用户名: 密码: 验证码:
基于Kα射线超短超强激光超热电子转换研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
激光惯性约束聚变(ICF)的快点火方式自1994年提出以来,因为其放宽了对驱动压缩对称性和点火能量的要求迅速成为ICF研究的热点之一。但是由于开展时间短,快点火机制中的许多物理还需要仔细研究,其中超热电子的产生及其在稠密等离子体中的输运问题就是一个复杂,然而对快点火机制至关重要的物理问题。
     在快点火机制中,当燃料的预压缩完成后,需要从外围注入一束超短超强激光并在临界面(相对论修正)附近产生大量定向性很好的超热电子,超热电子继续向高密度区传输并在高密度区一个很小尺度的范围(20~40微米左右)沉积能量形成点火热斑。利用超短超强激光与固体靶相互作用产生超热电子并研究超热电子与靶相互作用产生特征X射线是了解向前传输超热电子的温度、转换效率等信息的有效方法。论文首先分析传统ICF中心点火方式的过程和遇到的困难,以及快点火机制涉及的物理问题,提出了论文研究的具体内容。同时论文介绍了相关内容的国内外进展和基本理论,介绍了实验采用的激光装置和靶室系统以及为实验建立的CCD针孔相机、电子磁谱仪、单光子计数CCD等实验诊断系统。
     本文开展了五个方面的研究:一、开展了相对论强度激光固体靶相互作用超热电子能谱测量;二、对单光子计数型CCD进行了精确标定;三、研究了超短超强激光脉冲与铜靶相互作用Kα射线随激光强度的变化关系;四、研究了激光辐照多层靶前向超热电子转换效率;五、计算了Al,Ti,Cu,Mo原子的K壳层的电子离子碰撞截面。
     在100TW超短超强钛宝石激光装置上开展了相对论强度激光-固体靶相互作用中超热电子能谱测量,获得了靶前法线和靶后激光传输方向超热电子能谱,在靶前法线方向,能谱呈单温类麦克斯韦分布,占主导地位的加速机制是共振吸收;靶后激光传输方向,能谱呈类麦克斯韦分布,存在加热机制是有质动力加热。
     单光子计数型CCD是Kα特征线测量的重要仪器,在中国计量科学研究院对该型CCD进行了精确标定,获得了该型CCD的能量特性、不同能点的探测效率。结果表明:该型CCD产生一个计数所需的光子能量约为6.453 eV;在该型CCD的有效能区内,不同能量的入射光子,其探测效率不同,在5.3 keV处获得最高探测效率66%。
     超短超强激光与等离子体相互作用过程中,在临界密度面附近产生能量很高的超热电子,当其能量超过靶后冷物质K壳层的电离能时,就会激发冷物质的Kα特征线。从Kα特征线辐射可以间接诊断超热电子在稠密等离子体内的产生和输运等信息。超热电子在稠密等离子体中的行为在快点火物理研究中是一个重要的课题,它的产额、温度及其在固体靶中的输运都是重点研究对象。另外,向外发射的Kα线,可以形成独特的Kα线背光源,这种光源具有空间尺度小(微米量级)、时间尺度短(皮秒量级)等特点,因而背光源的研究具有极其广阔的应用前景;同时对Kα线的研究可以推导激光—超热电子能量转换效率。
     利用SILEX-Ⅰ超短超强激光装置,研究了800nm超短超强激光脉冲在33fs脉宽,300mJ~4J能量(强度2×10~(18)~1.96×10~(19)W/cm~2)条件下与10μm,30μm铜平面薄膜靶相互作用Kα光子产额和激光Kα光子转化效率随激光强度的变化关系。
     激光脉冲与10μm Cu薄膜靶相互作用时,Kα射线产额随激光强度的增加而增加,在1.51×10~(19)W/cm~2(3.1J)时开始趋于饱和;对于30μm Cu薄膜靶,Kα射线产额随激光强度的增加而增加,当激光强度为8.9×10~(18)W/cm~2时最大2.2×10~(10),随后开始下降。
     激光脉冲与10μm、30μmCu薄膜靶相互作用时,Kα光子转换效率随激光强度增加而增加并出现峰值,随后开始下降。10μm的Cu靶在6.5×10~(18)W/cm~2(970mJ)时达到最大值1.2×10~(-5),30μm的Cu靶在激光强度为3.2×10~(18)W/cm~2时,Kα光子转化效率达到最大为1.98×10~(-5),接着随强度增加而下降。
     在激光强度3.3×10~(18)W/cm~2条件下,比较了3μm、10μm、10μmNPCu、30μm Cu、100μmCu薄膜靶的Kα光子产额和激光Kα光子转换效率,实验发现厚度为30μm的铜靶产生的Kα光子产额和激光Kα光子转换效率为最高,Kα产额达到9.61×10~9,转换效率为1.97×10~(-5)。对于同厚度的纳米铜靶其Kα光子产额和激光Kα光子转换效率比普通的铜靶高,Kα产额达到15.01×10~9;转换效率为3.68×10~(-5),比普通的同尺寸的铜靶高约3.3倍。
     利用已标定的单光子计数型CCD建立了Kα特征线谱仪,实验研究了激光辐照多层靶中超热电子激发的Kα特征线。影响Kα产额的因素有入射激光强度、示踪层厚度、靶材料等,实验测量了Kα产额与激光强度的变化关系,随着入射激光强度的升高,Kα产额随着提高;激光强度相近条件下,随着示踪层厚度的增加,光子产额降低;高Z材料靶的光子产额要高于低Z靶。
     通过与中科院物理所合作,利用蒙特卡罗电子光子输运程序(ITS3.0),研究了超热电子产生的光子份额,结合实验结果,对不同材料,不同厚度的示踪层激光与复合靶的相互作用激光—超热电子转换效率进行了计算,从所得到的转换效率我们可以看出,在相对低功率密度区域(5.5×10~(17)Wcm~(-2)~1.5×10~(18)Wcm~(-2))时,激光强度小于相对论强度(α<1),电子抖动振幅X_(osc)约0.768λ~0.11λ,预等离子密度标长(λ~2λ)远远大于电子抖动振幅,共振吸收为主要吸收机制,前向超热电子能量较低,数量较少,并且随着激光强度的增加而增加,转换效率为(5~10)%。
     当激光强度继续增强(4.0×10~(18)Wcm~(-2)~1.2×10~(19)Wcm~(-2))时,激光强度超过了相对论强度(a>1),有质动力J×B对超热电子起到了主要的加热作用,超热电子能量增加,前向发射的电子数量增多,其定向性越好,转换效率基本上在(14~20)%的范围。
     基于相对论性的电子离子碰撞的K壳层的电离截面理论,计算了Al,Ti,Cu,Mo原子的K壳层的电子离子碰撞截面,结果与最近的文献实验数值和其它理论数值进行了比较,计算结果可用来模拟激光等离子体的超热电子能谱和产额。
Since the concept was first suggested by M.Tabak in 1994,fast ignition is now an increasing research field for its merits that traditional inertial confine fusion(ICF) did not possess.But for its short time research,there are lots of physics need to be studied,among which the transportation of relativistic electrons in dense plasmas is an interesting and important subject.
     First of all,the basic contents of this thesis were outlined and recent researches on these topics were reviewed.Then the laser system and target chambers developed for experiments were introduced.In this part,the diagnostic equipments,such as CCD pinhole camera, electron spectrometer,single-photon counting CCD et al.
     In this paper,such five points are studied as:a) Hot electron spectrum in the interaction of relativistic laser with solid target was measured in the experiment,b) The single-photon counting CCD was carried out the energy calibration experiment using several standard X-ray sources,c) The study of Kαyield and the Kαconversion efficiency was carried out at the SILEX-1 laser facility in the China Academy of Engineering Physics(CAEP).d) Based on Monte Carlo ITS3.0 procedure and experiment,the laser-electron conversion is studied correspond to measuring the Kαyield of layered laser-irradiated disk targets,e)The total cross sections of electron impact single K-shell ionization of atomic targets Al,Ti,Cu and Mo,are evaluated in the energy range up to about 1Mev employing the relativistic correction method.
     Hot electron spectrum in the interaction of relativistic laser with solid target was measured in this experiment,and hot energy spectrum in front normal direction and rear laser propagation direction were obtained,in front normal direction,the sprctrum is a Maxwellian like distribution,which is produced by resonant absorption mechanism;Along the laser propagation,the spectrum is a Maxwellian like distribution,which is produced by the laser ponderomotive force.
     The single-photon counting CCD was used to detect Kαemission.We carried out the energy calibration experiment using several standard X-ray sources in National Institute of Metrology of China.The calibration shows photon with 6.453 eV can produce one count. Based on this result,the detection efficiency of the CCD is calculated.The detection efficiency changes with different photon energies in the range of 5.3 keV~30 keV.The efficiency decreased with the increase of photon energy.
     During the interaction of ultra-short and ultra-intense laser pulse with plasmas,high energy electrons will be produced near to critical-density surface.When the hot electrons knocked out inner-shell electrons of the cold material,Kαcharacteristic lines emission will be created.Kαemission is closely correlated with the hot electrons'action.From Kαlines emission,we can find some useful information of hot electron,such as its production and transport in overdense plasmas.On the other hand,such Kαemission has widely potential applications,especially for chatacteristic pulse light source,owing to its compactness and high fluence.For the motivation referred above,we carried out the experimental studies on the Kαcharacteristic lines emssion with the copper targets and multi-layers targets irradiated by US-UI laser.
     The Kαmeasurement was carried out at the UI-US laser facility in the China Academy of Engineering Physics(CAEP).Experement of Kαx-ray emission from ultra-short and ultra-intense laser pulse with copper planar target interaction:Using single-photon counting x-ray CCD,the yield of Kαx-ray was measured,which was emitted by interaction of 2×10~(18)~1.96~10~(19)W/cm~2 P-polarized ultra-short and ultra-intense laser pulse with 10μm、30μm thick Cu planar film target,High intensity Kαx-ray was measured.The results show that the varying tendency of Kαx-ray yield and conversion efficiency as a function of laser intensity is accordant with the academic tendency.There is optimal intensity for both Kαx-ray yield and conversion efficiency.For 10μm Cu film target,Kαx-ray Yield is near-saturation at the intensity of 1.51×10~(19)W/cm~2 and the optimal intensity for the KαX-ray yield(2.1×10~(10)) is 1.96×10~(19)W/cm~2,the conversion efficiency has a maximal value 1.2×10~(-5) as the intensity is 6.5×10~(18)W/cm~2.For 30μm Cu film target,the largest KαX-ray Yield is 2.2×10~(10) and the optimal intensity 8.9×10~(18)W/cm~2,the conversion efficiency has a maximal value 1.98×10~(-5)as the intensity is 3.2×10~(18)W /cm~2.
     When the laser intensity is 3.3×10~(18)W/cm~2,as the same thick,the conversion efficiency of nanoparticle Cu is 3.3times larger than that of the ordinary copper planar target.
     In the experiment of the Kαfluorescence measurement with the multi-layers targets, keeping the laser intensity variable from 10~(17)W/cm~2 to 10~(19)W/cm~2.The targets are rectangular foils of various materials.The tracer layer(Al or Cu) has different thickness from 0.1μm to 7μm,and the fluorescent layer has the invariable thickness 50μm.Finally,a layer of 2μm thick CH covered the back of the target.It is demonstrated that Kαyield is related to many factors.With the laser intensity increase,Kαx-ray yield increase appoximately linear.The Kαyield is sensitive to the laser intensity.When the intensity increase from nonrelativistic to relativistic,the yield rise in magnitude.By varying the material or the depth of the tracer layer,the Kαyield changed accordingly,the higher atom number Z,the higher Kαyield obtained;the thicker layer,the fewer Kαyield obtained.
     Based on Monte Carlo(ITS3.0) procedure,studied the photon share which the hot electron produces,according to the experiment result,to the different material and the different thickness of tracer layer,the hot electron conversion efficiency of the interaction of ultrashort laser -irradiated compound target has carried on the computation,The result discovered that, the efficiency seems to be a function of intensity but not target material.At non-relativistic intensity,as the intensity increases,the laser-electron conversion efficiency increases with the max efficiency 10%because of resonance absorption.Within the relativistic intensity,the conversion efficiency is in the range of(14~20)%with ponderomotive acceleration dominatingly.
引文
1. Tabak M, Hammer J, Glinsky M E, et al. Phys. Plasmas, 1994, 1(5), 1626
    2. S.Atzeni, Phys. Plasmas,6,3316( 1999)
    3. Wilks S C, Kruer W L, Tabak M, etal. Rev. Lett, 1992, 69(9), 1383
    4. M. Borghesi et al., Phys. Rev. Lett. 78 (5), 879 (1997).
    5. K. Krushelnick et al., Phys. Rev. Lett. 78, 4047 (1997).
    6. S. -Y. Chen et al., Phys. Rev. Lett. 80, 2610 (1998).
    7. J. Fuchs et al., Phys. Plasmas. 6 (6), 2563 (1999).
    8. J. Fuchs et al., Phys. Plasmas. 6 (6), 2569 (1999).
    9. M. P. Kalashnikov et al., Phys. Rev. Lett. 73, 260 (1994).
    10. M. Zepf et al., Phys. Plasmas. 3, 3242 (1996).
    11. A. J. Mackinnon et al., Phys. Plasmas. 6(5), 2185 (1999).
    12. Y. Ehrlich et al., Phys. Rev. Lett. 77,4186 (1996).
    13. S. Jackel et al., Opt. Lett. 20, 1086 (1995).
    14. M. Borghesi et al., Phys. Rev. E, 57, 4899 (1998).
    15. R.Kodama, Nature,418,933(2002)
    16. K.A. Tanaka et al., Phys.Plasmas, 10,1925(2003)
    17. R.Stephens, S.Hatchett et al., Bull.Am.Phys.Soc.47,142(2002)
    18. R.Stephens et al., Phys.Rev.Lett.91,185001(2003)
    19. D.D.Meyerhofer, Proceeding of Workshop on Fast Ignition and High Field Physics,2004
    20. RA.Snavely et al.,Phys. Rev. Lett. ,2000, 85(14): 2945—2948
    21. Donald Umstadtero Review of physics and applications of relativistic plasmas driven by ultra-intense lasers. Phys. Plasmas. 2001.8 (5) .1774—1785
    22. A. Cavalleri, C.W. Siders, F. L. H. Brown et al. Anharmonic Lattice Dynamics in Germanium Measured with Ultrafast X-Ray Diffraction. Phys. Rev. Lett. 2000. 84(3). 586—589
    23. A. Cavalleri, Cs. Toth, C.W. Siders et al. Femtosecond Structural Dynamics in VO2 during an Ultrafast Solid-Solid Phase Transition. Phys. Rev. Lett. 2001. 87(23). 237401-1—237401-4
    24. Christoph Rose-Petruck, Ralph Jimenez, Ting Guo et al. Picosecond milliangstrom lattice dynamicsmeasured by ultrafastX-ray diffraction. Nature. 1999. 398( 25). 310-312
    25. Jiansheng Liu, Ruxin Li, Zhizhan Xu et al. Approximately analytical model for inner-shell photoionization x-ray lasers in low-Z elements. Phys. Rev. A. 2001. 63. 033809-1 —033809-7
    26. R. C. Constantinescu, S. Hunsche, H. B. van Linden van den Heuvell et al. Highly charged carbon ions formed by femtosecond laser excitation of C60 :A step towards an x-ray laser. Phys. Rev. A. 1998. 58(6). 4637-4646
    27. U.Teubner, J.Bergmann, B.Van Wonterghen et al. Angle-Dependent of X-Ray Emission and Resonance Absorption in a Laser-Produced Plasma Generated by a High Intensity Ultrashort Pulse. Phys.Rev.Lett. 1993. 70(6). 794—797
    28. R.Fedosejevs, R.Ottmann, R.Sigel. Absorbtion of Femtosecond Laser Pulses in High-Density Plasma. Phys.Rev.Lett. 1990. 64(11). 1250-1253
    29. Yoichiro Hironaka, Kazutaka G. Nakamura , Ken-ichi Kondo. Angular distribution of x-ray emission from a copper target irradiated with a femtosecond laser. Appl. Phys. Lett. 2000. 77( 25). 4110—4111
    30. M. Schnu'rer, R. Nolte, A. Rousse et al. Dosimetric measurements of electron and photon yields from solid targets irradiated with 30 fs pulses from a 14 TW laser. Phys. Rev. E. 2000. 61(4). 4394—4401
    31. T. Feurer, A. Morak, I. Uschmann et al. Femtosecond silicon K a pulses from laser-produced plasmas. Phys. Rev. E. 2001. 65. 016412-1~016412-4
    32. F. Pisani, U. Andiel, K. Eidmann et al. Influence of the density gradient on the duration of Si- Kα pulses generated by a double femtosecond-laser pulse. Appl. Phys. Lett. 2004. 84( 15). 2772—2774
    33. Ch. Reich, I. Uschmann, F. Ewald et al. Spatial characteristics of K a x-ray emission from relativistic femtosecond laser plasmas. Phys. Rev. E. 2003. 68. 056408-1—056408-5
    34. D. Salzmann, Ch. Reich, I. Uschmann et al. Theory of K a generation by femtosecond laser-produced hot electrons in thin foils. Phys. Rev. E. 2002. 65. 036402-1 —036402-7
    35. Ch. Reich, P. Gibbon, I. Uschmann et al. Yield Optimization and Time Structure of Femtosecond Laser Plasma Kα Sources. Phys. Rev. Lett. 2000. 84(21). 4846—4849
    36. L. M. Chen, P. Forget, S. Fourmaux et al. Study of hard x-ray emission from intense femtosecond Ti:sapphire laser-solid target interactions. Phys. Plasmas. 2004. 11(9). 4439—4445
    37.Ch.Ziener,I.Uschmann,G.Stobrawa et al.Optimization of K a bursts for photon energies between 1.7 and 7 keV produced by femtosecond-laser-produced plasmas of different scale length.Phys.Rev.E.2002.65.066411-1-066411-8
    38.Hidetoshi Nakano,Tadashi Nishikawa,Naoshi Uesugio Enhanced K-shell x-ray line emissions from aluminum plasma created by a pair of femtosecond laser pulses.Appl.Phys.Lett.2001.79(1).24-26
    39.Alexei Zhidkov,Akira Sasaki,Takayuki Utsumi et al.Prepulse effects on the interaction of intense femtosecond laser pulses with high-Z solids.Phys.Rev.E.2000.62(5).7232-7240
    40.M.M.Murnane,H.C.Kapteyn,J.Bokor et al.Efficient coupling of high-intensity subpicosecond laser pulses into solids.Appl.Phys.Lett.1993.62(10).1068-1070
    41.S.P.Gordon,T.Donnelly,A.Sullivan et al.X rays from microstructured targets heated by femtosecond lasers.Optical Letters.1994.19(7).484-486
    42.C.Wu lker,W.Theobald,D.R.Gnass et al.Soft x-ray emission from plasmas produced by ultraintense KrF-laser pulses in colloidal A1.Appl.Phys.Lett.1996.68(10).1338-1340
    43.Tadashi Nishikawa,Hidetoshi Nakano,Hyeyoung Ahn et al.X-ray generation enhancement from a laser-produced plasma with a porous silicon target.Appl.Phys.Lett.1997.70(13).1653-1655
    44.G.Kulcsar,D.AlMawlawi,F.W.Budnik et al.Intense Picosecond X-Ray Pulses from Laser Plasmas by Use of Nanostructured "Velvet" Targets.Phys.Rev.Lett.2000.84.5149-5152
    45.Tadashi Nishikawa,Hidetoshi Nakano,Katsuya Ogufi et al.Nanohole-array size dependence of soft x-ray generation enhancement from femtosecond-laser-produced plasma.J.Appl.Phys.2004.96(12).7537-7543
    46.P.P.Rajeev,S.Banerjee,A.S.Sandhu et al.Role of surface roughness in hard-x-ray emission from femtosecond-laser-produced copper plasmas.Phys.Rev.A.2002.052903-1-052903-5
    47.H.Chen,et.al.,Phys.Rev.Lett.,70,3431(1993)
    48.K.B.Wharton et al.,phys.Rev.Lett.81,822(1998)
    49.徐妙华等.超短脉冲激光与固体靶相互作用中Kα射线的实验研究[J].物理学报,2007;56(1):353-358.
    50.W.L.Kruer,The Physics of Laser Plasma Interactions.Reading,MA:Addison-Wesley,(1988).
    51.常铁强等,激光等离子体相互作用与激光聚变,湖南科学技术出版社,1991.
    52.彭惠民等,X射线激光,国防工业出版社,1997.
    53. 张家泰, 激光等离子体相互作用物理与模拟, 河南科学技术出版社, 1999.
    54. D. Strickland and G. Mourou, Opt. Commun., 56, 219, (1985).
    55. M. D. Perry and G. Mourou, Science, 264, 917, (1994).
    56. D. R. Bach, D. E. Casperson, D. W. Forslund et al., Phys. Rev. Lett. 50, 2082, (1983).
    57. W. Preidhorsky, D. Lier, R. Day and D. Gerke, Phys. Rev. Lett. 47, 1661, (1981).
    58. J. C. Kieffer, P. Audebert, M. Chaker et al., Phys. Rev. Lett. 62, 760, (1989).
    59. J. C. Kieffer, Z. Jiang, A. Ikhlef et al., J. Opt. Soc. Amer. B, 13, 132, (1996).
    60. J. Workman, A. Maksimchuk, X. Liu et al., J. Opt. Soc. Amer. B, 13, 125, (1996).
    61. X. Liu and D. Umstadter, Phys. Rev. Lett. 69, 1935, (1992).
    62. M. D. Perry, T. Ditmire and B. C. Stuart, Opt. Lett. 19, 2149, (1994).
    63. C. Y. Chien, J. S. Coe, G. Mourou et al., Opt. Lett. 18, 1535, (1993).
    64. C. Rouyer, N. Blanchot, I. Allais et al., J. Opt. Soc. Amer. B, 13, 55, (1996).
    65. W. L. Kruer, The Physics of Laser Plasma Interactions. Reading, MA: Addison-Wesley, (1988).
    66. C. E. Max, Lawrence Livermore National Laboratory Publication, UCRL-53107, (1981).
    67. V. L. Ginsburg, Propagation of Electromagnetic Waves in Plasmas. New York: Gordon and Breach, (1960).
    68. V. P. Silin, Sov. Phys. -JETP, 20, 1510, (1965).
    69. A. B. Langdon, Phys. Rev. Lett. 44, 575, (1980).
    70. D. W. Forslund, J. M. Kindel and K. Lee, Phys. Rev. Lett. 39, 284, (1977).
    71. K. Estabrook and W. L. Kruer, Phys. Rev. Lett. 40, 42, (1978).
    72. H. Milchberg, R. R. Freeman, S. C. Davey et al., Phys. Rev. Lett. 61, 2364, (1988).
    73. U. Teubner, J. Bergmann, B. van Wonterghem et al., Phys. Rev. Lett. 70, 794, (1993).
    74. D. D. Meyerhofer, H. Chen, J. A. Delettrez et al., Phys. Fluids B, 5, 2584, (1993).
    75. D. Price et al., Bull. APS, 40, 1661,(1995).
    76. J. J. Thomson, W. L. Kruer, A. B. Langdon et al., Phys. Fluids 21, 707, (1978).
    77. E. J. Valeo and K. G. Estabrook, Phys. Rev. Lett. 34, 1008, (1975).
    78. K. Estabrook et al., Phys. Rev. Lett. 50, 2082, (1983).
    79. K. Estabrook, E. J. Valeo, and W. L. Kruer, Phys. Fluids. 18, 1151,(1975).
    80. F. David and R. Pellat, Phys. Fluids. 23, 1682, (1980).
    81.W.Woo,K.Estabrook and J.S.DeGroot,Phys.Rev.Lett.40,1094,(1978).
    82.R.A.Cairns,Plasma Physics.20,991,(1978).
    83.H.Nishimura,K.Mima et al.,Plasma Physics,21,69,(1980).
    84.J.F.Drake and Y.C.Lee,Phys.Fluids,19,1772,(1976).
    85.F.Brunel,Phys.Rev.Lett.59,52,(1987).
    86.F.Brunel,Phys.Fluids,31,2714,(1988).
    87.G.Bonnaud,P.Gibbon,J.Kindel and E.Williams,Laser Part.Beams,9,339,(1991).
    88.P.Gibbon andA.Bell,Phys.Rev.Lett.68,1535,(1992).
    89.S.Kato,B.Bhattacharyya,A.Nishiguchi and K.Mima,Phys.Fluids B,5,564,(1993).
    90.A.Bourdier,Phys.Fluids,26,1804,(1983).
    91.F.N.Beg,A.R.Bell,A.E.Dangor et al.,Phys.Plasmas,submitted for publication.
    92.K.Wharton,Y.Zakharenkov,B.Hammel et al.,presented at High-temperature Plasma Diagnostics Conf.,Monterey,CA,May 12-16,(1996).
    93.W.L.Kruer and K.Estabrook,Phys.Fluids,28,430,(1985).
    94.W.L.Kruer and S.C.Wilks,Advances in Plasma Physics.Woodbury,NY;AIP,16,(1994).
    95.S.C.Wilks,W.L.Kruer,M.Tabak,and A.B.Langdon,Phys.Rev.Lett.69,1383,(1992).
    96.G.Malka and J.L.Miquel,Phys.Rev.Lett.77,75,(1996).
    97.J.Denavit,Phys.Rev.Lett.69,1383,(1992).
    98.H.Ruhl and P.Mulser,Phys.Lett.A,(1995).
    99.E.S.Weibel,Phys.Fluids,10,741,(1967).
    100.P.J.Catto and R.M.More,Phys.Fluids,20,704,(1977).
    101.W.Rozmus and V.T.Tikhonchuk,Phys.Rev.A,42,7401,(1990).
    102.T.-Y.B.Yang,W.L.Kruer,R.M.More,and A.B.Langdon,Phys.Plasmas,2,3146,(1995).
    103.W.Rozmus and V.T.Tikhonchuk,Phys.Rev.A,46,7810,(1992).
    104.A.A.Andreev,E.G.Gamaliy,V.N.Semakhin,and V.T.Tikhonchuk,Sov.Phys.JETP,74,963,(1992).
    105.E.G.Gamaliy,Laser Part.Beams,11,2603,(1993).
    106.Q.L.Dong et al,Phys.Plasmas 8,1025(2001).
    107.[美]S.W.S.Mckeever著,蔡干钢、吴方、王所亭译.固体热释光.北京:原子能出版社, 1993.1,44-66,236
    108.复旦大学,清华大学,北京大学合编,原子核物理实验方法,原子能出版社,1996
    109.谷渝秋.超热电子输运及其相关现象研究[D].博士学位论文.中国工程物理研究院,2003
    110.魏晓峰等,100TW超短脉冲激光装置建设方案,(内部文件)
    111.蔡达锋,谷渝秋,郑志坚等,“用于电子能谱测量的LiF热释光探测器标定”,《强激光与离子束》,VOL.15,No.2,141(2003)
    112.蔡达锋,谷渝秋,郑志坚等,“飞秒激光-等离子体相互作用中超热电子能谱的测量”,《强激光与离子束》,VOL.15.No.6,575(2003)
    113.W.L.McLaughlin et al.Nuclear Instr.and Methods in Phys.Reseach A 302,165(1991)
    114.Chen L M,Zhang J,Li Y T,et al.Phys.Rev.Lett.,87,225001(2001)
    115.谷渝秋等.飞秒激光-固体靶相互作用中超热电子能量分布的实验研究[J].物理学报,2005;54(1):186-191.
    116.王光昶等.飞秒激光中镜向超热电子能谱的测量[J].电子.激光,2005;16(2):179-182.
    117.Beg.F.N,Bell.A.R,Dangor.A.E et al.A study of picosecond laser-solid interaction up to 10~(19)Wcm~(-2).Phys.Plasmas.1997.4(2):447
    118.H.Alfven.On the motion of cosmic rays in interstellar space.Phys.Rev.1939.55.425
    119.张双根,谷渝秋,温贤伦等.相对论强度激光—固体靶相互作用中超热电子能谱测量.光电子·激光.2006.18(3)
    120.L.Gremillet et al.,Phys.Rev.Lett.,83,5015(1999)
    121.A.R.Bell,J.R.Davies et al.,Plasma Phys.Control.Fusion 39,653(1997)
    122.A.R.Bell,et al.,Phys.Rev.E,58(2),2471-2473(1998)
    123.Y.Sentoku et al.,Phys.Plasmas,7,689(2000)
    124.Y.Sentoku et al.Phys.Rev.E,65,046408-1(2002)
    125.T.Taguchi,Mima et al.Proceeding of FIHFP2004,Japan,2004
    126.王光昶.超短超强激光等离子体超热电子的产生输运及光辐射的实验研究[D].博士学位论文.四川大学,2006
    127.宋丰华.现代光电器件技术及应用[M].北京:国防工业出版社,2004
    128.罗先和,张光军,骆飞等.光电检测技术[M].北京:北京航空航天大学出版社,1995
    129.雷玉堂,王庆有,何加铭等.光电检测技术[M].北京:中国计量出版社,1997
    130.Т.В.格拉希维里,В.П.契切夫,О.О.帕塔尔肯等.核素数据手册[M].北京:原子能出版社,2004
    131.Thompson A,Kim K J,Winick H,et al.X-ray data booklet[M].BNL,Jan.2001
    132.Information of PI-LCX System.Princeton Instruments.www.roperscientific.com.2004
    133.郑志远,李玉同,远晓辉,徐妙华,梁文锡,于全芝,张翼,王兆华,魏志义,张杰2006物理学报,555349]
    134.Krol A,Ikhlef A,Kieffer J C,Bassano D A,Chamberlain C,Jiang Z,Pepin H,and Prassad S,Med.Phys.24,725(1997)
    135.Yu J,Jiang Z,Kieffer J C,and Krol A,IEEE J.Sel.Top.Quantum Electron.5,911(1999)
    136.Tillman C,Mercer I,Svanberg S,and Herrlin K,J.Opt.Soc.Am.B 13,209(1996)
    137.Kieffer J C,Krol A,Jiang Z,Chamberlain C C,Scalzetti E,and Ichalalene Z,Appl.Phys.B:Lasers Opt.74,75(2002)
    138.Briesmeister,A General Mote Carlo N-Paticle Transport Code J F.2000
    139.J.A.Halbleib,et al.,"ITS 3.0:Integrated TIGER Series of Coupled Electron/Photon Monte Carlo Transport Codes",SAND91-1634,(March 1992)
    140.楚广,刘伟,杨天足,唐永建.纳米金属铜靶材的微结构与性能.中国有色金属学报[J].16(10).2006
    141.J.D.Hares,J.D.Kilkenny,M.H.Key,and J.D.Lunney.Phys.Rev.Lett.,42,1216(1979)
    142.B.Luther-Davies,et.al.,Phys.Rev.Lett.,A 35,4306(1987)
    143.E.Martinolli,el.al.,Fast-electron rransport and heating of solid targets in high-intensity laser interactions measurd by Kα fluorescence.Phys.Rev.E 73 040602(2006)
    144.谢一冈,陈昌,王曼等.粒子探测器与数据获取[M].科学出版社.2003
    145.Alexei Zhidkov,Akira Sasaki,Takayuki Utsumi,et al,Prepulse effects on the interaction of intense femtosecond laser pulses with high-Z solids.Phys.Rev E,2000.62(5):7232-7240
    146.蔡达峰.超短超强激光—等离子体中高能粒子的实验研究.四川大学博士学位论文.2003.105-113
    147.E.Martinolli et al.,Rev.Sci.Instrum.75,2024(2000)
    148.Y.T.Li,J.Zhang,Z.M.Sheng at al.High-energy electrons produced in subpicosecond laser-plasma interactions from subrelativistic laser intensities to relativistic intensities.Phys.Rev E.2004.69:036405-1~036405-7
    149.Mantian Liu,Zhu An and Changhuan Tang,et al 2000 Atomic Data and Nuclear data Tables.76 213-234
    150. S.P. Khare and Satya Prakash et al 1989 Phys. Rev. A.39 6591-6593
    151. C.J. Powell et al 1976 Reviews of Moderns Physics. 48 33-47
    152. Wolfgang Lotz et al 1970 Z. Physik. 232 101-107
    153. N. F. Mott, H. S. W. Massey et al 1949 The Theory of atomic collisions, 2nd ed. (Oxford university press, London) P243

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700