用户名: 密码: 验证码:
等离子体环境中双电子系统振子强度与共振态
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
等离子体环境中原子结构和原子过程的研究在近些年引起了相当大的关注。天体物理研究中发现,一些高温星体内存在禁戒跃迁,这迫切期待双电子系统跃迁振子强度的理论研究。日冕等物质中双电子系统双激发共振态的发现,迫使我们给出精确的理论计算以发展完善原子数据。双电子原子系统作为最简单的多电子系统,有着非常重要的研究意义,处理问题时最重要的部分就是解决电子关联问题,我们采用合适的关联波函数来解决。在等离子体的理论处理中,由于等离子体粒子间的库仑相互作用,原子系统带电粒子的相互作用不能看成弱微扰的普通展开形式。在高温的弱耦合等离子体中,这个相互作用可以用来自德拜模型的有效库仑屏蔽势来模拟。而在稀薄的天体物理等离子体中,由于受非热效应的影响,还要引入光谱指数来描述。
     本课题的研究工作主要是针对嵌入等离子体环境中的双电子原子系统的跃迁振子强度和双激发共振态两方面的理论研究进行展开。在振子强度的研究方面,针对粒子服从麦克斯韦分布的高温低密度的弱耦合等离子体,采用德拜模型模拟等离子体环境,研究德拜屏蔽势与嵌入其中的双电子原子系统振子强度间的相互作用。计算中,在变分法的框架下,采用包含准随机过程的高度关联指数波函数处理电子关联问题,以获得精度较高的数值解。我们比较精确地计算了德拜等离子体中氦原子对于n£5且m£5的n~1S—m~1D、 n~3S—m~3D、n~1P—m~1P、n~3P—m~3P、n~1D—m~1D和n~3D—m~3D跃迁的四极振子强度,研究了氦原子四极振子强度受等离子体屏蔽参数的影响,发现了氦原子四极振子强度在等离子体环境中的行为。由屏蔽参数与等离子体粒子温度和数密度的关系,进一步研究了双电子原子系统振子强度受等离子体电子比例数密度的影响。对于自由原子的情况,计算结果与已报道的结果符合很好。
     本课题在双激发共振态的研究方面,针对观测到的天体物理条件下的等离子体,由于物质稀薄,粒子速度容易改变而不易达到热平衡,因此引入光谱指数描述非热效应的影响。此时,粒子服从洛仑兹(kappa)速度分布函数。在这方面,研究了不同洛仑兹天体物理等离子体环境中的双电子原子系统双激发共振态。在稳定方法的框架下,使用高度关联波函数精确计算了洛仑兹等离子体中双电子系统H-的双激发2s~2~1S~e态和He、Li~+、Be~(2+)和B~(3+)的双激发2s~2~1S~e和2p~2~1S~e态的共振参数(位置和宽度),研究了非热效应和屏蔽效应对洛仑兹等离子体中双电子系统较低能级双激发共振态结构的影响,发现了双电子系统双激发共振态位置和宽度在天体物理等离子体环境中的行为。其中自由系统和麦克斯韦等离子体中的计算结果与已报道的理论数据符合很好。
     本课题在等离子体中原子系统的研究技术方法、思想观点等方面都有了新的突破,并获得了最新的结论。在振子强度的研究方面,本课题突破了常规的在自由条件下对双电子振子强度的研究,仅用一个简单的来自德拜模型的德拜长度模拟了等离子体环境的影响,获得了理想的等离子体环境中原子数据。而对于一直以来等离子体中双电子系统振子强度复杂理论计算中的电子关联障碍,也由包含准随机过程的高度关联指数波函数成功解决。研究中,发现3~1S—3~1D、2~3S—3~3D和3~3S—4~3D跃迁的四极振子强度随着等离子体强度增大而增大,而其它跃迁的四极振子强度随着等离子体强度增大而迅速减小。在共振态的研究方面,本课题突破常规在麦克斯韦分布等离子体中的理论研究,将目光落入低密度的洛仑兹天体物理等离子体,真正解决了实际存在的天体物理等离子体中双激发态问题。研究中,由于同时引入光谱指数和屏蔽参数,获得了非热效应和屏蔽效应影响下的双电子共振参数的精确数据,发现双电子系统的2s~2~1S~e和2p~2~1S~e态共振能量随着k的减小和m D的增大而增大且逐渐接近相应的单电子系统2s2S阈值能量;2s~2~1S~e态共振宽度随着k的增大和m D的减小而增大,而2p~2~1S~e态共振宽度随着k的减小和m D的增大而增大。
     本课题的研究具有重要的理论和实际意义。高温低密度的德拜等离子体中双电子系统振子强度的精确理论研究数据,使天体物理学中高温星体内“禁戒”跃迁现象得以合理的解释。天体物理等离子体中双电子系统双激发共振态的研究结果,为日冕等天体物质中存在的双激发共振态提供了精确的理论数据。因此说,本课题在等离子体环境中双电子系统振子强度与共振态的研究,为天体物理、等离子体物理等学科及国防建设等方面提供了高精度的原子数据。本课题的研究成果将为未来这一课题的研究提供有用的信息。
The study of atomic processes in plasma environments has gained considerableattention in the recent years. With the recent advancement in laser plasmas and withthe current interest on the study of atomic systems in plasma environments, it isimportant to investigate the effect of plasma environments on the quadrupoleoscillator strengths of helium atom. In the space environment, however, plasmas aregenerally observed to possess a non-Maxwellian high-energy tail that can be wellmodeled by a generalized Lorentzian (or kappa) distribution function containing thespectral index. It is important to investigate the nonthermal effects on atomicstructures in astrophysical plasmas in many areas of physics, such as atomic physics,astrophysics, and plasma physics. In view of the importance of the doubly excitedstates in astrophysical plasmas, it is of great interest to study resonance states oftwo-electron systems under the influence of Lorentzian astrophysical plasmaenvironments.
     In this article, the influence of Debye potentials on the quadrupole oscillatorstrengths of helium atom is investigated using highly correlated wave functionswithin a framework of a variational method. We present the quadrupole oscillatorstrengths for all possible n~1S–m~1D, n~3S–m~3D, n~1P–m~1P, n~3P–m~3P,n~1D–m~1D, and n~3D–m~3D transitions involving states with n£5and m£5ofhelium atom for different screening parameters. The calculations are based uponhighly correlated exponential wave functions in which exponent is supported bywidely used quasi-random process. Convergence of our calculation has beenexamined with the increasing number of terms in wave functions. In free-atomiccase our results are in good accord with the available results. The quadrupoleoscillator strengths for the3~(1,3)D–n~(1,3)D(n=4,5) and4~(1,3)D–5~(1,3)D transitions areevaluated for the first time using the correlated exponential wave functions. Thequadrupole oscillator strengths of helium in the screening environments are alsoreported for the first time. In the screening environments, the quadrupole oscillatorstrengths show interesting behaviors with increasing screening parameters.
     In this work, we investigate the plasma screening effects on the doubly excitedresonance states of helium atom and helium-like ions in Lorentzian plasmas usinghighly correlated wave functions. The stabilization method is used to extractresonance parameters. Results are presented as functions of spectral index andplasma screening parameter. In the present study, we investigated the plasmascreening effects on the doubly excited states of the hydrogen negative ion and helium immersed in Lorentzian astrophysical plasma environments using highlycorrelated wave functions in the framework of the stabilization method. The doublyexcited2s~2~1S~eand2p~2~1S~eresonance states of two-electron atomic system He andtwo-electron ionic systems H~-, Li·+, Be~(2+)and B~(3+)as functions of the spectral indexand plasma parameter are presented for the first time in the literature. Resonanceparameters show interesting behaviors in Lorentzian plasma environments. We hopeour findings will provide useful information for future studies on this topic.
     This work is innovative. The quadrupole oscillator strengths for the~(1,3)S–~(1,3)D,~(1,3)P–~(1,3)P and~(1,3)D–~(1,3)D transitions of He for various screening parameters arereported for the first time in the literature. The quadrupole oscillator strengths forthe3~(1,3)D–n~(1,3)D(n=4,5) and4~(1,3)D–5~(1,3)D transitions are evaluated for the first timeusing the correlated exponential wave functions. In the screening environments, thequadrupole oscillator strengths show interesting behaviors with increasing screeningparameters. The2s~2~1S~eand2p~2~1S~eresonance states of two-electron atomic systemHe and two-electron ionic systems H~-, Li~+, Be2~+and B~(3+)as functions of the spectralindex and plasma parameter are presented for the first time in the literature.Resonance parameters show interesting behaviors in Lorentzian plasmaenvironments.
     This study on oscillator strengths and resonance states of two-electron atomicsystems in plasma environments is of great importance. The findings will provideuseful information to the research of atomic and molecular physics, plasma physicsand astrophysics etc. The results are more accurate than earlier work because of theuse of correlated wave functions to represents correlation effects on the chargedparticles. With the improved experimental technique, and with the wide applicationof screened Coulomb potentials in different areas of physics and chemistry, webelieve our results will provide useful information to the research communities ofplasma physics, atomic physics, chemical physics, few-body physics, andastrophysics.
引文
[1] Salzmann D. Atomic Physics in Hot Plasmas[M]. Oxford: Oxford UniversityPress,1998.
    [2] Sil A N, Canuto S, Mukherjee P K. Spectroscopy of Confined Atomic Systems:Effect of Plasma[J]. Advances in Quantum Chemistry,2009,58:115-175.
    [3] Killian T C, Pattard T, Pohl T, et al. Ultracold Neutral Plasmas[J]. PhysicsReports,2007,449:77-130.
    [4] Ichimaru S. Strongly Coupled Plasmas: High-density Classical Plasmas andDegenerate Electron Liquids[J]. Reviews of Modern Physics,1982,54(4):1017-1059.
    [5] Beauchamp A, Wesemael F, Bergeron P, et al. Spectroscopic Studies of DBWhite Dwarfs: Confirmation and Modeling of New Forbidden Components ofHeⅠ[J]. The Astrophysical Journal,1995,441:L85-L88.
    [6] Liebert J, Beaver E A, Robertson J W, et al. Detection of a HeⅠ4517aAbsorption Feature in the DB White Dwarf GD190[J].The AstrophysicalJournal,1976,204: L119-L122.
    [7] Harrison P M, Jeffery C S. A Spectral Analysis of the Hydrogen-deficient StarHD144941[J]. Astronomy and Astrophysics,1997,323:177–182.
    [8] Beauchamp A,Wesemael F. The Optical Spectrum of Extreme Helium Stars: AHotbed of Forbidden Components of Neutral Helium[J]. The AstrophysicalJournal,1998,496:395-406.
    [9] Rosenbluh M, Panock R, Lax B, et al. Notional-stark-effect Spectroscopy:71S—91P Energy Separation and Zeeman Tuning Parameters for4He[J].Physical Review A,1978,18:1103-1114.
    [10] Panock R, Rosenbluh M, Lax B, et al. Laser Magnetic ResonanceSpectroscopy of Normally Forbidden Transitions: Electrostatic Fine Structureof the n=9,L=1-84He Singlet States[J]. Physical Review A,1980,22(3):1050-1061.
    [11] Montgomery M D, Bame S J, Hundhausen A J. Solar Wind Electrons: Vela4Measurements[J]. Journal of Geophysical Research,1968,73(15):4999-5003.
    [12] Feldman W C, Asbridge J R, Bame S J, et al. Solar Wind Electrons[J]. Journalof Geophysical Research,1975,80(31):4181-4196.
    [13] Pilipp W G, Miggenrieder H, Montgomery M D, et al. Characteristics ofElectron Velocity Distribution Functions in the Solar Wind Derived from theHelios Plasma Experiment[J]. Journal of Geophysical Research,1987,92(A2):1075-1092.
    [14] Maksimovic M, Pierrard V, Riley P. Ulysses electron distributions fitted withKappa functions[J]. Geophysical Research Letters,1997,24(9):1151-1154.
    [15] Zouganelis I. Measuring Suprathermal Electron Parameters in Space Plasmas:Implementation of the Quasi-Thermal Noise Spectroscopy with KappaDistributions Using in situ Ulysses/URAP Radio Measurements in the SolarWind[J]. Journal of Geophysical Research,2008,113(A08):A08111.
    [16] Vasyliunas V M. A Survey of Low-Energy Electrons in the Evening Sector ofthe Magnetosphere with OGO1and OGO3[J]. Geophysical Research-spacePhysics,1968,73(9):2839-2884.
    [17] Pierrard V, Lazar M. Kappa Distributions: Theory and Applications in SpacePlasmas[J]. Solar Physics,2010,267:153–174.
    [18] Gloeckler G, Geiss J, Balsiger H, et al. The Solar Wind Ion CompositionSpectrometer[J]. Astron. Astrophys. Suppl. Ser.,1992,92:267-289.
    [19] Gloeckler G, Hamilton D C. AMPTE Ion Composition Results[J]. PhysicaScripta,1987, T18:73–84.
    [20] Bame S J, Asbridge J R, Felthauser H E, et al. Characteristics of the plasmasheet in the Earth's magnetotail[J]. Journal of Geophysical Research,1967,72(1):113–129.
    [21] Christon S P, Mitchell D G, Williams D J, et al. Energy Spectra of PlasmaSheet Ions and Electrons from~50eV/e to~1MeV during Plasma TemperatureTransitions[J]. Journal of Geophysical Research,1988,93(A4):2562-2572.
    [22] Christon S P, Williams D J, Mitchell D G, et al. Spectral Characteristics ofPlasma Sheet Ion and Electron Populations during Undisturbed GeomagneticConditions[J]. Journal of Geophysical Research,1989,94(A10):13409-13424.
    [23] Kletzing C A, Scudder J D, Dors E E, et al. Auroral Source Region: PlasmaProperties of the High-latitude Plasma Sheet[J]. Journal of GeophysicalResearch: Space Physics,2003,108(A10):1360-15.
    [24] Formisano V, Moreno G, Palmiotto F, et al. Solar Wind Interaction with theEarth's Magnetic Field:1. Magnetosheath[J]. Journal of Geophysical Research,1973,78(19):3714-3730.
    [25] Pierrard V, Lemaire J. Fitting the AE-8Energy Spectra with Two MaxwellianFunctions[J]. Radiation Measurements,1996,26(3):333-337.
    [26] Xiao F, Shen C, Wang Y, et al. Energetic Electron Distributions Fitted with aRelativistic Kappa-type Function at Geosynchronous Orbit[J]. Journal ofGeophysical Research,2008,113(A5): A05203.
    [27] Christon S P. A Comparison of the Mercury and Earth Magnetospheres:Electron Measurements and Substorm Time Scales[J]. Icarus,1987,71(3):448-471.
    [28] Collier M R, Hamilton D C. The Relationship between Kappa andTemperature in Energetic Ion Spectra at Jupiter[J]. Geophysical ResearchLetters,1995,22(3):303-306.
    [29] Krimigis S M, Carbary J F, Keath E P, et al. Characteristics of Hot Plasma inthe Jovian Magnetosphere: Results from the Voyager Spacecraft[J]. Journal ofGeophysical Research,1981,86(A10):8227-8257.
    [30] Mauk B H, Mitchell D G, McEntire R W, et al. Energetic Ion Characteristicsand Neutral Gas Interactions In Jupiter's magnetosphere[J]. Journal ofGeophysical Research,2004,109(A09):S12.
    [31] Krimigis S M, Carbary J F, Keath E P, et al. Characteristics of Hot Plasma Inthe Jovian Magnetosphere: Results From the Voyager spacecraft[J]. Journal ofGeophysical Research,1983,86(A10):8871.
    [32] Schippers P, Blanc M, André N, et al. Multi-instrument Analysis of ElectronPopulations In Saturn’s Magnetosphere[J]. Journal of Geophysical Research,2008,113(A7):208-10.
    [33] Dialynas K, Krimigis S M, Mitchemm D G, et al. Energetic Ion SpectralCharacteristics In The Saturnian Magnetosphere Using Cassini/MIMImeasurements[J]. Journal of Geophysical Research,2009,114(A1):212.
    [34] Krimigis S M, Armstrong T P, Axford W I, et al. The Magnetosphere ofUranus: Hot Plasma and Radiation Environment[J]. Science,1986,233(4759):97-102.
    [35] Mauk B H, Keath E P, Kane M, et al. The magnetosphere of Neptune: Hotplasmas and energetic particles[J]. Journal of Geophysical Research,1991,96:19061-19084.
    [36] De la Haye V, Waite J H Jr, Johnson R E, et al. Cassini Ion and Neutral MassSpectrometer Data in Titan's Upper Atmosphere and Exosphere: Observationof a Suprathermal Corona[J]. Journal of Geophysical Research,2007,112(A7):309.
    [37] Meyer-Vernet N, Moncuquet M, Hoang S. Temperature Inversion in the IoPlasma Torus[J]. Icarus,1995,116(1):202-213.
    [38] Steffl A J, Bagenal F, Stewart A I F. Cassini UVIS Observations of the IoPlasma Torus: II. Radial Variations[J]. Icarus,2004,172(1):91-103.
    [39] Retherford K D, Moos H W, Strobel D F. Io's auroral Limb Glow: HubbleSpace Telescope FUV Observations[J]. Journal of Geophysical Research,2003,108(A8):1333.
    [40] Pierrard V, Maksimovic M, Lemaire J. Core, Halo and Strahl Electrons in theSolar Wind[J]. Astrophysics and Space Science,2001,277(1/2):195-200.
    [41] Pierrard V, Maksimovic M, Lemaire J. Electron Velocity DistributionFunctions from the Solar Wind to the Corona[J]. Journal of GeophysicalResearch,1999,104(A8):17021-17032.
    [42] Qureshi M N S, Pallocchia G, Bruno R, et al. Solar Wind Particle DistributionFunction Fitted Via the Generalized Kappa Distribution Function: ClusterObservations[J]. AIP Conference Proceedings,2003,679(1):489-492.
    [43] Le Chat G, Issautier K, Meyer-Vernet N, et al. Quasi-thermal Noise in SpacePlasma:“kappa” Distributions[J]. Phys.Plasmas,2009,16(10):102903.
    [44] Collier M R, Hamilton D C, Gloeckler G, et al. Neon-20, Oxygen-16, andHelium-4Densities, Temperatures, and Suprathermal Tails in The Solar WindDetermined With WIND/MASS[J]. Geophysical Research Letters,1996,23(10):1191–1194.
    [45] Chotoo K, Schwadron N A, Mason G M, et al. The Suprathermal SeedPopulation for Corotating Interaction Region Ions at1AU Deduced fromComposition and Spectra of H+, He++, and He+Observed on Wind[J]. Journalof Geophysical Research: Space Physics,2000,105(A10):23107–23122.
    [46] Ko Y K, Fisk L A, Gloeckler G, et al. Limitations on Suprathermal Tails ofElectrons in the Lower Solar Corona[J]. Geophysical Research Letters,1996,23(20):2785-2788.
    [47] Walker A B C Jr., Rugge H R. Observation of Autoionizing States in the SolarCorona[J]. Astrophysical Journal,1971,164(1):181-90.
    [48] Debye P, Hückel E. Zur Theorie der Elektrolyte. I. Gefrierpunktserniedrigungund verwandte Erscheinungen[J]. Physikalische Zeitschrift,1923,24(9):185-206.
    [49] Temkin A. Autoionisation: Recent Developments and Applications[M]. NewYork: Springer,1985.
    [50] Doschek G A, Meekins J F, Kreplin R W, et al. Helium Like CalciumEmission Observed during a Solar Flare[J]. Astrophysical Journal,1971,164(1):165-80.
    [51] Cowan R D. Theory of Atomic Structure and Spectra[M]. Berkley:Universityof California Press,1981.
    [52] Mannervik S. Optical Studies of Multiply Excited-states[J]. Physica Scripta,1989,40(1):28-52.
    [53] Sawada K, Fujimoto T. Temporal Relaxation of Excited-level Populations ofAtoms and Ions in a Plasma-Validity Range of the Quasi-steady-stateSolution of Coupled Rate-equations[J]. Physical Review E,1994,49(6):5565-5573.
    [54] Kawachi T, Fujimoto T. Population-kinetics of Lithium-like Ions in Plasma[J].Physical Review E,1995,51(2):1440-1448.
    [55] Metropolis N, Rosenbluth A W, Rosenbluth M N, et al. Equation of StateCalculations by Fast Computing Machines[J]. Journal of Chemical Physics,1953,21(6):1087-1092.
    [56] Alder B J, Wainwright T E. Studies in Molecular Dynamics. I. GeneralMethod[J]. Journal of Chemical Physics,1959,31(2):459-466.
    [57] Rice S A, Gray P. The Statistical Mechanics of Simple Liquids[M]. NewYork:Interscience,1965.
    [58] Hansen J P, McDonald I R. Theory of Simple Liquids[M]. New York:Academic,1976.
    [59] Pines D, Nozières P. The Theory of Quantum Liquids (Vol.Ⅰ)[M]. NewYork:Benjamin,1966.
    [60] Feynman R P. Statistical Mechanics[M]. New York:Benjamin,1972.
    [61] Ceperley D M. Ground State of the Fermion One-component Plasma: a MonteCarlo Study in Two and Three Dimensions[J]. Physical Review B,1978,18(7):3126-38.
    [62] Ceperley D M, Kalos M H. Quantum Many-Body Problems (Monte CarloMethod Applications)[C]. Binder K. Monte Carlo Methods in StatisticalPhysics. New York: Springer-Verlag,1979:145-94.
    [63] Husimi K. Some Formal Properties of the Density Matrix[J]. Proceedings ofthe Physico-Mathematical Society of Japan,1940,22:264-314.
    [64] Dharma-wardana M W C, Grimaldi F, Lecourt A. Exchange and PolarizationEffects in the Elementary Excitation Spectrum of a Hydrogen Atom Immersedin a Hot Plasma[J]. Physical Review A,1980,21(1):379-96.
    [65] Gupta U, Rajagopal A K. Density Functional Formalism at FiniteTemperatures with Some Applications[J]. Physics Reports,1982,87(6):259-311.
    [66] Stewart J C, Pyatt K D Jr. Lowering of Ionization Potentials in Plasmas[J].Astrophysical Journal,1966,144:1203-1211.
    [67] Rogers F J. Statistical mechanics of Coulomb gases of arbitrary charges[J].Physical Review A,1974,10:2441-2456.
    [68] Lam C S, Varshni Y P. Ionization Energy of the Helium Atom in a Plasma[J].Physical Review A,1983,27(1):418–421.
    [69] Wang Z, Winkler P. Pair function Calculations for Two electron Systems inModel Plasma Environments[J]. Physical Review A,1995,52(1):216-220.
    [70] Kar S, Ho Y K. Bound States of Helium Atom in Dense Plasmas[J].International Journal of Quantum Chemistry,2006,106(4):814-822.
    [71] Kar S, Ho Y K. Doubly excited2s21SeResonance State of Helium Embeddedin Debye Plasmas[J]. Chemical Physics Letters,2005,402(4-6):544-548.
    [72] Winkler P. Detachment Energies for a Negative Hydrogen Ion Embedded in aVariety of Debye Plasmas[J]. Physical Review E,1996,53(5):5517-5519.
    [73] Kar S, Ho Y K. Electron Affinity of the Hydrogen Atom and a ResonanceState of the Hydrogen Negative Ion Embedded in Debye Plasmas[J]. NewJournal of Physics,2005,7:1-12.
    [74] Ray D, Mukherjee P K. Ionic Transitions and Oscillator Strengths in DebyePlasma-a case Study[J]. The European Physical Journal D,1998,2:89-92.
    [75] Ray D, Mukherjee P K. Magnetic Multipole Transitions of a Stripped CarbonIon in a Variety of Debye Plasmas[J]. Journal of Physics B: Atomic,Molecular and Optical Physics,1998,31(15):3479-3488.
    [76] Saha B, Mukherjee T K, Mukherjee P K, et al. Variational Calculations for theEnergy Levels of Confined Two-electron Atomic Systems[J]. Theor ChemAcc,2002,108:305-310.
    [77] Mukherjee P K, Karwowski J,Diercksen G H F. On the Influence of the DebyeScreening on the Spectra of Two-electron Atoms[J]. Chemical Physics Letters,2002,363:323-327.
    [78] Kar S, Ho Y K. Autoionizing1SeResonance of H in Debye plasmaenvironments[J]. Physical Review E,2004,70:066411-4.
    [79] Kar S, Ho Y K. S-wave Resonances In e+–He Scattering Below the Ps (n=2)Excitation Threshold[J]. Journal of physics B: Atomic, Molecular and OpticalPhysics,2004,37:3177-3186.
    [80] Mandelshtam V A, Ravuri T R,Taylor H S. Calculation of the Density ofResonance States Using the Stabilization Method[J]. Physics ReviewLetters,1993,70:1932-1935.
    [81] Sil A N, Mukherjee P K. Effect of Debye Plasma on the Doubly Excited Statesof Highly Stripped Ions[J]. International Journal of Quantum Chemistry,2005,102:1061-1068.
    [82] Chakraborty S, Ho Y K. Complex-rotation Treatment on High-lyingdoubly-excited Resonances in H-Interacting with Screened Coulombpotentials[J]. Chemical Physics Letters,2007,438:99-103.
    [83] Kar S, Ho Y K. Doubly Excited2s2p1,3PoResonance States of Helium inDense Plasmas[J]. Physical Review A,2005,72:010703-4.
    [84] Kar S, Ho Y K. Doubly Excited1,3PeMeta-stable Bound States and ResonanceStates of Helium in Weakly Coupled Plasmas[J]. Journal of physics B: Atomic,Molecular and Optical Physics,2007,40:1403-1415.
    [85] Chakraborty S, Ho Y K. Complex-scaling Treatment for High-lying DoublyExcited Resonances for Screened Coulomb Helium Atom[J]. The EuropeanPhysical Journal D,2008,49:59-65.
    [86] Kar S, Ho Y K. Calculations of D-Wave Bound States and Resonance States ofthe Screened Helium Atom Using Correlated Exponential Wave Functions[J].International Journal of Quantum Chemistry,2010,110:993-1002.
    [87] Ghoshal A, Ho Y K. Doubly Excited Resonance States of Helium inExponential Cosine-screened Coulomb Potentials[J]. Physical Review A,2009,79:062514-6.
    [88] Kar S, Ho Y K. Doubly Excited1,3PeResonance States of Helium and theHydrogen Negative Ion Interacting with Coulomb and Screened CoulombPotentials[J]. Physical Review A,2011,83:042506-8.
    [89] Ghoshal A, Ho Y K. Doubly Excited Resonance States of Two-electronSystems in Exponential Cosine-screened Coulomb Potentials[J]. ComputerPhysics Communications,2011,182:122-124.
    [90] Kar S, Ho Y K. Doubly-Excited1,3PoStates of H-Interacting with ScreenedCoulomb (Yukawa) Potentials[J]. Few-Body Systems,2006,40:13-20.
    [91] Kar S, Ho Y K. Resonances in Electron–hydrogen Scattering in DebyePlasmas[J]. Journal of physics B: Atomic, Molecular and Optical Physics,2011,44:1-7.
    [92] Kar S, Ho Y K. Complex-Scaling Treatment for Doubly Excited Inter-ShellResonances in H-Interacting with Screened Coulomb (Yukawa) Potentials[J].Few-Body Syst,2012,53(3-4):445-451.
    [93] Kar S, Ho Y K. The Ground State and Doubly-excited1,3PoStates ofHot-dense Plasma-embedded Li+Ions[J]. The European Physical Journal D,2007,44:1-8.
    [94] Kar S, Ho Y K. Effect of Screened Coulomb Potentials on the ResonanceStates of Two-electron Highly Stripped Atoms Using the StabilizationMethod[J]. Journal of Physics B: Atomic, Molecular and Optical Physics,2009,42:1-11.
    [95] Kar S, Ho Y K. Doubly Excited1,3PoMeta-stable Bound States and ResonanceStates of Helium in Weakly Coupled Plasmas[J]. Journal of Physics B: Atomic,Molecular and Optical Physics,2007,40:1403-1415.
    [96] Kar S, Ho Y K. Doubly Excited nonautoionizing P, D, and F States of Heliumwith Coulomb and Screened Coulomb Potentials[J]. Physical Review A,2009,79:062508-7.
    [97] Saha J K, Bhattacharyya S, Mukherjee T K, et al.2pnp (1,3P0) States ofNeutral He and Li+Ions under Debye Plasma Screening[J]. Journal of physicsB: Atomic, Molecular and Optical Physics,2009,42:1-10.
    [98] Saha J K, Bhattacharyya S, Mukherjee T K, et al.1,3P0and1,3PeStates of TwoElectron Atoms under Debye Plasma Screening[J]. Journal of QuantitativeSpectroscopy&Radiative Transfer,2010,111:675–688.
    [99] Jiang Z, Kar S, Ho Y K. Doubly Excited Non-autoionizing1,3P0and1,3PeStates of Two-electron Highly Stripped Atoms[J]. Physica Scripta,2012,85:1-8.
    [100] Saha B, Mukherjee P K, Bieli1nska-Waz D, et al. Time-dependentPerturbation Calculations for Transition Properties of Two-electron Atomsunder Debye plasma[J]. Journal of Quantitative Spectroscopy&RadiativeTransfer,2003,78:131-137.
    [101] Saha B, Mukherjee P K, Bieli1nska-Waz D, et al. Spherically ConfinedTwo-electron Atoms Immersed in Debye plasma[J]. Journal of QuantitativeSpectroscopy&Radiative Transfer,2005,92:1-8.
    [102] Sil A N, Mukherjee P K. Spectral Properties of Helium-like Ions UnderStrongly Coupled Plasma Conditions[J]. International Journal of QuantumChemistry,2006,106:465-477.
    [103] Kar S, Ho Y K. Transition Wavelengths for Helium Atom in Weakly CoupledHot Plasmas[J]. Journal of Quantitative Spectroscopy&Radiative Transfer,2007,107:315-322.
    [104] Kar S, Ho Y K. Oscillator Strengths and Polarizabilities of the Hot-densePlasma-embedded Helium Atom[J]. Journal of Quantitative Spectroscopy&Radiative Transfer,2008,109:445-452.
    [105] Kar S, Ho Y K. Multipole Polarizabilities of Helium and the HydrogenNegative Ion with Coulomb and Screened Coulomb Potentials[J]. PhysicalReview A,2009,80:062511-5.
    [106] Basu J, Ray D. Dynamic Polarizability of An Atomic Ion Within a DensePlasma[J]. Physical Review E,2011,83:016407-6.
    [107] Jiang Z, Kar S, Ho Y K. Polarizabilities of Two-electron Positive Ions withScreened Coulomb Potentials[J]. Physical Review A,2011, A84:012504-6.
    [108] Sen S, Mandal P, Mukherjee P K. Hyperpolarizability of Two Electron Atomsunder Spherically Confined Debye Plasma[J]. Physics of Plasmas,2012,19:033501-7.
    [109] Jiang Z, Kar S, Ho Y K. Energies and Transition Wavelengths for LiII, BeIII,BIV, CVEmbedded in Debye Plasmas[J]. Physics of Plasmas,2012,033301-5.
    [110] Kar S, Ho Y K. Effect of Debye Plasmas on the Dispersion Coefficients C6forInteractions Among H and He Atoms[J]. Chemical Physics Letters,2007,449:246-248.
    [111] Kar S, Ho Y K. Photo Detachment of the Hydrogen Negative Ion in WeaklyCoupled Plasmas[J]. Physics of Plasmas,2008,013301-5.
    [112] Kar S, Ho Y K. Ratio of Double-to-single Photoionization Cross Sections ofPlasma-embedded Helium Atoms at x-ray Energies[J]. Physical Review A,2008,77:022713-6.
    [113] Kar S, Ho Y K. Dispersion Coefficients for Interactions Between HeliumAtoms in Debye Plasmas[J]. Physical Review A,2010,81:062506-5.
    [114] Jung Y D, Hong W. Elastic Electron–Ion Collisions in a Lorentzian Plasma[J].Journal of Plasma Physics,2000,63(1):79-88.
    [115] Song M Y, Jung Y D. Dynamic Screening Effects on Atomic Ionizations inKappa-Maxwellian Plasmas[J]. Physics of Plasmas,2005,12(1):014506-4.
    [116] Jung Y D. Double Ionization of H-Ions by Electron Impact in the SolarAtmosphere.[J]. The Astrophysical Journal,2008,674(2):1207-1210.
    [117] Jung Y D. Resonant Compton Scattering in Nonthermal AstrophysicalPlasmas[J]. The Astrophysical Journal,2009,695(2):917-920.
    [118] Kim H M, Jung Y D. Nonthermal Effects on the Symmetric Resonant ChargeTransfer in Lorentzian Plasmas[J]. Journal of Applied Physics,2009,106(1):016105-3.
    [119] Ki D H, Jung Y D. Nonthermal and Screening Effects on the ThomsonScattering in Lorentzian Plasmas[J]. Applied Physics Letters,2010,97(7):071501-3.
    [120] Li H W, Kar S. Plasma screening effects on resonant Compton scattering ofphotons by excited hydrogenic ions in Lorentzian plasmas[J]. The EuropeanPhysical Journal D,2012,66(11):304-5.
    [121] Summers D, Thorne R M. The Modified Plasma Dispersion Function[J].Physics of Fluids B,1991,3(8):1835-1847.
    [122] Kim Y W, Song M Y, Jung Y D. Coulomb Focusing Corrections onBremsstrahlung Emission from Anisotropic bi-Lorentzian DistributionPlasmas[J]. Physica Scripta,2004,70(6):361-363.
    [123] Leubner M P. On Jupiter’s whistler emission[J]. Journal of GeophysicalResearch: Space Physics,1982,87(A8):6335-6338.
    [124] Chateau Y F, Meyer-Vernet M. Electrostatic Noise in Non-MaxwellianPlasmas: Generic Properties and “kappa” Distributions[J]. Journal ofGeophysical Research: Space Physics,1991,96(A4):5825-5836.
    [125] Hellberg M A, Mace R L, Baluku T K, et al. Comment on “Mathematical andPhysical Aspects of Kappa velocity Distribution”[Phys. Plasmas14,110702(2007)][J]. Physics of Plasmas,2009,16(9):094701-5.
    [126] Akhiezer A I, Akhiezer I A, Polovin R A, et al. Plasma Electrodynamics,Linear Response Theory (Vol.Ⅰ)[M]. Oxford: Pergamon,1975.
    [127] Formisano V, Moreno G, Palmiotto F, et al. Solar Wind Interaction with theEarth’s Magnetic Field:1. Magnetosheath[J]. Journal of GeophysicalResearch,1973,78(19):3714-3730.
    [128] Zouganelis I, Maksimovic M, Meyer-Vernet N, et al. A TransonicCollisionless Model of the Solar Wind[J]. The Astrophysical Journal,2004,606(1):542-554.
    [129] McDowell M R C, Stauffer A D. Quadrupole Strengths for the11S―n1DTransitions in He[J]. Physics Letters,1964,12(3):207-208.
    [130] Cohen M, McEachran R P, Rosenthal D. Length and Velocith MatrixElements in Quadrupole Transition Calculations[J]. Journal of Physics B(Atomic and Molecular Physics),1972,5(2):184-192.
    [131] Godefroid M, Verhaegen G. MCHF Calculations of Electric Dipole andQuadrupole Oscillator Strengths along the Helium Isoelectronic Sequence[J].Journal of Physics B (Atomic and Molecular Physics),1980,13(16):3081-3098.
    [132] Cann N M, Thakkar A J. Quadrupole Oscillator Strengths for the HeliumIsoelectronic Sequence: n1S―m1D, n3S―m3D, n1P―m1P and n3P―m3Ptransitions with n <7and m <7[J]. Journal of Physics B: Atomic, Molecularand Optical Physics,2002,35(2):421-435.
    [133] Alexander S A, Coldwell R L. Electric Quadrupole Oscillator Strengths ofHelium[J]. International Journal of Quantum Chemistry,2008,108(15):2813-2818.
    [134] Weiss A.4th International Colloquium on Atomic Spectra and OscillatorStrengths for Astrophysical and Laboratory Plasmas[M]. Physica Scripta,1993, T47(3).
    [135] Saha J K, Bhattacharyya S, Mukherjee T K, et al.1SeResonance States of TwoElectron Atoms by Stabilization Method[J]. International Journal of QuantumChemistry,2011,111(7-8):1819-1823.
    [136] Kar S, Ho Y K. Resonances in Electron-Hydrogen Scattering in Debyeplasmas[J]. Journal of Physics B: Atomic, Molecular and Optical Physics,2011,44(1):015001-7.
    [137] Taylor H S. Models, Interpretations, and Calculations Concerning ResonantElectron Scattering Processes in Atoms and Molecules[J]. Advance inChemical Physics,1970,18.
    [138] Maier C H, Cederbaum L S, Domcke W. A Spherical-Box Approach toResonances[J]. Journal of Physics B (Atomic and Molecular Physics),1980,13(4): L119-L124.
    [139] Bowman J M. Collision Lifetime Approach to Recombination and a NewDerivation of RRKM Theory[J]. The Journal of Physical Chemistry,1986,90(16):3492-3495.
    [140] Müller J, Yang X, Burgd rfer J. Calculation of Resonances in Doubly ExcitedHelium Using the Stabilization Method[J]. Physical Review A,1994,49(4):2470-2475.
    [141] Hashino T, Nakazaki S, Kato T, et al. Energy Eigenvalues of Helium-LikeAtoms in Dense-Plasmas[J]. Physics Letters A,1987,123(5):236-240.
    [142] Ho Y K. Complex-Coordinate Calculations for Doubly Excited States ofTwo-Electron Atoms[J]. Physical Review A,1981,23(5):2137-2149.
    [143] Bhatia A K. Autoionization and Quasibound states of Li+[J]. Physical ReviewA,1977,15(3):1315-1318.
    [144] Konté A, Ndao A S, Biaye M, et al. Energies and Interelectronic Angle inDoubly Excited1SeStates of Helium-Like Ions below the N=2,3and4Hydrogenic Thresholds[J]. Physica Scripta,2006,74(6):605-613.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700