紫外效果的影响,结果表明:随溶胶中Ti02含量的增大,织物的自清洁和抗紫外性能都是先提高后降低,在TiO2/SiO2摩尔比为40:1时,达到最大;随着掺镧量的增大,织物的自清洁和抗紫外效果逐渐变好,掺镧量达到0.3%后开始下降;随溶胶摩尔浓度的增大,织物的自清洁和抗紫外效果先增大后减小,最佳摩尔浓度为0.3mol/L;在整理过程中,织物的自清洁效果随浸渍时间的延长而增大,随沸水处理时间的增大先提高后减小,自清洁最佳沸水处理时间为60min,沸水处理40min抗紫外效果就达到最大。通过对织物自清洁性能耐久性进行分析,自清洁织物的耐水洗性能较差,抗紫外性能耐水洗性好。采用SEM扫面电镜观察整理前后织物的表面形态,发现有较多的TiO2颗粒附着在纤维表面;经X射线衍射分析得知,经复合掺杂后的TiO2溶胶整理后的织物较纯钛溶胶整理后织物出现多个衍射峰,有可能产生锐钛矿TiO2晶体,凝胶膜上这种以锐钛矿TiO2晶体为中心颗粒,具有光催化作用,使织物具有自清洁能力;对紫外线吸收、散射和反射,使得织物具有很强的抗紫外能力。本文还采用了La3+/TiO2-SiO2水溶胶对涤纶织物织物进行抗静电整理,研究表明采用纯钛和TiO2/SiO2复合水溶胶整理涤纶织物后其抗静电性能大大提高,其中TiO2/SiO2复合水溶胶的抗静电效果比纯钛溶胶整理的稍好,但不同比例钛和硅复合水溶胶整理的织物抗静电效果差别不大。水溶胶整理的涤纶织物具有很好的抗静电性能,是由于织物表面形成的连续的纳米粒子网络凝胶膜,具有导电性所致。
     总体而言,本研究采用基钛复合水溶胶处理的纺织品,其整理织物后取得预期的抗紫外、抗菌、自清洁、抗静电效果。将以纯水为溶剂取代常规的乙醇为溶剂来制备钛复合水溶胶,前驱物的选择范围大,同时节约了能源,大大降低了生产成本,这样必将扩大溶胶-凝胶技术在纺织品上的应用,工业化生产也有可能实现。另外,用无机溶胶处理纺织品,既经济、安全,又对环境友好,并且符合绿色化学的要求。
With inorganic or organic metal compounds as precursor, sol-gel process can be used to form a transparent film which is composed of metal- or nonmetal-oxide. Fabrics can be easily modified physically and chemically to supply them with special functions during the process of forming sol or after the oxide film formed on the surface of the fabrics. As one of the new methods in preparation of materials, sol-gel technique has attracted more and more attention in the application of functional finishing of textiles. Through chemical or physical modification, sol-gel technique has been applied in preparation of functional textiles, e.g., self-cleaning, UV-resistant, anti-bacteria, antistatic and so on. Thus, sol-gel process with safety and versatility is a novel avenue to functional finishing of textiles.
     Nano titanium dioxide, an inexpensive, non-toxic and biocompatible material, is one of the most important and widely investigated photocatalysts. It can be applied in textiles to give them anti-bacterial, self-cleaning and UV protection functions etc. Multi-functional textiles are produced by advanced photochemical catalysis and modern textile technology. Based on technology at home and abroad, La3+ doping TiO2/SiO2 water Sol made in our laboratory is used in finishing of fabrics so as to get multi-functional textiles, and to explore a new way of applying the nana-titanium dioxide in self-cleaning finishing.
     Firstly, the preparation of nano-TiO2 hydrosol based on TTIP was studied in the paper. Stable, controllable and uniform nano-Ti02 hydrosols can be prepared using TTIP as precursor and hydrochloric acid as catalyst. In the effective pH range, the lower the concentration of TTIP and the temperature of the system were, the better the stability of sols was. At the same time, average particle size of the sol augments with the increase of pH, temperature and concentration of the TTIP. Particle size and viscosity of the sol will increase with the prolongation of the storage time, which results in gelation.
     Secondly, the effects of molar concentration of hydrosol, molar ratio of TiO2/ZnO, the quantity of Ag+ or La3+ doped, aging time of the sols, test conditions and times of washing on antibacterial properties of the finished fabrics are tested and analyzed. It can be concluded from the results that the antibacterial properties of the finished fabrics increase at the beginning and then decrease with increment in the molar concentration of the hydrosol. The appropriate molar concentration of the hydrosol is 0.2~0.3 mol/L. The antibacterial properties of the TiO2/ZnO aqueous sol finished fabrics are better than the fabrics finished using pure TiO2 or pure ZnO. The right molar ratio of the TiO2/ZnO is 2:1. With the increment of the concentration of the Ag+, the antibacterial property of the fabrics finished using aqueous sols doped with Ag+ increases quickly at the beginning, then it grows slowly and come to a constant value. In view of the pollution caused by excessive heavy metal, the doped Ag+ in TiO2/ZnO aqueous sols is not exceed 0.5%. among all fabrics, the fabric finished with TiO2/ZnO aqueous sols doped 0.3% La3+ attains best antibacterial property. Finishing with aged TiO2/ZnO hydrosol, the antibacterial property of the fabrics, decreases. The comparison of experiments at daylight and dark conditions indicates that the antibacterial effect of the fabric finished by TiO2/ZnO aqueous sols drops obviously at dark condition compared with that at daylight condition. However, for the fabrics finished with TiO2/ZnO aqueous sols in which appropriate Ag+ is doped, good antibacterial property can be achieved at both daylight and dark conditions. The launder-ability of the fabrics is also studied. The bacterial inhabitation of the fabrics decreases with the duration of washing.70% of the antibacterial ability of the fabrics can be preserved after 60 times soaping. Further more, the factors which influence the anti-static property of the finished polyester fabrics are also studied. With the increment of the concentration of the TiO2/ZnO aqueous sol, there is slight improvement in the antistatic property of the polyester fabrics finished with it. The right concentration of the sol is 0.3 mol/L. And best antibacterial property can be obtained at a 1:1 ratio of TiO2/ZnO. When 0.5% La3+ is doped in TiO2/ZnO aqueous sol, the antistatic property of the finished samples is greatly improved compared with the fabrics finished using TiO2/ZnO aqueous sol. But the antistatic property of the samples finished by Ag+-TiO2/ZnO aqueous sol become worse compared with the polyester fabrics finished by TiO2/ZnO aqueous sols. The more the Ag+ is doped, the worse is the antistatic property. Antibacterial property of the finished polyester fabrics decreases after soaping. However their antistatic property is still better than untreated samples.
     Based on technology at home and abroad, La3+/TiO2-SiO2 water sol made in our laboratory is used in self-cleaning, ultraviolet resistant and antistatic finishing of textiles to explore a new way of applying the nano-titanium dioxide to the multi-functional finishing of textiles.
     Using TTB, TEOS, acid and La acetate as raw materials, La3+/TiO2-SiO2 water sol is prepared under no alcohol, low acid and room temperature conditions. The effect of the factors such as mol ratio of TiO2 and SiO2 and the amount of La doped on the stability of the gel is discussed. Experimental results indicate that the self-cleaning and anti-ultraviolet properties of the finished fabrics increase firstly and decrease then with the increment of the TiO2 in the sol. The best effect appears at a TiO2/SiO2 molar ratio of 40:1. The self-cleaning and anti-ultraviolet properties of the finished improve with the increment in the amount of La3+ doped. They reach their head at 0.3% La3+ doped. With the increment of the molar concentration of the sol, the self-cleaning and antistatic effects of the finished fabrics rise in the beginning and come to top at 0.3 mol/L and then decrease then with the increment in concentration of the sol. In finishing process, the self-cleaning effect of the fabric enhances with the prolonged dipping time. The self-cleaning effect increases firstly and decreases then with the increment of time in boiling water. The best duration time in boiling water is 60 min for self-cleaning and 40 min for ultraviolet resistance. Through analysis of the durability of the self-cleaning and anti-ultraviolet properties of the fabrics, it can be found that the washability of the fabrics is poor in self-cleaning property and is good in ultraviolet resistance.
     It can be found that there are many TiO2 particles attached to the fiber surface using SEM to observe the surface morphology of the fabrics before and after they are finished. Comparing the X-ray diffraction curves of the fabric before and after finishing, it can also be found that there are many diffraction peak appeared in the fabrics finished with multiple adulterated TiO2 sol. That is to say that is produced possibly by anatase TiO2 grains. The grains in the gel film in surface of the fabrics have catalysis which gives self-cleaning property to the fabrics. They absorb, scatter and reflect ultraviolet and give the fabrics the ultraviolet resistance.
     Finally, the performances of the finished fabrics are tested and found that the loss in breaking strength of the warp direction is greater than that of the weft direction, while there is little change in hand and permeability of the fabrics; there are a little change in colors, washing fastness and rubbing fastness for the colored fabrics, but it does not affect the appearance and the use of the fabrics.
     In general, the properties of fabrics finished with multiple hydrosol based on TiO2 is studied in the paper. Good ultraviolet resistance, antibacterial property, self-cleaning and antistatic properties have been achieved. Using water as the solvent replacing the ethanol to prepare the titanium multiple hydrosol, the precursor can be selected from a wide category of chemicals. It can save energy and reduce cost of production by cheap water in place of expensive ethanol in course of preparing titanium sol. Thus, it will enlarge the application of sol-gel technology in the textile finishing. In addition, inorganic sol as a modifier is economical, safe and friendly to environment. It is in accord with demands of green chemistry.
引文
[1]Jae Whan Cho, Kyung Il Sul.Characterization and properties of hybrid composites prepared from poly(vinylidene fluoride-tetrafluoroethylene) and SiO2[J].Polymer, 2001,42(2):727-736.
    [2]洪新华等.溶胶-凝胶(Sol-Gel)方法的原理与应用[J].天津师范大学学报(自然科学版),2001,21(3):5-8.
    [3]Chris Cornelius,Chris Hibshman,Eva Marand.Hybrid organic-inorganic membranes [J].Separation Purification Technology,2001,25(1):181-193.
    [4]Noboru Miyata,Ken-Ichi Fuke,Qi Chen,et.al.Apatite-forming ability and mechanical properties of PTMO-modified CaO-SiO2 hybrids prepared by sol-gel processing:effect of CaO and PTMO contents[J].Biomaterials,2002,23(14): 3033-3040.
    [5]柯昌美,汪厚植,鲁礼林.聚丙烯酸酯/TiO2-SiO2纳米杂化材料的制备与性能研究[J].玻璃刚/复合材料,2005,35(6):23-26.
    [6]石智强,刘孝波PU/SiO2杂化材料的制备与表征[J].合成树脂及塑料,2004,21(2):48-51.
    [7]李玲,自清洁玻璃[M].北京:化学工业出版社,2006:100-130.
    [8]Xin J H, Daoud W A. A new approach to UV-Blocking treatment for cotton fabrics [J].TRJ,2004,74(2):97-100.
    [9]李继泉.纳米科技与纺织产业升级[A].见:第二届功能性纺织品及纳米技术应用研讨会论文集[C].北京:纺织行业生产力促进中心,2002.118-122.
    [10]沈勇,秦伟庭等.改性纳米氧化物的抗紫外整理研究[J].印染,2003,29(9):1-4.
    [11]邓桦,忻浩忠.纳米Ti02的抗紫外线整理应用研究[J].纺织学报,2005,26(6):47-49.
    [12]杨晓君,邢彦军,戴瑾瑾等.溶胶—凝胶法在棉织物抗菌整理中的应用[J].印染,2006.32(3):1-3.
    [13]K.T.Meilert, D.Laub, J.Kiwi. Photocatalytic self-cleaning of modified cotton textiles by TiO2 clusters attached by chemical spacers [J].Journal of molecular catalysis A, chemical 2005,237(4):101-108.
    [14]T.Yuranova, R.Mosteo, J.Bandara, D.Laub, J.Kiwi. Self-cleaning cotton textiles surfaces modified by photoactive SiO2/TiO2 coating [J].Journal of molecular catalysis A, chemical 2006,244(8):160-167.
    [15]徐鹏,王炜,陈水林.纳米溶胶改善聚酯抗静电性能研究[J].国际纺织导报,2005,33(4):66-69.
    [16]张晓莉,罗敏等.溶胶-凝胶法对织物的功能整理[J].针织工业:2004(2):78-80.
    [17]张晓莉,罗敏,陈水林等.溶胶-凝胶法在织物功能整理中的应用[J].印染助剂,2004,21(2):51-53.
    [18]赵恒勤等.纳米Ti02的光催化作用及其应用研究进展[J].有色金属,2002,(6):35-47.
    [19]袭著革等.复合纳米Ti02净化典型室内空气污染物的初步研究[J].中国环境卫生,2003,6(1-3):121-124.
    [20]黄婉霞,孙作凤,吴建春.纳米二氧化钛光催化作用降解甲醛的研究[J].稀有金属,2005,29(1):34-37.
    [21]胡将军,李英柳,彭卫华.吸附-光催化氧化净化甲醛废气的试验研究[J].化学与生物工程,2004,21(1):39-41.
    [22]齐海,朱月红,臼田昭司等.TiO2机能性粉末除臭实验[J].科学技术与工程,2007,7(7):1428-1429.
    [23]于兵川,吴洪特,张万忠.光催化纳米材料在环境保护中到应用[J].石油化工,2005,35(5):491-495.
    [24]赵家祥.日本光触媒织物的发展[J].产业用纺织品,2002,20(2):1-4.
    [25]耿丽,周璐瑛.采用TiO2光催化剂的空气清新纺织品[J].上海纺织科技,2003,31(1).
    [26]程小霞,陆兆仁,袁琴华.纳米Ti02在功能纺织品中的应用[J].山东纺织科技,2005,46(4):46-48.
    [27]Mahltig B, Bottcher H. J. Sol-Gel Science and Technology,2007,44(2),119-123
    [28]Mahlting B,Bottcher H.Refining of textiles by nano sol coating [J]. Melliand-textilberichte,2002,83(4):251-253.
    [29]王家芳,章文贡.溶胶—凝胶法合成有机/无机杂化材料进展-1.组分间以化学键作用的有机/无机杂化材料[J].高分子化学通报,2001,(1):60-67.
    [30]王家芳,章文贡.溶胶—凝胶法合成有机/无机杂化材料进展-2.组分间以次价力作用的有机/无机杂化材料[J].高分子化学通报,2001.(2):30-36.
    [31]王朝霞,陈水林.溶胶—凝胶溶液稳定性因素初探[J].印染助剂,2005,22(4):31-33.
    [32]刘业磊,姚洪伟等.Ti02溶胶的制备与稳定性研究[J].青岛大学学报(工程技术版),2005,20(2):19-21.
    [33]王家芳.过渡金属醇盐溶胶-凝胶化学进展[J],化学世界,2001,42(1):47-51.
    [34]李群等.纳米氧化锌的制备和纳米功能纺织品的开发(上)[J].染整技术,2003,25(3):5-8.
    [35]余旺苗等.纳米材料及其在纺织工业中的应用[J].东华大学学报(自然科学 版)[J],2001,27(6):123-126.
    [36]于伟东,储才元.纺织材料学[M],北京:中国纺织出版社,2006:360-370.
    [37]余旺苗,纳米材料及其在纺织工业中的应用[J].东华大学学报,2001,27(6):123-126.
    [38]高镰,郑珊,张青红.纳米氧化钛光催化材料及应用[M].北京:化学工业出版社,2002,241.
    [39]季君晖,史维明.抗菌材料[M].北京:化学工业出版社,2003,138-154.
    [40]Trapalis C C,Kokkoris M,Perdikakis G, et al.[J].Sol-Gel Science and Technology 2003,26 (3):1213-1218.
    [41]Luo M, Zhang X L, Chen S I. J. S. D.C.,2003,119(5):297.
    [42]Xin J H, Daoud W A, Kong Y Y. Text Res J.,2004,74(2):97.
    [43]李春霞,李立平,酒金婷等.纳米粒子的表面改性研究进展[C].第二届功能性纺织品及纳米技术应用研讨会论文集,2002.2,129-132.
    [44]王明勇,孙小燕,毛志平.纳米溶胶在纯棉织物抗紫外整理中的应用[J].印染助剂,2004,21(5):22-25.
    [45]邓桦,忻浩忠,江怡怡.Ti02纳米材料防紫外线涂层整理[J],印染,2005,31(15):11-13.
    [46]邓桦,张纪梅,李秀明,李鹤,唐万生,纳米二氧化钛多功能织物整理剂的制备与性能[J].纺织学报,2006,27(3):92-94.
    [47]T. Yuranova, R. Mosteo, J. Bandara. Self-cleaning cotton textiles surfaces modified by photoactive SiO2/TiO2 coating [J].Journal of Molecular A: Chem,2006.244(1-2):160-167.
    [48]杜鹃,占莉,陈水林.溶胶凝胶法对真丝绸的固色及负离子效应[J].丝绸,2005,(2):31-33.
    [49]K.Guan.Relationship between photocatalytic activity hydrophilicity and self-cleaning effect of TiO2/SiO2 films[J].Surf. Sci. Technol 2005,191(2-3): 155-160.
    [50]Suzuko Yamazaki,Noriyuki Nakamura.Self-cleaning of modified cotton textiles by TiO2 at low temperatures under daylight irradiation [J].Journal of Photochemistry and Photobiology A:Chemistry.2005,172(3):156-164.
    [51]M.J.Uddin, F. Cesano, F. Bonino, S. Bordiga, G. Spoto, D. Scarano, A. Zecchina. Photoactive TiO2 films on cellulose fibres:synthesis and characterization [J].Journal of Photochemistry and Photobiology A: Chemistry,2007,189(2-3):286-294.
    [52]江海风,杨建忠,刘娜.纳米二氧化钛整理织物的自清洁和抗菌性能探讨[J].纺 织科技进展,2007(1):14-24.
    [53]何艳芬,孟家光.纳米自清洁在针织物上的应用[J].针织工业,2005(11):43-45.
    [54]江海风,杨建忠,刘娜.纳米二氧化钛整理织物的自清洁和抗菌性能探讨[J].纺织科技进展,2007(1):14-24.
    [55]张路遥,张健飞等.纳米光触媒自清洁纺织品及其标准化评价[J].山东纺织科技.2007,48(5):47-49.
    [56]雷大鹏,陈衍夏,施亦东,武晓伟.光触媒抗菌除臭纺织品的研究进展及前景[J].印染,2006,32(13):45-48.
    [57]薛涛.应用纳米材料对纯棉针织物防螨抗菌整理的研究[J].上海纺织科技,2005,33(1):36-37.
    [58]滕志强.纳米材料的分散及在棉织物抗菌整理中的应用[J1.纺织导报,2005,6:17-19.
    [59]李群等.纳米氧化锌织物整理剂的制备与整理效应研究[J].印染助剂,2004,21(1):23-25.
    [60]Morris C E,Vigo T L,Welch C M.Binding of Organic Antimicrobial Agents to Cotton Fabrics as Zirconium Complexes[J].Tex Res J,1981(2)90-96.
    [61]Morris C E,Vigo T L, Welch C M.Bingding of Organic Antimicrobial Agents to cotton Fabrics as Zirconium Complexes[J].Tex Res J,1981.51(2)90-96.
    [62]柳消菊,隆泉,张瑾等.载银氧化物抗菌材料的制备及性能[J].功能材料,2004,35(2):245-246.
    [63]李毕忠.国内外抗菌材料及其应用技术的产业发展现状和面临的挑战[J].新材料科学技术.2001,10(6):17-19.
    [64]夏金兰,王春,刘新星.羧甲基壳聚糖银噻苯咪唑的制备及其抑菌性能[J].中南大学学报(自然科学版),2005,35(1):31-38.
    [65]张兴旺,周明华,徐甦等.载银TiO2/沸石催化剂的制备、表征以及光催化性能的研究[J].浙江大学学报(工学版),2005,39(10):1623-1626
    [66]王志义.Nano-TiO2系耐高温陶瓷抗菌剂的研究[J].国外建材科技2003,24(6):54-57.
    [67]鞠剑锋.纳米TiO2复合抗菌材料的制备即在纺织品整理中的应用[J].印染助剂,2005,22(3):37-39.
    [68]王玉辉,孟家光.纳米抗菌织物的抗菌机理及制备方法[J].针织工业,2005,06:56-58.
    [69]FZ/T 01021-1992, experimential methods of the antibacterial property of fabrics[S].
    [70]AATCC Test Method 147-1998, Antibacterial Activity Assessment of Textile Materials:Parallel Streak Method[S].
    [71]AATCC Test Method 100—1999,Assessment of Antibacterial Finishes on Textile Materials[S].
    [72]Guan Kaishu,Lu Baojun,Yin Yansheng.Enhanced Effect and Mechanism of SiO2 Addition in Super hydrophallic Property of TiO2 Films. Su Coat Technol,2003, 173(2-3):219-223.
    [73]Guan Kalshu,Xu Hong,Lu Baojun.Hydrophilic Property of SiO2-TiO2 Overlayer Films and TiO2/SiO2 Mixing Films.Trans Nonferrous Met Soc China,2004,14(2): 251-254.
    [74]徐瑞芬,许秀艳,付国柱.纳米TiO2在涂料中的抗菌性能研究[J].北京化工大学学报,2002,29(5):45-48.
    [75]董艳,马建伟,李先锋.纳米光触媒及其在纺织品上的应用研究[J].现代纺织科技,2007,15(1):48-51.
    [76]董永春,白志鹏,刘瑞华等.纳米Ti02-Ag复合光催化剂对涤棉混纺织物净化氨气性能的改善研究[J].纳米科技,2004,2(6):15-17.
    [77]徐瑞芬.纳米Ti02在塑料中的抗菌性能研究[J].上海塑料,2002,2:17-19.
    [78]王进美.纳米抗菌抗病毒毛织物整理研究[J].毛纺科技,2004,9:10-13.
    [79]周璐瑛等,ZnO纳米材料抗紫外与抗菌织物的研究[J].棉纺织技术,2001,10:12-14.
    [80]井立.ZnO和Ti02粒子的光催化活性及其失活与再生[J].催化学报,2003,24(3):175-180.
    [81]李卫华,乔学斌,高恩勤等.3d过渡金属掺杂TiO2纳米晶膜电极的光电化学研究[J].高等学校化学学报2000,21(10):1534-1538
    [82]Amy L L, Guangquan L, John T et al. Photocatalysis on TiO2 surfaces:Principles, Mechanisms, and selected Results[J].Chem Rev,1995,95 (3):735-738.
    [83]张晓莉,罗敏,陈水林等.溶胶-凝胶法在织物功能整理中的应用[J].印染助剂,2004,21(2):51-53.
    [84]Guan Kaishu,Lu Baojun,Yin Yansheng. Enhanced Effect and Mechanism of SiO2 Addition in Super hydro phallic Property of TiO2 Films.Su Coat Technol,2003, 173(2-3):219-223.
    [85]Guan Kalshu, Xu Hong,Lu Baojun.Hydrophilic Property of SiO2-TiO2 Overlayer Films and TiO2/SiO2 Mixing Films.Trans Nonferrous Met Soc China,2004,14(2): 251-254.
    [86]高濂,郑珊,张青红.纳米氧化钛光催化材料及应用[M].北京化学工业出版社,2002.
    [86]李玲.自清洁玻璃[M].北京:化学工业出版社,2006,9.
    [87]董永春,白志鹏,张利文等.纳米Ti02负载织物对室内空气中氨的净化[J].中国环境科学,2005.25(z1):26-29.
    [88]Bozzi A, Yuranova T, Guasaquillo Z.Self-cleaning of modified coton textiles by TiO2 at low temperatures under daylight irradiation[J].J Photochem Photobiol A: Chem,2005.174(2):156-164.
    [89]Meilert K T,Laub D,Kiwi J.Photocatalytic self-cleaning of modified coton textiles by TiO2 clusters attached by chemical spacers[J].J Mol Catal A:Chem,2005, 237(1-2):101-108.
    [90]杨伟忠.电脑测色仪在纺织检验及生产上的应用[J].染整技术,2002,24(3):37-40.
    [91]陈英,关颖.测色配色系统在彩色棉色变评价中的应用[J].北京服装学院学报,2004,24(2):52-55.
    [92]温敏,齐公台,孙菊梅,Ti02溶胶的制备及其胶凝过程影响因素分析,表面技术[J],2004,33(1):30-31
    [93]尹荔松,周歧发,唐新桂等,溶胶-凝胶法制备纳米Ti02的胶凝过程机理研究.功能材料[J]1999,30(4):407-409.
    [94]何超,于云,周彩华等.Ag/TiO2薄膜结构和光催化性能研究[J].无机材料学报.2002.17(5):1025-1033
    [95]郭洪营,顾德恩,杨邦朝,光催化活性Ti02薄膜的研究进展[J].电子元件与材料[J].2006,3(25):1-4
    [96]Nobuaki Negishi,Koji Takeuchi,Takashi Tbusuki.The surface structure oftitanium dioxide thin film photocataalyst[J].Appl Surf Sci,1997,121-122(2):417-420
    [97]任露泉.试验优化设计与分析[M].北京:高等教育出版社,2003:10.
    [98]T.Yuranova, R.Mosteo, J.Bandara, D.Laub, J.Kiwi. Self-cleaning cotton textiles surfaces modified by photoactive SiO2/TiO2 coating[J].Journal of Molecular Catalysis A:Chem,2006.244 (1-2):160-167.
    [99]LeeCL,WanCC,WangYY.Synthesis of metal nanoparticles via self-regulated reduction by analcohol surfactan[J].Adv.Mater.,2001,11(5):334-340.
    [100]Bozzi A, Yuranova T, Kiwi J.Self-cleaning of wool.polyamide and polyester textiles by TiO2-mille modification under daylight irradiation at ambient temperature[J].JPhotochem Photobiol A:Chem,2005(172):27-34.
    [101]汪青,楚艳艳等.TiO2/ZnO复合水溶胶稳定性研究[J].化学世界,2007.48(3):43-46.
    [102]陆军,高新蕾.纳米级二氧化钛的制备、成膜及消除室内污染[J].化学与生物工程,2006,23(1):21-23.
    [103]Zou Z,Ye J,Sayama K, eta.Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst[J]. Nature,2001,414(6864): 625-627.
    [104]赵翠华,陈建华,单志强.不同载体对负载YiO2薄膜光催化活性影响的实验研究[J].工业用水与废水,2004,35(3):15-17.
    [105]赵翠华,陈建华,胡治流等.纳米二氧化钛薄膜光吸收性能的研究[J].有色矿冶,2004,35(20):121-123.
    [106]李铮伟,刘艳华,李荫堂等.溶胶-凝胶制备YiO2空气净化特性研究[J].工业催化,2007.15(2):66-70.
    [107]Daoud W A, Xin J H. Nucleation and growth of anatase crystallites on cotton fabrics at low temperatures [J]. J AmCeram Soc,2004,87(5):953-955.
    [108]汪青,刘书芳,张晓莉.TiO2溶胶在织物抗紫外线整理中的应用[J].中原工学院学报,2005,16(3):16-18.
    [109]邓桦,忻浩忠.纳米Ti02的抗紫外线整理应用研究[J].纺织学报,2005,26(6):47-49.
    [110]王晓明,谭正德,吴菲.稳定TiO2水溶胶的制备及其对苎麻织物紫外线屏蔽整理的探讨[J].湖南工程学院学报,2007,17(1):80-83.
    [111]陈雪花等,抗紫外纳米ZnO粉体的制备于表面改性[J].上海化工,2001,26(20):13-15.
    [112]李良训等.纳米材料改善聚丙烯抗紫外性能的研究[J].工程塑料应用,2001,29(10):41-43.
    [113]余爱萍.棉织物用的纳米抗紫外整理剂的研制[J].北京纺织,2001,(5):41-45.
    [114]Tomonaga H, Mitani A.Ultraviolet Ray Shielding Coating on Glass by Sol— Gel Process[J].Ceramic Transactions,1998,83:341-348
    [115]Yasuhide Y, Masahiko N, Kenji S.Composite material carrying zinc oxide fine particles adhered t hereto and method for preparing same [P].European: EP0791681,1997-08-27.
    [116]王明勇等.纳米溶胶在纯棉织物抗紫外整理中的应用[J].印染助剂,2004,21(5):22-24
    [117]汪青等.Ti02溶胶在织物抗紫外线整理中的应用[J].中原工学院学报,2005,16(3):16-18
    [118]李芮,王明勇,毛志平.纳米TiO2/SiO2复合溶胶处理棉织物的抗紫外性能[J].印染,2007.33(2):1-3.
    [119]王明勇,毛志平,李芮.锐钛矿型纳米TiO2在棉织物上的原位生长及其抗紫外线性能[J].纺织学报,2007,28(2):71-75.
    [120]李平,王煜,郑春弟等.抗紫外织物测试结果的统计分析.印染[J],2001,5:44-46.
    [121]余序芬,鲍燕萍,吴兆平.纺织材料实验技术[M].中国纺织出版社,2004,3.
    [122]Longstreth J D.Efforts of Increased Solar Ultraviolet Radiation on Human Health[J].Journalof the Human Enviroument Research and Management,1995,24(3):153-156.
    [123]Ignacoi G..Ultraviolet in Radiance over Mexico City[J].Jortnal of Air&Waste Management Association,1995,45(11):886-892.
    [124]Jan Beringer.Titanium Dioxide Coating Provides Protection from Sun[J],Technical Textile internation,2005,10:17-19.
    [125]Xu peng,Wang wei,Chen shuilin. UV-Blocking Treatment of Cotton Fabrics by Titanium Hydrosol,AATCC Review,2005,5(6):17-20,SCI.
    [126]Ohshima,K.(KaoCorp),Tsuto,K.,Okuyama,K.,Tohge,N.Preparation of ZnO-TiO2 composite fine partcles using the ultrasonic spray pyrolysis method and the Characteristics on ultraviolet cut off[J], Aerosol Science and Technology,1993,19(4):468-47
    [127]Kagano sunada,Toshiya watanabe,Kazuhito Hashimoto.Bactericial activity of copper-deposited TiO2 thin film under weak UV light illumination[J], Environ Sci Technol,2003,37(20):4785-4789.
    [128]Reinert G, Fuso F, Hilfiker R, et al.UV-protecting properties of textile fabrics and their improvement [J].Textile Chemist and Colorist 1997,29 (12):36-43.
    [129]Standards Australia/Standards New Zealand. Sun protective clothing evaluation and Classification[S]. AS/NZS 4399:1996.
    [130]李晓娥,樊安.纳米Ti02紫外线屏蔽性能的研究[J].涂料工业,2000,30(9),3-5
    [131]Kagano sunada,Toshiya watanabe, Kazuhito Hashimoto.Bactericial activity of copper-deposited TiO2 thin film under weak UV light illumination [J], Environ Sci Technol,2003,37(20):4785-478
    [132]于伟东,储才元.纺织材料学[M].北京:中国纺织出版社,2006:360-370.
    [133]房树基,于大芬,王峻岭.人体静电危害与安全防护[J].产业用纺织品,2001(12):23.
    [134]陈雪花,古宏晨,周凌.涤纶织物的纳米抗静电功能整理[J].纺织学报,2003,24(3):191-192.
    [135]吴红玲,蒋少军,张成.纺织品抗静电整理技术的研讨[J1.陕西纺织,2003,2(58):50-52.
    [136]Xu peng,Wangwei,Chen shuilin.Application of Nanosol on the Antistatic Property of Polyester[J], Melliand International,2005,11(1):56-59.
    [137]徐鹏,王炜,陈水林.纳米溶胶改善聚酯抗静电性能研究[J].国际纺织导报,2005,(4):66-69.
    [138]薛迪庚.织物功能整理[M].北京:中国纺织出版社,2005:56—66.
    [139]蒋少军.抗静电织物的开发和应用[J].江苏纺织.2002(4):42-45.
    [140]C W, Termin A, Hoffmann M R.The role metal ion dopants in quantum-sized TiO2:correlation between photoreactivity and charge carrier recombination dynamics[J].Phys Chem,1994,98(51):13669-13679.
    [141]Sakata Y,Yamamoto T,Okazaki T,et al.Visible light response of titania photocatalyst containing copperion[J].Chem Lett,1998,13 (12):1253-1254.
    [142]Daoud W A, Xin J H. Nucleation and growth of anatase crystallltes on cotton fabrics at low temperatures[J].J AmCeram Soc,2004,87(5):953-955.
    [143]Daoud W A, Xin J H, Zhang Y H.Surface functionalization of cellulose fibers with titanium dioxide nanoparticles and their combined bactericidal activities[J].SurfSei, 2005,599(1-3):69-75.
    [144]Yasuhide Y, Masahiko N, Kenji S. Composite material carrying zinc oxide fine particles adhered t hereto and method for preparing same [P].European: EP0791681,1997-08-27.
    [145]董艳,马建伟,李先锋.纳米光触媒及其在纺织品上的应用研究[J].现代纺织科技,2007,15(1):48-51.
    [146]Kotani Y, Matsuda A, Tatsumisago M, etal. Formation of anatase nanocrystals in sol-gel derived TiO2-SiO2 thin films with hot water treatment[J].Sol-Gel Sei Tech, 2000.19(1-3):585-588.
    [147]刘恩科等.半导体物理学[M].北京:电子工业出版社,2006:48,118-126.
    [148]汪青,刘书芳,张晓莉.Ti02溶胶在织物抗紫外线整理中的应用[J].中原工学院学报,2005,6:16-18.
    [149]王晓明,谭正德,吴菲.稳定Ti02水溶胶的制备及其对苎麻织物紫外线屏蔽整理的探讨[J].湖南工程学院学报,2007,3:80-83.
    [150]李芮,王明勇,毛志平.纳米TiO2/SiO2复合溶胶处理棉织物的抗紫外性能[J].印染,2007,2:1-3.
    [151]余序芬,鲍燕萍,吴兆平,刘若华.纺织材料实验技术[M].中国纺织出版社,2004,3.
    [152]陈英,关颖.测色配色系统在彩色棉色变评价中的应用[J].北京服装学院学报,2004,6:52-55.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700