用户名: 密码: 验证码:
粉单竹SCMP漂白中木素结构变化及生物酶改善漂白性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
机械浆和化学机械浆具有得率高、挺度和松厚度好、光学性能优异等特点,但其可漂性和漂白浆白度稳定性差,因而在生产高等级纸张时无法完全取代化学浆,这在一定程度上阻碍了机械法和化学机械法制浆的发展。为此,本论文研究粉单竹磺化化学机械浆(SCMP)过氧化氢漂白和漂白浆老化过程中木素结构及其抽出物成分的变化,探讨过氧化氢漂白和漂白浆返黄机理,确定抽出物中影响纸浆漂白性能的主要成分,采用脂肪酶、果胶酶和漆酶预处理以改善SCMP的漂白性能,为高得率浆的发展和质量提升提供理论和技术依据。
     实验使用实验设计软件(MODDE)分析了粉单竹SCMP过氧化氢漂白各工艺参数间相互关系及对漂白浆白度的影响,优化漂白工艺,建立了粉单竹SCMP过氧化氢漂白模型。漂白模型的分析可知,过氧化氢用量、过氧化氢与总的碱用量比、NaOH与Na_2SiO_3用量比、浆浓等参数之间存在相关性;过氧化氢用量、P/A比值和浆浓是影响过氧化氢漂白的主要因素;优化的漂白工艺参数为:H_2O_2用量6%,NaOH用量3%,Na_2SiO_3用量3%,MgSO_4用量0.3%,浆浓20%,温度80℃,反应时间180min。粉单竹SCMP过氧化氢漂白的模型如下:Brightness(%ISO)=51.25+4.62*(PCH)-3.68*(P/A)-0.35*(nA/Si)+1.50*C+0.78*(P/A)~2-0.85*(C)~2-0.81*(PCH)*(P/A)+0.56*(P/A)*(Na/Si)-0.47*(P/A)*(C)
     Py-GC/MS分析结果表明,粉单竹SCMP木素是由愈创木基型(G)、紫丁香基型(S)和对-羟基苯基型(H)等木素单元组成,三种木素单元之间的摩尔比为44.0:28.9:27.1(G:S:H),其漂白浆和老化漂白浆的木素中三种单元的摩尔比分别为40.8:26.2:33.0和34.9:30.2:34.9。31P NMR分析结果表明,粉单竹SCMP及其漂白浆、老化漂白浆木素中的脂肪族羟基含量分别为3.83mmol/g、4.03mmol/g和3.74mmol/g,总酚羟基含量分别为1.27mmol/g、1.71mmol/g和1.18mmol/g,羧基含量分别为0.24mmol/g、0.36mmol/g和0.35mmol/g。说明在粉单竹SCMP过氧化氢漂白过程中,木素结构的醚键会发生部分的断裂,产生更多的脂肪族羟基和酚羟基;而在热老化过程中,木素中的酚羟基会在热的作用下导致部分木素的缩合。利用Py-GC/MS、31P NMR、13C NMR和2D NMR(HSQC)等现代测试技术分析了
     粉单竹SCMP及其漂白浆、老化漂白浆中木素的组成、连接结构的类型和含量,发现了粉单竹SCMP木素主要连接结构为β-O-4′芳基醚键结构,还有部分的缩合型结构,如树脂酚结构(β-β′/α-O-γ′/α′-O-γ)、苯基香豆满结构(β-5′/α-O-4′)、二苯并-二氧桥-松柏醇结构(5′-5′′/α-O-4′/β-O-4′′)、螺二烯酮结构和β-1′结构;木素结构中H型单元主要以与β-O-4′芳基醚键结构中C-γ上的羟基形成酯键的形式存在。其中粉单竹SCMP木素中β-O-4结构在过氧化氢漂白和老化过程中会发生部分的断裂;α-CO/β-O-4结构在过氧化氢的作用下会发生亲核反应生成α-OH结构,而生成的α-OH结构在老化过程中重新生成α-CO结构;二苯并-二氧桥-松柏醇结构中烷基芳基醚键在过氧化氢漂白和老化过程中会发生断裂;螺二烯酮结构中CO结构、树脂酚结构和苯基香豆满结构中烷基烷基醚键和烷基芳基醚键在过氧化氢漂白和老化过程中相对比较稳定。脂肪酶、果胶酶和漆酶处理粉单竹SCMP均可以提高其过氧化氢的可漂性和漂白浆的白度稳定性,最优工艺条件分别为:脂肪酶处理:脂肪酶用量10IU/g、pH值8,温度35℃,时间为40min、浆浓10%;果胶酶处理:果胶酶用量0.5IU/g、pH值10、温度30℃、时间30min、浆浓10%;漆酶处理:漆酶用量10IU/g、HBT用量0.5%、pH值6、温度50℃、氧压0.2MPa、浆浓10%。在最优工艺条件下,脂肪酶、果胶酶和漆酶处理的漂白浆白度分别从57.1%ISO增加了3.3%ISO、4%ISO和2.9%ISO到60.3%ISO、61.1%ISO和60.0%ISO;其PC值分别从2.97降低了33%、34%和31%到2.03、1.97和2.06;漂白浆打浆度分别从70°SR增加了4°SR、2.5°SR和3.0°SR至74°SR、72.5°SR和73°SR;漂白浆的裂断长分别增加了4.1%、5.9%和3.7%;耐破指数分别提高了8.4%、6.6%和8.8%;撕裂指数分别上升了5%、8.6%和4.7%。
     XPS和AFM分析结果显示,粉单竹SCMP纤维表面大部分被不规则形状的抽出物和规则形状的木素所覆盖,覆盖在纤维表面的木素量为57.45%,抽出物量为7.57%;经脂肪酶和果胶酶和漆酶处理后, SCMP纤维表面覆盖的木素量分别为66.40%和68.41%,抽出物量分别为3.05%和2.03%,漆酶处理后SCMP纤维表面几乎100%为木素所覆盖,而抽出物的量无法通过计算得到。说明了脂肪酶和果胶酶预处理可以去除部分纤维表面的抽出物,使得纤维表面暴露出更多的木素,而漆酶预处理也可除去部分抽出物和木素,但降解的木素会重新吸附在纤维表面,但这部分木素在过氧化氢漂白过程中容易去除。
     苯-乙醇抽出物GC-MS分析结果表明,粉单竹SCMP的苯-乙醇抽出物可以分为小分子直链烃类、小分子芳香族类、脂肪族的烯烃和醇类、脂肪酸及其酯类、甾醇等化合物,其中小分子芳香族类、脂肪酸及其酯类和甾醇类化合物对粉单竹SCMP过氧化氢的可漂性和白度稳定性的影响较大。生物酶处理可除去相当部分的抽出物,其中果胶酶去除抽出物的效果最好,脂肪酶次之,漆酶最差。结合脂肪酶、果胶酶和漆酶处理对漂白浆白度和白度稳定性影响的实验结果,说明通过生物酶处理去除纸浆抽出物,可以改善粉单竹SCMP的可漂性和白度稳定性。
In China, the production of machenical and chemimechanical pulp has made great progress, due to its high yield, high bulk and stiffness, superior optical properties and good printability. However, the machenical and chemimechanical pulps could not be used to produce high grade paper product because of its poor bleachability and inferior brightness stability. The changes of lignin substructure and the component content of benzene-ethanol extractives of Bambusa chungii SCMP were investigated during the process of its hydrogen peroxide bleahing and yellowing. The changes of the fiber surface properties and the component content of benzene-ethanol extractives of Bambusa chungii SCMP were discussed during pretreatment with lipase, pectinase and laccase. The mechanism of hydrogen peroxide bleaching and yellowing and the effect of the extractives on the bleachability and brightness stability were also studied.
     The model of hydrogen peroxide bleaching of Bambusa chungii SCMP was set up by MODDE software. It could be found from the model that there exits the correlation among hydrogen peroxide dosage, ratio of hydrogen peroxide dosage to alkali usage, the ratio of NaOH to Na_2SiO_3 usage and pulp consistency. And hydrogen peroxide dosage, the ratio of hydrogen peroxide dosage to alkali usage and consistency are the main factors that influence the the brightness of bleached SCMP. The optimal conditions of hydrogen peroxide bleaching of Bambusa chungii SCMP were H2O2 6%,NaOH 3%,Na_2SiO_3 3%,MgSO_4 0.3%,pulp consistency 20%,temperature 80℃,time 180min. The bleaching model was: Brightness(%ISO)=51.25+4.62*(PCH)-3.68*(P/A)-0.35*(nA/Si)+1.50*C+0.78*(P/A)~2-0.85*(C)~2-0.81*(PCH)*(P/A)+0.56*(P/A)*(Na/Si)-0.47*(P/A)*(C)
     From the analysis of Py-GC/MS spectra, lignin isolated from Bambusa chungii SCMP constitutes of gluaiacyl (G), syringyl (S) and p-hydrophenyl (H) units, with a G:S:H molar ratio of 44:29:27. And the molar ratios of G, S and H in lignin isolated from bleached SCMP and yellowed bleached SCMP are 40.8:26.2:33 and 34.9:30.2:34.9, respectively. The data of 31P NMR spectra shows that the contents of alphatic hydrogen group in lignin isolated from SCMP, bleached SCMP and yellowed bleached SCMP are 3.83mmol/g, 4.03mmol/g and 3.74mmol/g, the contents of phenolic hydroxyl group 1.27mmol/g, 1.71mmol/g and 1.18mmol/g, the contents of carboxylic hydrogen group 0.24mmol/g, 0.36mmol/g and 0.35mmol/g, respectively. During hydrogen peroxide bleaching, the ether bond between the lignin units could be broken down, and more alphatic and phenolic hydroxyl groups were formed, but during the process of yellowing, the condensation of lignin would occur.
     From the analysis of 31P NMR, 13C NMR and 2D NMR (HSQC), it could be concluded that the linkage among lignin units was mainly ?-O-4′aryl ether substructure linkage, there was also some condensed substructure linkage, such as dibenzodioxocins substructures(5′-5′′/α-O-4′/β-O-4′′), phenylcoumaran structures(β-5′/α-O-4′), resinol substructures(β-β′/α-O-γ′/α′-O-γ), spirodienone andβ-1′substructure, . And most of H lignin unit was acetated at ?-position ofβ-O-4′aryl ether linkages. Fraction ofβ-O-4′aryl ether linkages in lignin of Bambusa chungii SCMP was broken down during the process of bleaching and yellowing. Part ofα-CO inβ-O-4′aryl ether linkages was changed intoα-OH during hydrogen peroxide bleaching, and then some of -OH would be changed intoβ-CO during the process of yellowing. Some of Alk-O-Alk ether linkage in dibenzodioxocins substructures was also broken down during bleaching and yellowing. But carbonyl group(CO) in spirodienone substructure and Alk-O-Alk and Alk-O-Aryl linkages in penylcoumaran and resinol substructure would be relative stable during bleaching and yellowing.
     The bleachability and brightness stability of Bambusa chungii SCMP could be improved after pretreatment with lipase, pectinase and laccase. The opitmal pretreatment conditions were as follows: lipase pretreatment: lipase dosage 10IU/g, pH 8,temperature 35℃, time 40min, pulp consistency 10%; pectinase pretreatment: pectinase dosage 0.5IU/g, pH 10, temperature 30℃, time 30min, pulp consistency 10%; laccase pretreatment: laccase dosage 10IU/g、HBT 0.5%, pH 6, temperature 50℃, oxygen pressure 0.2MPa, pulp consistency 10%. Under the optimal conditions, the brightness of bleached SCMP pretreated by lipase, pectinase and laccase increased from 57.1%ISO to 60.3%ISO、61.1%ISO and 60.0%ISO, respectively. The PC number decreased from 2.97 to 2.03、1.97 and 2.06;the beating degree rose up from 70°SR to 74°SR、72.5°S and 73°SR;the breaking length inceased by 4.1%、5.9% and 3.7%;the bursting index also increaded by 8.4%、6.6%和8.8%;the tearing index rose up by 5%、8.6% and 4.7%.
     From the analysis of AFM and XPS, it could be found that 57.45% and 7.57% of fiber surface of Bambusa chungii SCMP were covered with lignin and extractives. After pretreatment with lipase and pectinase, the percentages of lignin covered on the fiber surface were 66.40% and 68.41%, percentages of extractives 3.05% and 2.03%, respectively. After pretreatment with laccse, almost all of the surface of fiber were covered with lignin, and pecentage of extractives on the fiber surfacet could not be calculated.
     The analysis results of GC-MS indicate that the benzene-ethanol extractives of Bambusa chungii SCMP consist of low molecular linear hydrocarbon, low molecular aromatic substances, fatty alkene and alcohol, fatty acid and sterol. And the main extractives that affect the bleachability and brightness stability are low molecular aromatic substances, fatty acid and sterol. The extractives covered on the fiber surface could be partially removed by enzyme pretreatment, which could evidently improve the bleachability and brightness stability of Bambusa chuangii SCMP.
引文
[1]国家计委经济预测司轻纺处.造纸业:告别传统求发展[J].国际造纸, 1999, 18(2): 8-19.
    [2]中国造纸学会编. 2009年中国造纸年鉴.北京:中国轻工业出版社, 2010: 619-624.
    [3]王双飞,杨崎峰,宋海农等.浆抄造高强瓦楞纸的研究[J].中国造纸学报, 1999, 14(增刊): 5-29.
    [4]宋先亮,殷宁,潘定如.爆破法制浆技术的研究现状[J].北京林业大学学报, 2003, 25(4): 25-79.
    [5]马美云,王键.高得率浆的研究与产品开发[J].国际造纸, 2003, 22(3): 25-28.
    [6]王旭,张运展,杨汝男等.混合阔叶木APMP制浆工艺条件探讨[J].造纸科学与技术, 2001, 20(2): 29-32.
    [7]王祖瑞. APMP制浆新方法[J].中华纸业, 2009, 30(22): 104.
    [8] Law K N, Bi S L. Explosion pulping of black spruce[J]. Tappi J, 1989, 72(1): 111-114.
    [9] Kokta B V, Ahmed A. Feasibility of explosion pulping of bagasse[J]. Cell Chem Technol, 1992, 26(1): 107-123.
    [10]戴家璋.中国造纸技术简史[M].北京:中国轻工出版社, 1994.
    [11]闫冀豫.纸浆竹的丰产结构及主要竹种的造纸性能探讨[J].竹类研究, 1986, 5(4): 39-42.
    [12]辉朝茂.中国竹子培育和利用手册[M].北京:中国林业出版社, 2002.
    [13]马乃训,张文燕.竹材制浆造纸述评[J].林业科学研究, 1995, 8(3): 329-333.
    [14]杨仁党,陈克复.竹子作为造纸原料的性能和潜力[J].林产工业, 1995, 29(3): 8-14.
    [15]辉朝茂,郝吉明,杨宇明等.关于中国竹浆产业和纸浆竹林基地建设的探讨[J].中国造纸学报, 2003, 18(1): 152-156.
    [16]刘光良.高得率浆发展现状及趋势[J].中华纸业, 1998, (4): 7-9.
    [17]刘晏,张晓民.国内CTMP的生产现状及发展前景[J].北方造纸, 1997(2): 27-29.
    [18] Gierer J. Basic principles of bleaching. Part 1: Cationic and radical processes[J]. Holzforschung, 1990, 44(5): 387-394.
    [19] Gierer J. Basic principles of bleaching. Part 2. Anionic processes[J]. Holzforschung, 1990, 44(6): 395-400.
    [20] Strunk W G. Factors affecting hydrogen peroxide bleaching for high-brightness TMP[J].pulp & Paper, 1980, 54(6): 156-161.
    [21] Gierer J, Imsgard F. The reactions of lignins with oxygen and hydrogen peroxide in alkaline media[J]. Svensk Papperstidning, 1977, 80(16): 510-518.
    [22]钱学仁,于钢.新型纸浆漂白剂──甲脒亚磺酸[J].纸和造纸, 1999(6): 39-40.
    [23]黄六莲,罗巨生,罗小恕等.报纸脱墨浆的两段漂白实验[J].西南造纸, 2000(4): 8-9.
    [24]黄六莲,罗巨生,余水洪等. FAS在机械木浆漂白中应用[J].西南造纸, 2001(4): 10-11.
    [25]林涛,殷学风,刘建连.甲脒亚磺酸(FAS)用于磨木机械浆漂白的研究[J].西南造纸, 2004, 33(3): 23-25.
    [26] Kringstad K P, Lin S Y. Mechanism in the yellowing of high-yield pulp by light. Structure and reactivity of free radical intermediates in the photodegradation of lignin[J]. Tappi, 1970, 53(12): 2296-2301.
    [27] Schmidt J A, Heitner C. Light-induced yellowing of mechanical and ultra-high yield pulps. III. Comparison of softwood TMP, softwood CTMP, and aspen CTMP[J]. J Wood Chem Technol, 1995, 15: 223-223.
    [28] Schmidt J A, Heitner C. Light-induced yellowing of mechanical and ultra-high yield pulps. Part 2. Radical-induced cleavage of etherified guaiacylglycerol--arylether groups is the main degradative pathway[J]. J Wood Chem Technol, 1993, 13: 309-325.
    [29]Schmidt J A, Heitner C. Light-induced yellowing of mechanical and ultrahigh yield pulps. Part 1. Effect of methylation, sodium borohydride reduction and ascorbic acid on chromophore formation[J]. J Wood Chem Technol, 1991, 11(4): 397-418.
    [30] Leary G J. The yellowing of wood by light. [J]. Tappi, 1968, 51(6): 257-260.
    [31] Castellan A, Nourmamode A, Fornier de Violet P, et al. Photoyellowing of milled wood lignin and peroxide-bleached milled wood lignin in solid 2-hydroxypropyl cellulose films after sodium borohydride reduction and catalytic hydrogenation in solution: an UV/VIS absorption spectroscopic study[J]. J Wood Chem Technol, 1992, 12(1): 1-18.
    [32] Fornier de Violet P, Nourmamode A, Colombo N, et al. Photochemical brightness reversion of peroxide-bleached mechanical pulps in the presence of various additives[J]. Cell Chem Technol, 1990, 24(2): 225-235.
    [33] Daneault C, Robert S, Levesque M. The prevention of light-induced yellowing of paper:the inhibition of reversion by mercaptans of TMP and CTMP pulp from balsam fir (Abies balsamea) and black spruce (Picea mariana)[J]. J Pulp Pap Sci, 1991, 17(6): 187-193.
    [34] El-Sadi H, Yuan Z, Esmail N, et al. Factors affecting the inhibition of light-induced yellowing of a coated BTMP paper[J]. J Pulp Pap Sci, 2002, 28(2): 400-405.
    [35] Hu T Q, James B R, Yawalata D, et al. A new class of bleaching and brightness stabilizing agents. Part III: Brightness stabilization of mechanical pulps[J]. J Pulp Pap Sci, 2006, 32(3): 131-136.
    [36] Hu T Q. A new yellowing inhibitor for peroxide-bleached mechanical pulps[J]. J Pulp Pap Sci., 2004, 30(6): 153-158.
    [37] Ludemann H D, Nimz H. Carbon-13 nuclear magnetic resonance spectra of lignins[J]. Biochemical and Biophysical Research Communications, 1973, 52(4): 1162-1169.
    [38] Luedemannm H D, Nimz H. Carbon-13 NMR spectra of lignins. 2. Beech and spruce Bjoerkman lignin[J]. Makromolekulare Chemie 1974, 175(8): 2409-2422.
    [39]邓长江,刘学恕,张宏书等.定量13C NMR谱表征蔗渣碱木素结构[J].纤维素科学与技术, 1995, 3(4): 38-43.
    [40] Nimz H, Luedemann H D, Becker H. Carbon-13-NMR spectra of lignins. 4. Lignins of the European mistletoe (Viscum album)[J]. Zeitschrift fuer Pflanzenphysiologie, 1974, 73(3): 226-233.
    [41] Nimz H H, Robert D, Faix O, et al. Carbon-13 NMR spectra of lignins. 8. Structural differences between lignins of hardwoods, softwoods, grasses and compression wood[J]. Holzforschung, 1981, 35(1): 16-26.
    [42] Nimz H H, Tschirner U, Staehle M, et al. Carbon-13 NMR spectra of lignins, 10. Comparison of structural units in spruce and beech lignin[J]. J Wood Chem Technol, 1984, 4(3): 265-284.
    [43] Psotta K, Forbes C P, Nimz H H. Lignosulfonate crosslinking reactions. 4. The crosslinking of diazotized lignosulfonate.[J]. Holzforschung, 1983, 37(4): 185-188.
    [44] Arkhipov Y, Argyropoulos D S, Bolker H I, et al. Phosphorus-31 NMR spectroscopy in wood chemistry. Part I. Model compounds[J]. J Wood Chem Technol, 1991, 11(2): 137-157.
    [45] Argyropoulos D S, Bolker H I, Heitner C, et al. Phosphorus-13 NMR spectroscopy in wood chemistry. Part V. Qualitative analysis of lignin functional groups[J]. J Wood ChemTechnol, 1993, 13(2): 187-212.
    [46] Argyropoulos D S. Phosphorus-31 NMR in wood chemistry: a review of recent progress[J]. Res Chem Intermediat, 1995, 21(3-5): 373-295.
    [47] Zhang L, Gellerstedt G. Quinone chromophores and their contribution to photo-yellowing in lignin[C]. Advances in Lignocellulosics Chemistry for Ecologically Friendly Pulping and Bleaching Technologies, 5th European Workshop on Lignocellulosics and Pulp; University of Aveiro: Aveiro, Port., 1998: 285-289.
    [48]周学飞,余家鸾,陈嘉翔.核磁共振法在研究木素和碳水化合物结构方面的应用[J].纤维素科学与技术, 1997, 5(2): 42-48.
    [49]刘贵生,段新方,刘君良等. 1H, 13C NMR光谱在木素化学研究中的应用[J].吉林林学院学报, 1996, 12(4): 239-246.
    [50] Terashima N, Hafrén J, Westermark U, et al. Nondestructive analysis of lignin structure by NMR spectroscopy of specificalyy 13C enriched lignins. Part 1. solid state study of Ginkgo wood[J]. Holzforschung, 2002, 56(1): 43-50.
    [51] Xie Y, Terashima N. Selective carbon-13 enrichment of side chain carbons in ginkgo lignin traced by carbon 13 nuclear magnetic resonance[J]. Mokuzai Gakkaishi, 1991, 37(10): 935-941.
    [52] Xie Y, Terashima N. Selective carbon-13 enrichment of side chain carbons of rice stalk lignin traced by carbon 13 nuclear magnetic resonance[J]. Mokuzai Gakkaishi, 1993, 39(1): 91-97.
    [53] Xie Y, Yasuda S, Terashima N. Selective carbon 13-enrichment of side chain carbons of oleander lignin traced by carbon 13 nuclear magnetic resonance[J]. Mokuzai Gakkaishi, 1994, 40(2): 191-198.
    [54]顾瑞军,谢益民,曾绍琼等.稻秆木素侧链13C同位素示踪及固体13C NMR分析[J].高等学校化学学报, 2002, 23(6): 1073-1076.
    [55] Terashima N, Evtuguin D V, Pascoal Neto C, et al. Synthesis of coniferins 13C-enriched at position 4 or 5 of the guaiacyl ring[J]. Holzforschung, 2003, 57(3): 485-488.
    [56]刘鑫宇,三倍体毛白杨木素结构的研究I[D],北京:北京林业大学, 2004.
    [57] Sun J-X, Xu F, Sun X-F, et al. Comparative study of lignins from ultrasonic irradiated sugar-cane bagasse[J]. Polym Int, 2004, 53(11): 1711-1721.
    [58] Evtuguin D V, Neto C P, Silva A M S, et al. Comprehensive study on the chemicalstructure of dioxane lignin from plantation Eucalyptus globulus wood[J]. J Agr Food Chem, 2001, 49(9): 4252-4261.
    [59]付时雨,詹怀宇,余惠生. 31P-核磁共振光谱在木素结构分析中的应用[J].中国造纸学报, 1999, 14(增刊): 121-125.
    [60] Akim L G, Argyropoulos D S, Jouanin L, et al. Quantitative phosphorus-31 NMR spectroscopy of lignins from transgenic poplars[J]. Holzforschung, 2001, 55(4): 386-390.
    [61] Crestini C, Argyropoulos D S. Structural analysis of wheat straw lignin by quantitative P-31 and 2D NMR spectroscopy. The occurrence of ester bonds and alpha-O-4 substructures[J]. J Agr Food Chem, 1997, 45(4): 1212-1219.
    [62] Argyropoulos D S, Zhang L M. Semiquantitative determination of quinonoid structures in isolated lignins by P-31 nuclear magnetic resonance[J]. J Agr Food Chem, 1998, 46(11): 4628-4634.
    [63] Zawadzki M, Runge T, Ragauskas A. Facile detection of ortho- and para-quinone structures in residual kraft lignin by phosphorus-31 NMR spectroscopy[J]. J Pulp Pap Sci, 2000, 26(3): 102-106.
    [64] Tohmura S., Argyropoulos D S. Determination of arylglycerol-b-aryl ethers and other linkages in lignins using DFRC/phosphorus-31 NMR[J]. J Agr Food Chem, 2001, 49(2): 536-542.
    [65] Malkavaara P, Alen R, Kolehmainen E. Multivariate correlation between carbon-13 and phosphorus-31 NMR spectral data on dissolved lignin and the combustion properties of kraft black liquor[J]. Magn Reson Chem, 1999, 37(6): 407-412.
    [66] Terashima N, Akiyama T, Ralph S, et al. 2D NMR (HSQC) difference spectra between specifically 13C enriched and unenriched protolignin of Ginkgo biloba obtained in the solution state of whole cell wall material[J]. Holzforschung, 2009, 63: 379-384.
    [67] Rencoret J, Marques G, Gutierrez A, et al. HSQC-NMR analysis of lignin in woody (Eucalyptus globulus and Picea abies) and non-woody (Agave sisalana) ball milled plant materails at the gel state[J]. Holzforschung, 2009, 63: 691-698.
    [68] Zhang L M, Gellerstedt G. Quantitative 2D HSQC NMR determination of polymer structures by selecting suitable internal standard references[J]. Magn Reson Chem, 2007, 45(1): 37-45.
    [69] Peterson D J, Loening N M. QQ-HSQC: a quick, quantitative heteronuclear correlationexperiment for NMR spectroscopy[J]. Magn Reson Chem, 2007, 45(11): 937-941.
    [70] Koskela H, Kilpelainen I, Heikkinen S. Some aspects of quantitative 2D NMR[J]. J. Magn. Reson., 2005, 174(2): 237-244.
    [71] Heikkinen S, Toikka M M, Karhunen P T, et al. Quantitative 2D HSQC (Q-HSQC) via suppression of J-dependence of polarization transfer in NMR spectroscopy: Application to wood lignin[J]. J Am Chem Soc, 2003, 125(14): 4362-4367.
    [72] Ammalahti E, Brunow G, Bardet M, et al. Identification of side-chain structures in a poplar lignin using three-dimensional HMQC-HOHAHA NMR spectroscopy[J]. J Agr Food Chem, 1998, 46(12): 5113-5117.
    [73] Xu Q, Qin M, Shi S, et al. Structural changes in lignin during the deinking of old newsprint with laccase-violuric acid system[J]. Enzyme Microb Tech, 2006, 39(5): 969-975.
    [74]付时雨,詹怀宇,何为.硫酸盐浆残余木素在漆酶/介体体系中的降解[J].华南理工大学学报, 2002, 30(12): 30-36.
    [75] Karhunen P, Rummakko P, Sipila J, et al. Dibenzodioxocins - a novel type of linkage in softwood lignins[J]. Tetrahedron Lett, 1995, 36(1): 169-170.
    [76]陆家和,陈长彦.表面分析技术[M].北京:电子工业出版社, 1987.
    [77] Duchesne I, Daniel G. The ultrastructure of wood fibre surfaces as shown by a variety of microscopical methods - a review[J]. Nord Pulp Pap Res J, 1999, 14(2): 129-139.
    [78]殷敬华,莫志深.现代高分子物理学(下册)[M].北京:科学出版社, 2001.
    [79] Henriksson A, Gatenhalm P. Surface properties of CTMP fibers modified with xylans[J]. Cellulose, 2002, 9(1): 55-64.
    [80]周敬红,王双飞,韦小英.蔗渣白腐菌处理的电镜观察[J].中国造纸学报, 1999, 14(2): 15-19.
    [81] Allem R. Characterization of paper coatings by scanning electron microscopy and image analysis[J]. J Pulp Pap Sci, 1998, 24(10): 329-336.
    [82] Stroem G, Carlsson G, Schulz A. Chemical composition of coated paper surfaces determined by means of ESCA.[J]. Nord Pulp Pap Res J, 1993, 8(1): 105-112.
    [83] Ruel K, Chabannes M, Boudet A M, et al. Reassessment of qualitative changes in lignification of transgenic tobacco plants and their impact on cell wall assembly[J]. Phytochemistry, 2001, 57(6): 875-882.
    [84]白春礼.扫描隧道显微术及其应用[M].上海:上海科学技术出版社, 1992.
    [85]郭宁,秦紫瑞.原子力显微镜的发展与表面成像技术[J].理化检验—物理分册, 1998, 34(10): 13-17.
    [86] Li K, Lei X, Lu L, et al. Surface Characterization and Surface Modification of Mechanical Pulp Fibres[J]. Pulp Pap-Canada, 2010, 111(1): 28-33.
    [87] Pang L, Gray D G. Heterogeneous fibrillation of kraft pulp fibre surfaces observed by atomic force microscopy[J]. J Pulp Pap Sci, 1998, 24: 369-372.
    [88] Boras L, Gatenholm P. Surface composition and morphology of CTMP fibers[J]. Holzforschung, 1999, 53(2): 188-194.
    [89] Maciel A M, Wilkins C P. AFM ultrastructural studies of chemical softwood tracheids and secondary fines generated by various refining treatments[J]. Paper Technology, 2002, 43(6): 25-33.
    [90] Bessonoff M, Niemi H, Nguyen T, et al. The effects of DCS from TMP on paper and fiber surface[J]. Pap Puu-Pap Tim, 2000, 82(8): 531-538.
    [91] Niemi H, Paulapuro H, Mahlberg R. Review: application of scanning probe microscopy to wood, fibre and paper research[J]. Pap Puu-Pap Tim, 2002, 84(6): 389-406.
    [92]刘世宏,王当憨,潘承璜. X射线光电子能谱分析[M].北京:科学出版社, 1988.
    [93]杜官本.表面光电子能谱(XPS)及其在木材科学与技术邻域的应用[J].木材工业, 1999, 13(3): 17-20.
    [94] Buchert J, Carlsson G, Viikari L, et al. Surface characterization of unbleached kraft pulps by enzymatic peeling and ESCA[J]. Holzforschung, 1996, 50: 69-74.
    [95]方桂珍.多元羧酸与木材酯化反应化学分析光电子能谱ESCA的研究[J].木材工业, 1999, 13(2): 24-26.
    [96] Dorris G M, Gray D G. The surface analysis of paper and wood fiber by ESCA(I). Application of Cellulose and Lignin[J]. Cell Chem Technol, 1978, 12: 9-23.
    [97] Dorris G M, Gray D G. The surface analysis of paper and wood fiber by ESCA(II). Surfac composition of mechanical pulps[J]. Cell Chem Technol, 1978, 12: 721-734.
    [98] Dorris G M, Gray D G. The surface analysis of paper and wood fiber by ESCA(III). Interpretation of Carbon (1s) Peak Shape[J]. Cell Chem Technol, 1978, 12: 735-743.
    [99] Hua X, Kaliaguine S, Kokta B V, et al. Surface analysis of explosion pulps by ESCA. Part 1. Carbon (1s) spectra and oxygen-to-carbon ratios[J]. Wood Sci Technol, 1993,27(6): 449-459.
    [100]Hua X, Kaliaguine S, Kokta B V, et al. Surface analysis of explosion pulps by ESCA. Part 2. Oxygen (1s) and sulfur (2p) spectra[J]. Wood Sci Technol, 1993, 28(1): 1-8.
    [101]杨崎峰,詹怀宇,王双飞.蔗渣爆破浆表面的XPS分析[J].造纸科学与技术, 2006, 23(4): 22-24.
    [102]Koljonen K, Osterberg M, Johansson L S, et al. Surface chemistry and morphology of different mechanical pulps determined by ESCA and AFM[J]. Colloid Surf. A-Physicochem. Eng. Asp., 2003, 228(1-3): 143-158.
    [103]Fardim P, Gustafsson J, von Schoultz S, et al. Extractives on fiber surfaces investigated by XPS, ToF-SIMS and AFM[J]. Colloid Surf. A-Physicochem. Eng. Asp., 2005, 255(1-3): 91-103.
    [104]Laine J, Stenius P, Carlsson G, et al. Surface characterization of unbleached kraft pulps by means of ESCA[J]. Cellulose, 1994, 1(2): 145-160.
    [105]Seisto A, Laine J. Surface chemical composition of birch Milox pulp[J]. Paperi ja Puu/Paper and Timber, 1999, 81: 54-58.
    [106]梁云,颜进华,陈克复.颜料涂布纸涂层的表面分析技术[J].造纸科学与技术, 2001, 20(2): 8-10.
    [107]王进,陈克复,杨仁党等.扫描电镜和X射线能谱应用于涂布纸涂层的分析[J].造纸科学与技术, 2005, 24(2): 9-12.
    [108]Eriksson L, Johnsson E, Kettaneh-Wold N, et al. Multi and Megavariate Data Analysis, Principles and Application[M]. Umeai: Umetrics Academy, Sweden, 2001.
    [109]张曾.硅酸钠与过氧化氢漂白的结垢[J].纸和造纸, 1998(1): 12-13.
    [110]Eriksson O, Lindgren B O. About the linkage between lignin and hemicelluloses in wood[J]. Svensk Papperstidning 1977, 80(2): 59-63.
    [111]Minor J L. Chemical linkage of pine polysaccharides to lignin[J]. J Wood Chem Technol, 1982, 2(1): 1-16.
    [112]Minor J L. Chemical linkage of polysaccharides to residual lignin in loblolly pine kraft pulps[J]. J Wood Chem Technol, 1986, 6(2): 185-201.
    [113]Iversen T. Lignin-carbohydrate bonds in a lignin-carbohydrate complex isolated from spruce[J]. Wood Sci Technol, 1985, 19(3): 243-251.
    [114]Tamminen T L, Hortling B R. Solution-state NMR of lignin, In Advances inLignocellulosics Characterization; Argyropoulos, Dimitris S., Ed.; APPI Press: Atlanta, 1999: 1-42.
    [115]Gellerstedt G, Pranda J, Lindfors E-L. Structural and molecular properties of residual birch kraft lignins[J]. J Wood Chem Technol, 1994, 14(4): 467-482.
    [116]Yamasaki T, Hosoya S, Chen C-L, et al. Characterization of residual lignin in kraft pulp. International Symposium of Wood Pulping Chemistry. SPCI: Stockholm, Swed, 1981; Vol. 2: 34-42.
    [117]Hortling B, Turunen E, Sundquist J. Investigation of residual lignin in chemical pulps. Part 2. Purification and characterization of residual lignin after enzymic hydrolysis of pulps.[J]. Nord Pulp Pap Res J, 1992, 7(3): 144-151.
    [118]Hortling B, Ranua M, Sundquist J. Investigation of the residual lignin in chemical pulps. Part 1. Enzymic hydrolysis of the pulps and fractionation of the products[J]. Nord Pulp Pap Res J, 1990, 5(1): 33-37.
    [119]Argyropoulos D S, Sun Y, Palus E. Isolation of residual Kraft lignin in high yield and purity[J]. J Pulp Pap Sci, 2002, 28(2): 50-54.
    [120]陈方,陈嘉翔.桉木木素的付立叶变换红外光谱研究[J].纤维素科学与技术, 1994, 2(2): 14-20.
    [121]曾幸荣,吴振耀.高分子近代测试分析技术[M].广州:华南理工大学出版社, 2000.
    [122]Shabaka A A, Nada A M A, Fadly M. Infrared spectroscopic study of thermally treated lignin[J]. J Mater Sci, 1990, 25(6): 2925-2928.
    [123]Ludwig C H, Nist B J, McCarthy J L. Lignin. XII. High resolution nuclear magnetic resonance spectroscopy of protons in compounds related to lignin[J]. Journal of the American Chemical Society, 1964, 86(6): 1186-1196.
    [124]Lundquist K. NMR studies of lignins. 3. Proton NMR spectroscopic data for lignin model compounds[J]. Acta Chemica Scandinavica, Series B: Organic Chemistry and Biochemistry 1979, B33(6): 418-420.
    [125]Lundquist K, Stern K. Analysis of lignins by proton NMR spectroscopy[J]. Nord Pulp Pap Res J, 1989, 4(3): 210-213.
    [126]Lundquist K. Proton NMR spectral studies of lignins. Quantitative estimates of some types of structural elements[J]. Nord Pulp Pap Res J, 1991, 6(3): 140-146.
    [127]Lundquist K. Proton NMR spectral studies of lignins. Results regarding theoccurrence ofβ-5 structures,β-β' structures, non-cyclic benzyl aryl ethers, carbonyl groups and phenolic groups[J]. Nord Pulp Pap Res J, 1992, 7(1): 4-8.
    [128]Gellerstedt G, Lindfors E L. Structural changes in lignin during Kraft cooking, 4: Phenolic hydroxyl groups in wood and kraft pulps[J]. Svensk Papperstidning, 1984, 87(15): 115-118.
    [129]Chang H M. Isolaiton of lignin from pulp[M]. Springer series in woood science, 1992.
    [130]Granata A, Argyropoulos D S. 2-chloro-4,4,5,5-tetramethyl-1,3,2-dioxaphospholane, a reagent for the accurate determination of the uncondensed and condensed phenolic moieties in lignins[J]. J Agr Food Chem, 1995, 43(6): 1538-1544.
    [131]Jiang Z H, Argyropoulos D S, Granata A. Correlation- analysis of P-31 NMR chemical shifts with substituent effects of phenols[J]. Magn Reson Chem, 1995, 33(5): 375-382.
    [132]Rencoret J, Marques G, Gutierrez A, et al. Structural characterization of milled wood lignins from different eucalypt species[J]. Holzforschung, 2008, 62(5): 514-526.
    [133]Martinez A T, Rencoret J, Marques G, et al. Monolignol acylation and lignin strucutre in some nonwoody plants: A 2D NMR study[J]. Phytochemistry, 2008, 69: 2831-2843.
    [134]Ralph S A, Ralph J, Landucci L L. NMR Database of Lignin and Cell Wall Model Compounds. U.S. Forest Products Laboratory, Madison, WI, 2004, available at http://ars.usda.gov/Services/docs.htm?docid=10491.
    [135]Ralph J, Hatfield R D. Pyrolysis-GC-MS Characterization of Forage Materials[J]. J Agr Food Chem, 1991, 39(8): 1426-1437.
    [136]Del Rio J C, Gutierrez A, Hernando M, et al. Determining the influence of eucalypt lignin composition in paper pulp yield using Py-GC/MS[J]. J Anal Appl Pyrol, 2005, 74: 110-115.
    [137]Rencoret J, Gutierrez A, del Rio J C. Lipid and lignin composition of woods from different eucalypt species[J]. Holzforschung, 2007, 61: 165-174.
    [138]Rencoret J, Marques G, Gutierrez A, et al. Isolation and structural characterization of the milled-wood lignin from Paulownia fortunei wood[J]. Ind Crop Prod, 2009, 30(1): 137-143.
    [139]Faix O, Meier D, Fortmann I. Thermal degradation products of wood. A collection of electron-impact (EI) mass spectra of mommeric lignin derived products[J]. Holz Roh-Werkstoff, 1990, 48: 351-354.
    [140]Tsutsumi Y, Kondo R, Sakai K, et al. The difference of reactivity between syringyl lignin and guaiacyl lignin in alkaline systems[J]. Holzforschung, 1995, 49: 423-428.
    [141]Freudenberg K. The constitution and biosynthesis of lignin[M]. Berlin-Heidelberg: Springer-Verlag, 1968.
    [142]Adler E. Lignin chemistry: past, present and future[J]. Wood Sci Technol, 1977, 11(3): 169-218.
    [143]Sakakibara A. Chemistry of lignin[M]. New Yorki: Marcel Dekker Inc., 1991.
    [144]Lai Y Z, Sarkanen K V. Isolation and structural studies[M]. New Yorki: Wiley-Interscience, 1971.
    [145]Chen C-L. Lignin: Occurrence in wood tissues, isolation, reactions and structure[M]. New York: Marcel Dekker Inc., 1991.
    [146]Chen C-L. Characterization of milled wood lignins and dehydrogenative polymerisates from monolignols by carbon 13 NMR spectroscopy[C]. Lignin and Lignan Biosynthesis; Lewis, N., Sarkanen, S., Eds.; American Chemical Society: Washington, DC, 1998: 255-275.
    [147]Zhang L, Gellerstedt GI. Detection and determination of carbonyls and quinones by modern NMR techniquesI[C]. Proceedings of the 10th International Symposium on Wood and Pulping Chemistry. Yokohama, Japan, 1999, Volume II: 164-170.
    [148]Zhang L, Gellerstedt G. NMR observation of a new structure, a spirodienone[J]. Chem Commun, 2001: 2744-2745.
    [149]Zhang L, Gellerstedt GI. The occurrence and behavior of ?-1 and dienone structures in ligninI[C]. Proceedings of the 11th International Symposium on Wood and Pulping ChemistryI. Nice, France: 2001: 595-599.
    [150]Capanema E A, Balakshin M Y, Kadla J F. A comprehensive approach for quantitative lignin characterization by NMR spectroscopy[J]. J Agr Food Chem, 2004, 52(7): 1850-1860.
    [151]Capanema E A, Balakshin M Y, Kadla J F. Quantitative characterization of a hardwood milled wood lignin by nuclear magnetic resonance spectroscopy[J]. J Agr Food Chem, 2005, 53(25): 9639-9649.
    [152]Del Rio J C, Rencoret J, Marques C, et al. Highly acylated (acetylated and/or p-coumaroylated) native lignins from diverse herbaceous plants[J]. J Agr Food Chem,2008, 56(20): 9525-9534.
    [153]刘小安,麦草浆易溶木素特性的分级研究[D],南京,南京林业大学, 1986.
    [154]杨崎峰,桉木CTMP纤维的白腐菌改性及其表面化学和形貌表征的研究[D],广州,华南理工大学, 2007.
    [155]张春辉,新闻纸厂过程水中溶胶物质的表征及其稳定性和酶法控制的研究[D],广州,华南理工大学, 2008.
    [156]Ason D A, Fryer M T, lambert C G. Improvement in newsprint sheet quality by effective pitch control[C]. 6th Annual Meeting-Technical Section, Canadian Pulp and Paper Association: Montral, 1990: 113-116.
    [157]Biza P. A modern solution for pitch and sticks control[J]. Paper Technology, 2001, 42(3): 22-24.
    [158]Garver T M. Improving deinked pulp furnishing using on-line analysis and control of dissolved substances[C]. 6th Research Forum on Recycling, Pulp and Paper Technical Association of Canada: 2001: 135-143.
    [159]卢雪梅,高培基.木材腐朽真菌对CTMP漂白及抑制返黄的作用[J].中国造纸学报, 2000, 15(增刊): 47-51.
    [160]卢雪梅,胡明,王蔚等.黄孢原毛平革菌LIP-14酶液抑制CMP返黄的研究[J].中国造纸学报, 2002, 17(1): 21-25.
    [161]Kangas H, Suurnakki A, Kleen M. Modification of the surface chemistry of TMP with enzymes[J]. Nord Pulp Pap Res J, 2007, 22(4): 415-423.
    [162]Mustranta A, Buchert J, Spetz P, et al. Treatment of mechanical pulp and process waters with lipase[J]. Nord Pulp Pap Res J, 2001, 16(2): 125-129.
    [163]Hata K, Matsukura M, Taneda H, et al. Mill-scale application of enzymatic pitch control during paper production[J]. Enzymes for Pulp and Paper Processing, 1996, 65(5): 280-296.
    [164]石淑兰,何福望.制浆造纸分析与监测[M].北京:中国轻工出版社, 2003.
    [165]Thornton J. Enzymatic degradation of polygalacturonic acids released from mechanical pulp during peroxide bleaching[J]. Tappi, 1994, 77(3): 161-166.
    [166]Sundberg K E, Sundberg A C, Thornton J W, et al. Pectic acids in the production of wood-containing paper[J]. Tappi J, 1998, 81(7): 131-136.
    [167]Ricard M, Reid I D. Purified pectinase lowers cationic demand in peroxide-bleachedmechanical pulp[J]. Enzyme Microb Tech, 2006, 34: 499-504.
    [168]董毅,陈嘉川,姜伟等.果胶酶处理改善APMP质量的研究[J].造纸化学品, 2009, 21(4): 2-5.
    [169]牟洪燕,詹怀宇,秦梦华.果胶酶处理对废新闻纸浆性能的影响[J].纸和造纸, 2008, 27(4): 69-72.
    [170]李宗全,詹怀宇,秦梦华.果胶酶处理BCTMP中DCS及其对阳离子助剂作用效果的影响[J].中国造纸, 2006, 25(8): 23-26.
    [171]王小敏,吴文龙,闾连飞等.分光光度计法测定果胶酶活力的方法研究[J].食品工业科技, 2007(5): 227-229.
    [172]Kangas H, Kleen M. Surface chemical and morphological properties of mechanical pulp fines[J]. Nord Pulp Pap Res J, 2004, 19(2): 191-199.
    [173]Sealey J, Ragauskas A J. Investigation of laccase/N-hydroxybenzotriazole delignification of kraft pulp[J]. J Wood Chem Technol, 1998, 18(4): 403-416.
    [174]喻力,詹怀宇,付时雨等.漆酶/介体体系漂白纸浆的自由基反应机理[J].中国造纸学报, 2002, 17(2): 32-36.
    [175]付时雨,詹怀宇,周毅等.漆酶/介体体系生物漂白的影响因素及漂白效果[J].中国造纸学报, 2000, 15(增刊): 59-67.
    [176]王娟,刘玉.漆酶/介体体系对APMP纸浆的改性及纤维表面变化[J].纸和造纸, 2010, 29(3): 69-72.
    [177]彭新文,李新平,任俊莉等.马尾松TMP纤维漆酶改性的表面分析[J].中国造纸学报, 2010, 25(2): 11-15.
    [178]徐清华,秦梦华,石淑兰等.旧报纸漆酶脱墨工艺的研究[J].中国造纸学报, 2004, 19(2): 48-51.
    [179]Mustranta K, Koljonen K, Lappalainen A, et al. Characterization of mechanical pulp fibres with enzymatic, chemical and immunochemical methods. Proceedings of the Sixth European Workshop on Lignocellulosics and Pulp, Bordeaux, France, 2000: 15-18.
    [180]李兵云,詹怀宇,梁辰等.果胶酶预处理对粉单竹SCMP过氧化氢漂白的影响[J].造纸科学与技术, 2010, 29(2): 54-58.
    [181]李兵云,詹怀宇,王双飞等.脂肪酶预处理对粉单竹SCMP过氧化氢高浓漂白的影响[J].造纸科学与技术, 2009, 28(5): 5-9.
    [182]彭涛,林鹿,雷晓春等.马尾松化学热磨机械浆酶法改性研究[J].纤维素科学与技术, 2008, 16(1): 39-44.
    [183]杨崎峰,詹怀宇,吴芹等.白腐菌改性桉木CTMP浆的漂白研究[J].广西大学学报(自然科学版), 2007, 32(2): 122-125.
    [184]杨崎峰,詹怀宇,王双飞等.桉木化学-热磨机械浆纤维的生物改性研究[J].现代化工, 2007, 27(1): 32-35.
    [185]Johansson L-S. Monitoring fibre surfaces with XPS in papermaking processes[J]. Mikrochimica Acta, 2002, 138(3-4): 217-223.
    [186]Johansson L S, Campbell J M, Koljonen K, et al. Evaluation of surface lignin on cellulose fibers with XPS[J]. Appl Surf Sci, 1999, 144-45: 92-95.
    [187]Li K, Reeve D W. The origins of kraft pulp fibre surface lignin[J]. J Pulp Pap Sci, 2002, 28(11): 369-373.
    [188]Gutierrez A, Rodriguez I M, del Rio J C. Chemical composition of lipophilic extractives from sisal (Agave sisalana) fibers[J]. Ind Crop Prod, 2008, 28(1): 81-87.
    [189]Mjoeberg P J. Chemical surface analysis of wood fibers by means of ESCA[J]. Cell Chem Technol, 1981, 15(5): 481-486.
    [190]Akeyama S, Gray D G. An ESCA study of the chemisorption of stearic acid vapor on cellulose[J]. Cell Chem Technol, 1982, 16(1): 133-142.
    [191]Hon D N S. ESCA study of oxidized wood surfaces[J]. J Appl Polym Sci, 1984, 29(9): 2777-2784.
    [192]Gelius U, Heden P F, Hedman J, et al. Molecular spectroscopy by means of ESCA [electron spectroscopy for chemical analysis]. III. Carbon compounds[J]. Physica Scripta, 1970, 2(1-2): 70-80.
    [193]Li K, Reeve D W. Determination of surface lignin of wood pulp fibres by x-ray photoelectron spectroscopy[J]. Cell Chem Technol, 2004, 38(3-4): 197-210.
    [194]Dorris G M, Gray D G. The surface analysis of paper and wood fibers by ESCA (electron spectroscopy for chemical analysis). I. Application to cellulose and lignin[J]. Cell Chem Technol, 1978, 12(1): 9-23.
    [195]Dorris G M, Gray D G. The surface analysis of paper and wood fibers by ESCA. II. Surface composition of mechanical pulps[J]. Cell Chem Technol, 1978, 12(6): 721-734.
    [196]Gray D G. The surface analysis of paper and wood fibers by ESCA. III. Interpretation of carbon (1s) peak shape[J]. Cell Chem Technol, 1978, 12(6): 735-743.
    [197]Troem G, Carlsson G. Wettability of kraft pulps - effect of surface composition and oxygen plasma treatment. [J]. Journal of Adhesion Science and Technology, 1992, 6(6): 745-761.
    [198]?sterberg M, On the Interactions in Cellulose Systems: Surface Forces and AdsorptionI[D], Stockholm, Sweden, Royal Institute of Technology, 2000.
    [199]Johansson L S, Campbell J M, Fardim P, et al. An XPS round robin investigation on analysis of wood pulp fibres and filter paper[J]. Surf Sci, 2005, 584(1): 126-132.
    [200]Johansson L S, Campbell J, Koljonen K, et al. On surface distributions in natural cellulosic fibres[J]. Surf Interface Anal, 2004, 36(8): 706-710.
    [201]Johansson L S, Campbell J M. Evaluation of surface distributions in natural cellulosic fibres via XPS background analysis.[J]. Abstr Pap Am Chem S, 2002, 223: 122.
    [202]Simola J, Malkavaara P, Alen R, et al. Scanning probe microscopy of pine and birch kraft pulp fibres[J]. Polymer, 2000, 41(6): 2121-2126.
    [203]Simola-Gustafsson J, Hortling B, Peltonen J. Scanning probe microscopy and enhanced data analysis on lignin and elemental-chlorine free or oxygen delignified pine kraft pulp[J]. Colloid Polym Sci, 2001, 279(3): 221-231.
    [204]Gustafsson J, Ciovica L, Peltonen J. The ultrastructure of spruce kraft pulps studied by atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS)[J]. Polymer, 2003, 44(3): 661-670.
    [205]Gustafsson J, Lehto J H, Tienvieri T, et al. Surface characteristics of thermomechanical pulps; the influence of defibration temperature and refining[J]. Colloid Surf. A-Physicochem. Eng. Asp., 2003, 225(1-3): 95-104.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700