用户名: 密码: 验证码:
若干信息功能氧化物薄膜材料的光电跃迁研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
数十年来,以信息功能氧化物材料为基础的微电子、光电子和太阳能电池等电子产品渗透到了人们日常生活的每一个方面。其中,宽禁带半导体氧化物、过渡金属氧化物和钙钛矿结构氧化物是目前研究的热点材料。因为这些氧化物材料有望作为透明窗口、电极层和介质层等应用于发光二极管、信息存储器、非制冷红外焦平面阵列、自旋量子调控和光伏器件中。为了开发这些材料的潜在应用,有必要进一步研究这些氧化物材料的光学和电子学性质。此外,直接和材料电子能带结构相关的光电跃迁在光电子器件设计过程中起着很重要的作用。通过光谱分析,我们可以获得材料的电子能带、相变和自由载流子行为。为了确保光电子器件能在变温环境下正常工作,首先要了解和描述材料的光学常数、电子激发和吸收系数在不同温度下的演变过程。光学禁带与温度依赖关系等实验结果可以提供电子-声子相互作用和光激发过程等信息。另一方面,薄膜材料被认为具有比体材料更高的灵敏度和更快的响应速度。因此,很有必要对氧化物薄膜材料的光电跃迁进行深入细致的研究。
     光谱学方法是一种可用于功能氧化物光学表征的强大的非破坏性探测技术。通过光谱测量手段,人们可以获得材料的光学常数、晶格振动、光学能带、光致发光和电子跃迁等重要信息并和材料的载流子迁移率、相变、化学组分、结晶质量、杂质能级和缺陷等性质联系起来。在本博士论文中,我们采用光谱技术研究了若干信息功能氧化物薄膜材料的光电跃迁特性。本文的主要工作和创新点包括以下几点:
     1.获得了As掺杂浓度和制备激光功率对ZnO薄膜声子频率、光致发光、光学禁带以及光学常数的影响。研究了磁性掺杂ZnO和Sn02薄膜的光电子性质,分析了其光电及磁学特性对磁性元素的依赖性,发现其电子能带结构随着温度及组分变化,建立起介电函数、声子模式以及光学禁带等参数与组分变化的规律。
     系统研究了As掺杂氧化锌(ZnO)纳米晶薄膜的光电跃迁。获得了As掺杂浓度和制备激光功率对ZnO材料的A](LO)声子频率、光致发光、光学禁带以及光学常数的影响。同时也建立了ZnO:As薄膜的微观结构与其光学常数的内在联系。研究了生长激光功率对金红石结构二氧化钛(TiO2)薄膜的电子能带结构的影响。实验表明它们的禁带宽度与其薄膜的结晶性和致密性有着重要的联系,并随着激光功率的增加而减少。研究了不同磁性元素(Cr,Mn和Ni)对ZnO薄膜室温铁磁性的影响及本征起源。通过联系磁性测量、光致荧光以及吸收光谱等手段,进一步澄清了其室温铁磁性与其氧空位/缺陷以及磁性掺杂种类等有密切的关系。特别是发现上述两者的竞争能够导致其磁性发生改变。获得了磁性元素与薄膜的光学禁带和光致发光特性的依赖关系。系统地研究了Mn掺杂的二氧化锡(SnO2)薄膜的电子能带结构和光电跃迁随其磁性掺杂浓度的依赖关系。发现其电子能带结构随着温度及组分的变化关系,建立起它们的介电函数以及禁带宽度等物理参数与组分的一系列物理规律。
     2.发现了VO2材料在金属-绝缘相变区附近的光电跃迁、色散常数及光电导等物理参数的演变过程。发现相变时其带隙由0.5eV左右变成金属相的零带隙。观察到多阶电子跃迁在相变过程中具有可逆性。发现了外加电场调控其相变点的规律,揭示了其相变弛豫的微观物理起源并制备了VO2基场效应晶体管原型器件。
     研究了二氧化钒(VO2)纳米晶薄膜在外加电场调控下的光电跃迁及其相变规律。通过结合电学输运测量和变温拉曼散射技术,揭示了该体系中的金属-绝缘体相变随着外加电场的变化及其弛豫特性,建立了外场调控其物理规律的一种有效途径。另外,采用能带理论解释了上述现象,表明了V-V键的缩短和载流子在电子态和电子-空穴共存态之间的转换是导致其相变的主要因素,从而证实了它们的金属-绝缘体相变和结构相变的内在联系。此外,由于外加正电压可以吸引电子而排斥空穴,V02纳米颗粒的结构相变温度延时随着正电压增加以0.4℃/V的速度增加。最后,我们制备了VO2基场效应晶体管原型器件。
     研究了高质量VO2薄膜材料在金属-绝缘体相变区附近光电跃迁的演化规律。发现相变时其基本带隙由0.5eV左右变成金属相的零带隙,从光谱上直接验证了其金属-绝缘体相变特性。这是因为随着温度升高a1g和egπ能带相互靠近并最终交叠在一起。同时,观察到带间电子态跃迁在相变过程中具有可逆性,这为进一步解释它们的金属-绝缘体相变和结构相变起源提供了依据。另一方面,VO2薄膜的低温光学禁带宽度随着温度升高减小。薄膜的三个高阶带间电子跃迁可以观察到并进行了指认。实验结果还表明电子跃迁能量越高温度的影响越弱。
     3.发现了BiFeO3薄膜的光学常数及光学禁带的温度依赖规律。分别指认了四个与Fe到O的电荷转移相关的光电跃迁。在150K和200K附近观察到BiFeO3材料内的磁跃迁。随着衬底温度升高,La0.5Sr0.5CoO3薄膜的光电导可从绝缘性行为过渡到金属性行为。发现了LaNiO3和La0.5Sr0.5CoO3导电金属氧化物薄膜的光电导和电子能带结构的差异。
     通过透射光谱技术研究了BiFeO3薄膜的光电跃迁及光学能带的温度依赖规律。分别指认了四个与Fe到O的电荷转移相关的电子跃迁,特别是在150K和200K附近观察到BiFeO3材料内的磁跃迁。同时也建立了其直接光学能带和电子结构随温度的变化规律。随着温度的升高,BiFeO3薄膜禁带宽度从2.69减小到2.65eV。室温下能带变窄系数为-1.65×10-4eV/K。
     采用脉冲激光沉积技术研究了La0.5Sr0.5CoO3薄膜的制备工艺。通过调整衬底温度研究了制备参数与其结晶质量的依赖关系。随着衬底温度的升高,La0.5Sr0.5CoO3薄膜的结晶性越来越好,并显示出高度(110)择优取向,薄膜的光电导呈现巨大的差异,可从绝缘性行为过渡到金属性行为,这与其结晶质量有着密切的关系。对比研究了纳米结构LaNiO3和La0.5Sr0.5CoO3导电金属氧化物材料的电子能带结构差异,指认了四个与O的2p轨道和Ni/Co的3d轨道之间跃迁相关的电子特征,并发现了晶粒尺寸对其电子态特性的影响。获得了不同纳米结构下导电金属氧化物的电子跃迁、色散常数,特别是光电导率等物理参数与其晶体结构和纳米尺度的依赖关系。
For several decades, electronic products in the areas of microelectronics, optoelectronics, and solar cell based on informational and functional oxide materials have been widely used in our daily life. In particular, wide-band gap semiconducting oxides, transition-metal oxides, and perovskite structure oxides are the hottest research materials. This is because these oxide materials are the most promising oxide materials for applications in light emitting diodes, information storage memories, uncooled infrared focal plane arrays, spintronic quantum control and photovoltaic devices as transparent windows, electrode layers, and dielectric layers. In order to exploit its potential applications, it is significant to further investigate the optical and electronic properties of the oxide materials. Moreover, the optoelectronic transitions, which could be directly correlated with the electronic band structures, play an important role in the optoelectronic device design. By optical spectroscopy analysis, one can further clarify the electronic bands, phase transitions, and free carrier behavior. In order to make sure optoelectronic device works well at variable temperature, understanding and describing the evolutions of optical constants, electronic excitations, and absorption coefficient at different temperature are pre-requisite. The experimental results such as temperature dependence of the optical band gap (OBG) energy can provide the information about the electron-phonon interactions and optical excitation process. On the other hand, it is well-known that films are expected to yield better sensitivity and faster response than the bulk materials. Therefore, it is necessary to carry out a delicate study on the optoelectronic transitions of oxide film materials.
     Optical spectroscopy is a nondestructive probe technique, which is a powerful tool for optical characterization of functional oxides. By spectral measurements, one can determine the optical constants, lattice dynamics, OBG, Photoluminescence (PL) properties, and electronic transitions of the materials. These important informations correlate with the carrier mobility, physical transition, chemical composition, crystalline quality, energy level of impurities, and the presence of defects in the materials. In this dissertation, the optoelectronic transitions of several informational and functional oxide film materials have been investigated using optical spectroscopy. The main works and innovations of this dissertation are listed as follows:
     1. The influences from As doping concentration and growth laser energy on the phonon frequencies, PL properties, OBG, and optical constants of ZnO films have been obtained. The optoelectronic properties of magnetic elements doped ZnO and SnO2films have been studied. The magnetic element dependence of the optoelectronic and magnetic properties has been analyzed. It can be found that the electronic band structures change with the temperature and composition. The relationship among dielectric functions, phonon modes, OBG, and composition has been established.
     The optoelectronic transitions of As doped ZnO (ZnO:As) nanocrystalline films have been systematical studied. The influences from As doping concentration and growth laser energy on the the frequency of A1longitudinal optical (LO) phonon mode, PL properties, OBG, and optical constants in ZnO films have been obtained. The inner relationship between the microstructure and optical constants of the ZnO:As films has been established. The effects from growth laser energy on the electronic band structure of rutile TiO2films have been investigated. The experimental results reveal that the OBG is strongly influenced by the crystallinity and packing density of the films, which decreases with increasing the laser power energy. The effects from different transition metal (Cr, Mn, and Ni) on the RT ferromagnetic properties of ZnO films and its intrinsic origin have been studied. By magnetic, PL, and absorption spectral measurements, one can further find that the RT ferromagnetic properties strongly depend on the oxygen vacancies, oxygen defects, and doping elements. In particular, the competition between the above mechanisms can change the magnetic properties. The relationship among magnetic elements, OBG, and PL characteristics has been obtained. The doping magnetic composition dependence of the electronic band structure and optoelectronic transitions in Mn doped SnO2films have been systematical investigated. The variations of the electronic band structure in the films with the temperature and composition have been observed. A series of the physics law between composition and some physical parameters (dielectric functions, OBG, etc.) have been established.
     2. The evolutions of optoelectronic transitions, dispersion constants, and optical conductivity in VO2material near the metal-insulator transition (MIT) region have been discovered. The OBG decreases from about0.5eV (insulator state) to zero (metal state) when the MIT occurs. The energies of electronic transitions show the hysteresis behavior near the MIT region. The variations of phase transition temperature with the external electric field and its physical micro-origins in relaxation behavior have been discovered. A prototype of field effect transistor based on the VO2material has been fabricated.
     The optoelectronic transitions and evolutions of the phase transition under external electric field in VO2nanocrystalline film have been investigated. By electrical transport measurements and temperature-dependent Raman scattering technology, the variations of MIT with the external electric field and its relaxation behavior have been revealed. Thus, an efficient method has been found for manipulating the physics properties by adding external field. Moreover, above phenomena have been explained using the band structure theory. It indicates that the shortening of the V-V distance with the electric field and the change of carriers between electrons and the mixing of electrons and holes could be the major cause for the MIT. It further confirms the inner relationship between the MIT of bulk and the structural phase transition (SPT). Furthermore, the delayed temperature of SPT was increased by0.4℃/V with increasing the positive voltage because the electric field can pull the electrons and push the holes. Finally, we fabricated a prototype of field effect transistor based on the VO2material.
     The evolutions of the optoelectronic transitions in high quality VO2film material near the metal-insulator transition region have been investigated. The OBG decreases from about0.5eV (insulator state) to zero (metal state) when the MIT occurs, which can be confirmed directly by spectral results. This is because the a1g and egπ bands are moved close and finally overlap with the temperature. Moreover, the energies of interband electronic transitions show the hysteresis behavior near the MIT region, which offers the foundation for explaining the origins of the MIT of bulk and the SPT. On the other hand, the OBG of VO2film at low-temperature decreases with increasing the temperature. The three higher-order interband electronic transitions can be observed and uniquely distinguished. The temperature effects on the higher-order transition energy become much weaker.
     3. The temperature dependence of optical constants and OBG in BiFeO3film has been discovered. Four interband optoelectronic transitions related to the charge transfer excitation from Fe to O can be uniquely assigned. Two magnetic transitions located at about150and200K in the BiFeO3material have been observed. With increasing substrate temperature, the optical conductivity of La0.5Sr0.5CoO3films changes from insulator-like behavior to metal-like behavior. The discrepancies of the optical conductivity and electronic band structures in LaNiO3and La0.5Sr0.5CoO3conductive metallic oxide films have been discovered.
     The temperature dependence of optoelectronic transitions and OBG in BiFeO3film has been studied by transmittance spectra. Four interband electronic transitions related to the charge transfer excitation from Fe to O can be uniquely assigned. Moreover, two magnetic transitions located at about150and200K in the material have been observed. The variation law among the direct OBG, electronic band structure, and temperature has been established. With increasing the temperature, the OBG of BiFeO3films decreases from2.69to2.65eV. The band gap narrowing coefficient of the film is estimated to be about-1.65×10-4eV/K at RT.
     The preparation craft of the La0.5Sr0.5CoO3(LSCO) films have been investigated using pulsed laser deposition. The preparation parameters dependence of the crystal quality has been researched by changing the substance temperature. With increasing substrate temperature, the LSCO films become better crystalline and show the highly (110) preferred orientation. The optical conductivity shows a remarkably different variation trend and changes from insulator-like behavior to metal-like behavior with increasing the growth temperatures, which is strongly dependent on the crystal quality of the films. The discrepancies of the electronic band structures in nanostructured LaNiO3(LNO) and LSCO conductive metallic oxide films have been investigated. Four electronic characteristics related to the interband electronic transitions from O2p to Ni/Co3d energy states can be uniquely assigned. The influences from grain size on the electronic state characteristics have been discovered. Moreover, the crystal structure and nano-scale dependences of the physical parameters (electronic transitions, dispersion constants, and optical conductivity, etc) for different nanostructured LNO and LSCO conductive metallic oxides have been obtained.
引文
[1]U. Ozgur, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S.-J. Cho, and H. MorkoC, J. Appl. Phys.98,041301 (2005).
    [2]T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand, Science,287,1019 (2000).
    [3]H. Kimura, T. Fukumura, M. Kawasaki, K. Inaba, T. Hasegawa, and H. Koinuma, Appl. Phys. Lett.80,94 (2002).
    [4]R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga, Science 293,269 (2001).
    [5]Z. Yang, C. Ko, and S. Ramanathan, Annu. Rev. Mater. Res.41,337 (2011).
    [6]J. F. Scott, Science 315,954 (2007).
    [7]杨德仁等著,半导体材料测试与分析,科学出版社,2010年。
    [8]胡志高,中国科学院上海技术物理研究所博士研究生学位论文,2003年12月。
    [9]陈静,上海交通大学博士研究生学位论文,2007年1月;海阔,湖南师范大学博士研究生学位论文,2011年4月。
    [10]沈学础,半导体光谱和光学性质(第二版),科学出版社,2002年。
    [11]方荣川,固体光谱学,中国科技大学出版社,2001年;徐梦岚,李鸿钧,中国电子商情(基础电子),2011年7月。
    [12]褚君浩,窄禁带半导体物理学,科学出版社,2005年。
    [13]M. Fox, Optical Properties of Solids,科学出版社,2009年。
    [14]A. B. Djurisic, T. Chan, and E. H. Li, Mater. Sci. Eng. R 38,237 (2002).
    [15]O. S. Heaven, Optical Properties of Thin Solid Films, Dover Publications, Inc, New York,1991.
    [16]W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C:The Art of Scientific Computing, Cambridge University Press, Cambridge MA,1992.
    [17]R. M. Azzam and N. M. Bashara, Ellipsometry and Polarized Light, North-Holland: Amsterdam,1977.
    [18]程光煦,拉曼布里渊散射(第二版),科学出版社,2008年。
    [19]张树霖,拉曼光谱学与低维纳米半导体,科学出版社,2008年。
    [20]S. Adachi, Phys. Rev. B 35,7454 (1987).
    [21]S. Adachi, Phys. Rev. B 38,12345 (1988).
    [22]G. E. Jellison, Jr. and F. A. Modine, Appl. Phys. Lett.69,371 (1996);
    [23]G. E. Jellison, Jr. and F. A. Modine, Appl. Phys. Lett.69,2137 (1996).
    [24]B. Berini, N. Keller, Y. Dumont, E. Popova, W. Noun, M. Guyot, J. Vigneron, A. Etcheberry, N. Franco, and M. C. Rui da Silva, Phys. Rev. B 76,205417 (2007).
    [25]A. Gossling, M. W. Haverkort, M. Benomar, H. Wu, D. Senff, T. Moller, M. Braden, J. A. Mydosh, and M. Gruninger, Phys. Rev. B 77,035109 (2008).
    [26]M. M. Qazilbash, A. A. Schafgans, K. S. Burch, S. J. Yun, B. G. Chae, B. J. Kim, H. T. Kim, and D. N. Basov, Phys. Rev. B 77,115121 (2008).
    [27]F. Wooten, Optical Properties of Solids (Academic, New York,1972).
    [28]P. Patsalas and S. Logothetidis, J. Appl. Phys.93,4870 (2003).
    [1]U. Ozgur, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S. J. Cho, and H. MorkoC, J. Appl. Phys.98,041301 (2005).
    [2]J. C. Fan, Z. Xie, Q. Wan, and Y. G. Wang, J. Cryst. Growth 304,295 (2007).
    [3]T. S. Jeong, M. S. Han, C. J. Youn, and Y. S. Park, J. Appl. Phys.96,175 (2004).
    [4]Y. R. Ryu, T. S. Lee, J. H. Learn, and H. W. White, Appl. Phys. Lett.83,87 (2003).
    [5]W. C. Zhang, X. L. Wu, H. T. Chen, J. Zhu, and G. S. Huang, J. Appl. Phys.103, 093718(2008).
    [6]D. C. Look, D. C. Reynolds, C. W. Litton, R. L. Jones, D. B. Eason, and G. Cantwell, Appl. Phys. Lett.81,1830 (2002).
    [7]T. Aoki, Y. Hatanaka, and D. C. Look, Appl. Phys. Lett.76,3257 (2000).
    [8]Y. Q. Shen, W. Hu, T. W. Zhang, X. F. Xu, J. Sun, J. D. Wu, Z. F. Ying, and N. Xu, Mater. Sci. Eng. A 473,201 (2008); 沈轶群,复旦大学博士研究生学位论文,2009年。
    [9]S. Limpijumnong, S. B. Zhang, S. H. Wei, and C. H. Park, Phys. Rev. Lett.92, 155504(2004).
    [10]N. Xu, Y. L. Xu, L. Li, Y. Q. Shen, T. W. Zhang, J. D. Wu, J. Sun, and Z. F. Ying, J. Vac. Sci. Technol. A 24,517 (2006).
    [11]U. Wahl, E. Rita, J. G. Correia, A. C. Marqurs, E. Alves, and J. C. Soares, Phys. Rev. Lett.95,215503(2005).
    [12]Z. G. Hu, W. W. Li, J. D. Wu, J. Sun, Q. W. Shu, X. X. Zhong, Z. Q. Zhu, and J. H. Chu, Appl. Phys. Lett.93,181910 (2008).
    [13]Z. G. Hu, Y. W. Li, M. Zhu, Z. Q. Zhu, and J. H. Chu, Appl. Phys. Lett.92,081904 (2008).
    [14]N. Volbers, S. Lautenschlager, T. Leichtweiss, A. Laufer, S. Graubner, B. K. Meyer, K. Potzgcr, and S. Q. Zhou, J. Appl. Phys.103,123106 (2008).
    [15]H. F. Liu, S. J. Chua, J. Appl. Phys.106,023511 (2009).
    [16]J. F. Muth, R. M. Kolbas, A. K. Sharma, S. Oktyabrsky, and J. Narayan, J. Appl. Phys.85,7884 (1999).
    [17]C. K. Ghosh, S. Malkhand, M. K. Mitra, and K. K. Chattopadhyay, J. Phys. D:Apply. Phys.41,245113 (2008).
    [18]Z. G. Hu, Y. W. Li, M. Zhu, Z. Q. Zhu, and J. H. Chu, J. Phys. Chem. C 112,9737 (2008).
    [19]H. Yoshikawa and S. Adachi, Jpn. J. Appl. Phys., Part 1 36,6237 (1997).
    [20]C. W. Teng, J. F. Muth,U. Ozgur, M. J. Bergmann, H. O. Everitt, A. K. Sharma, C. Jin, and J. Narayan, Appl. Phys. Lett.76,979 (2000).
    [21]Z. G. Hu, W. W. Li, Y. W. Li, M. Zhu, Z. Q. Zhu, and J. H. Chu, Appl. Phys. Lett.94, 221104(2009).
    [22]M. Arslan, H. Duymus, and F. Yakuphanoglu, J. Phys. Chem. B 110,276 (2006).
    [23]M. Bruna and S. Borini, Appl. Phys. Lett.94,031901 (2009).
    [24]L. F. Jiang,W. Z. Shen, and Q. X. Guo, J. Appl. Phys.106,013515 (2009).
    [25]Z. G. Hu, M. Strassburg, N. Dietz, A. G. U. Perera, A.Asghar, and I. T. Ferguson, Phys. Rev. B 72,245326 (2005).
    [26]Z. G. Hu, A. B. Weerasekara, N. Dietz, A. G. U. Perera, M. Strassburg, M. H. Kane, A. Asghar, and I. T. Ferguson, Phys. Rev. B 75,205302 (2007).
    [27]J. D. Ye, S. Tripathy, Fang-Fang Ren, X. W. Sun, G. Q. Lo, and K. L. Teo, Appl. Phys. Lett.94,011913 (2009).
    [28]J. B. Wang, H. M. Zhang, Z. F. Li, and W. Lu, Appl. Phys. Lett.88,101913 (2006).
    [29]E. J. Yun, H. S.Park, K. H. Lee, H. G. Nam, and M. Jung, J. Appl. Phys.103,073507 (2008).
    [30]Y. J. Zeng, Z. Z.Ye, W. Z. Xu, B. Liu, Y. Che, L. P. Zhu, and B. H. Zhao, Mater. Lett. 61,41 (2007).
    [31]L. P. Dai, H. Deng, J. J. Chen, and M. Wei, Solid State Commun.143,378 (2007).
    [32]Y. G. Wang, S. P. Lau, H. W. Lee, S. F. Yu, B. K. Tay, X. H. Zhang, and H. H. Hng, J. Appl. Phys.94,354 (2003).
    [33]S. A. Studenikin, N. Golego, and M. Cocivera, J. Appl. Phys.84,2287 (1998).
    [34]N. J. Ianno, L. McConville, N. Shaikh, S. Pittal, and P. G. Snyder, Thin Solid Films 220,92 (1992).
    [35]X. L. Wu, G. G. Siu, C. L. Fu, and H. C. Ong, Appl. Phys. Lett.78,2285 (2001).
    [36]W. M. Kwok, A. B. Djurisic, Y. H. Leung, W. K. Chan, and D. L. Phillips, Appl. Phys. Lett.2005,87,223111.
    [37]S. Adachi, Phys. Rev. B 35,7454 (1987)
    [38]S. Adachi, Phys. Rev. B 38,12345 (1988).
    [39]W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, The Art of Scientific Computing; Cambridge University Press:Cambridge, MA (1992).
    [40]J. H. Bahng, M. Lee, H. L. Park Ⅲ, W. Kim, J. H. Jeong, and K. J. Kim, Appl. Phys. Lett.79,1664(2001).
    [41]M. Cardona, Phys. Rev.140, A651 (1965).
    [42]K. J. Kim and Y. R. Park, Appl. Phys. Lett.19,1420 (2002).
    [43]P. L.Washington, H. C. Ong, J. Y. Dai, P. H. Chang, Appl. Phys. Lett.72,3261 (1998).
    [44]K. Postava, H. Sueki, M. Aoyama, T. Yamaguchi, Ch. Ino, and Y. Igasaki, J. Appl. Phys.87,7820 (2000).
    [45]C. M. Herzinger, B. Johs, W. A. McGahan, J. A. Woollam, and W. Paulson, J. Appl. Phys.83,3323 (1998).
    [46]D. A. G. Bruggeman, Ann. Phys. (Leipzig) 24.636 (1935).
    [47]H. Fujiwara, J. Koh, P.1. Rovira, and R. W. Collins, Phys. Rev. B 61,10832 (2000).
    [48]K. Samanta, S. Dussan, R. S. Katiyar, and P. Bhattacharya, Appl. Phys. Lett.90, 261903 (2007).
    [49]K. Gao,W. Zhang, J. Sun, N. Xu, Z. F. Ying, Q. Li, J. Gan, and J. D. Wu, J. Phys. Chem.C 113,19139(2009).
    [50]W. W. Li, Z. G. Hu, J. D. Wu, J. Sun, M. Zhu, Z. Q. Zhu, and J. H. Chu, J. Phys. Chem.C 113,18347(2009).
    [51]J. S. Thakur, G. W. Auner, V. M. Naik, C. Sudakar, P. Kharel, G. Lawes, R. Suryanarayanan, and R. Naik, J. Appl. Phys.102 (2007) 093904.
    [52]J. F. Scott, Phys. Rev. B 2,1209 (1970).
    [53]C. Bundesmann, N. Ashkenov, M. Schubert, D. Spemann, T. Butz, E. M. Kaidashev, M. Lorenz, and M. Grundmann, Appl, Phys. Lett.83,1974 (2003).
    [54]N. Ashkenov, B.N. Mbenkum, C. Bundesmann, V. Riede, M. Lorenz, D. Spemann, E. M. Kaidashev, A. Kasic, M. chubert, M. Grundmann, G. Wagner, H. Neumann, V. Darakchieva, H. Arwin, and B. Monemar, J. Appl. Phys.93,126 (2003).
    [55]Z. G. Hu, M. Strassburg, A. Weerasekara, N. Dietz, A. G. U. Perera, M. H. Kane, A. Asghar, and I. T. Ferguson, Appl. Phys. Lett.88,061914 (2006).
    [56]H. Harima, J. Phys.:Condens. Matter 14, R967 (2002).
    [57]H. Yoshikawa and S. Adachi, Jpn. J. Appl. Phys.36,6237 (1997).
    [58]Z. H. Dai, R. J. Zhang, J. Shao, Y. M. Chen, Y. X. Zheng, J. D. Wu, and L. Y. Chen, J. Korean Phys. Soc.55 (2009) 1227.
    [59]U. Rossler, Phys. Rev.184 (1969) 733.
    [60]A. R. H. Preston, B. J. Ruck, L. F. J. Piper, A. DeMasi, K. E. Smith, A. Schleife, F. Fuchs, F. Bechstedt, J. Chai, and S. M. Durbin, Phys. Rev. B 78,155114 (2008).
    [61]S. Z. H. Karazhanov, P. Ravindran, A. Kjekshus, H. Fjellvag, and B. G. Svensson, Phys. Rev. B 75,155104 (2007).
    [62]R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga, Science 293,269 (2001).
    [63]J. Zhang, M. J. Li, Z. C. Feng, J. Chen, and C. Li, J. Phys. Chem. B 110,927 (2006).
    [64]J. E. Spanier, R. D. Robinson, F. Zhang, S. W. Chan, and I. P. Herman, Phys. Rev. B 64,245407(2001).
    [65]T. Mazza, E. Barborini, P. Piseri, P. Milani, D. Cattaneo, A. Li Bassi, C. E. Bottani, and C. Ducati, Phys. Rev. B 75,045416 (2007).
    [66]S. D. Mo and W. Y. Ching, Phys. Rev. B 51,13023 (1995).
    [67]F. Zhang, Z. H. Zheng, X. Z. Ding, Y. J. Mao, Y. Chen, Z. Y. Zhou, S. Q. Yang, and X. H. Liu, J. Vac. Sci. Technol. A 15,1824 (1997).
    [68]V. Swamy, C. B. Muddle, and Q. Dai,Appl. Phys. Lett.89,163118 (2006).
    [69]G. E. Jellison, Jr., L. A. Boatner, J. D. Budai, B.-S. Jeong, and D. P. Norton, J. Appl. Phys.93,9537 (2003).
    [70]J. Park, J. Y. Lee, and J. H. Cho, J. Appl. Phys.100,113534 (2006).
    [71]G. He, L. D. Zhang, G. H. Li, M. Liu, and X. J. Wang, J. Phys. D 41,045304 (2008).
    [72]M. Cardona and G. Harbeke, Phys. Rev.137, A1467 (1965).
    [73]C. C. Ting, S. Y. Chen, and D. M. Liu, J. Appl. Phys.88,4628 (2000).
    [74]T. Fukumura, H. Toyosaki, K. Ueno, M. Nakano, and M. Kawasaki, New J. Phys.10, 055018(2008).
    [75]D. Yu, Y. F. Lu, N. Xu, J. Sun, Z. F. Ying, and J. D. Wu, J. Vac. Sci. Technol. A 26, 380 (2008).
    [76]O. S. Heaven, Optical Properties of Thin Solid Films, Dover Publications, Inc, New York,1991, Chap.4, p.69.
    [77]H. Tang, F. Levy, H. Berger, and P. E. Schmid, Phys. Rev. B 52,7771 (1995).
    [78]K. M. Glassford and J. R. Chelikowsky, Phys. Rev. B 46,1284 (1992).
    [79]V. Swamy, Phys. Rev. B 77,195414 (2008).
    [1]U. Ozgur, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S.-J. Cho, and H. MorkoC, J. Appl. Phys.98,041301 (2005).
    [2]T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand, Science 287,1019 (2000).
    [3]K. J. Kim and Y. R. Park, Appl. Phys. Lett.81,1420 (2002).
    [4]C. L. Du, Z. B. Gu, Y. M. You, J. Kasim, T. Yu, Z. X. Shen, Z. H. Ni, Y. Ma, G. X. Cheng, and Y. F. J. Chen, Appl. Phys.103,023521 (2008).
    [5]K. Samanta, P. Bhattacharya, and R. S. Katiyar, Appl. Phys. Lett.87,101903 (2005).
    [6]W. W. Li, Z. G. Hu, J. D. Wu, J. Sun, M. Zhu, Z. Q. Zhu, and J. H. Chu, J. Phys. Chem. C 113,18347(2009).
    [7]Z. M. Liao, H. Z. Zhang, Y. B. Zhou, J. Xu, J. M. Zhang, and D. P. Yu, Phys. Lett. A 372,4505 (2008).
    [8]W. Yu, L. H. Yang, X. Y. Teng, J. C. Zhang, Z. C. Zhang, L. Zhang, and G. S. Fu, J. Appl. Phys.103,093901 (2008).
    [9]Z. G. Hu, Y. W. Li, M. Zhu, Z. Q. Zhu, and J. H. Chu, Phys. Lett. A 372,4521 (2008).
    [10]B. Panigrahy, M. Aslam, D. S. Misra, M. Ghosh, and D. Bahadur, Adv. Funct. Mater. 20,1161 (2010); D. Y. Inamdar, A. D. Lad, A. K. Pathak, I. Dubenko, N. Ali, and S. Mahamuni, J. Phys. Chem. C 114,1451 (2010).
    [11]J. D. Ye, S. Tripathy, F. F. Ren, X. W. Sun, G. Q. Lo, and K. L. Teo, Appl. Phys. Lett. 94,011913(2009).
    [12]K. Samanta, S. Dussan, R. S. Katiyar, and P. Bhattacharya, Appl. Phys. Lett.90, 261903 (2007).
    [13]H. Wang, Y. Chen, H. B. Wang, C. Zhang, F. J. Yang, J. X. Duan, C. P. Yang, Y. M. Xu, M. J. Zhou, and Q. Li, Appl. Phys. Lett.90,052505 (2007).
    [14]J. S. Thakur, G. W. Auner, V. M. Naik, C. Sudakar, P. Kharel, G. Lawes, R. Suryanarayanan, and R. Naik, J. Appl. Phys.102,093904 (2007).
    [15]K. Gao, W. Zhang, J. Sun, N. Xu, Z. F. Ying, Q. Li, J. Gan, and J. D. Wu, J. Phys. Chem. C.113,19139(2009).
    [16]L. Artus, R. Cusco, J. Ibanez, N. Blanco, and G. Gonzalez-Diaz, Phys. Rev. B 60, 5456(1999).
    [17]N. Ashkenov, B. N. Mbenkum, C. Bundesmann, V. Riede, M. Lorenz, D. Spemann, E. M. Kaidashev, A. Kasic, M. Schubert, M. Grundmann, G. Wagner, H. Neumann, V. Darakchieva, H. Arwin, and B. Monemar, J. Appl. Phys.93,126 (2003).
    [18]G. Malandrino, M. Blandino, M. E. Fragala, M. Losurdo, and G. Bruno, J. Phys. Chem. C 112,9595 (2008).
    [19]H. K. Yadav, K. Sreenivas, and V. Gupta, J. Appl. Phys.99,083507 (2006).
    [20]F. Urbach, Phys. Rev.92,1324 (1953).
    [21]H. Tampo, H. Shibata, K. Maejima, A. Yamada, K. Matsubara, P. Fons, S. Niki, T. Tainaka, Y. Chiba, and H. Kanie, Appl. Phys. Lett.91,261907 (2007).
    [22]X. L. Wang, Z. X. Dai, and Z. Zeng, J. Phys.:Condens. Matter,20,045214 (2008).
    [23]S. Singh and M. S. R. Rao, Phys. Rev. B 80,045210 (2009).
    [24]D. Y. Inamdar, A. D. Lad, A. K. Pathak, I. Dubenko, N. Ali, and S. Mahamuni, J. Phys. Chem. C 114,1451 (2010).
    [25]X. L. Wu, G. G. Siu, C. L. Fu, and H. C. Ong, Appl. Phys. Lett.78,2285 (2001). Y. J. Lin, C. L. Tsai, Y. M. Lu, and C. J. Liu, J. Appl. Phys.99,093501 (2006).
    [26]M. S. Wang, X. N. Cheng, and J. Yang, Appl. Phys. A 96,783 (2009).
    [27]Y. G. Wang, S. P. Lau, H. W. Lee, S. F. Yu, B. K. Tay, X. H. Zhang, and 11. H. Hng, J. Appl. Phys.94,354 (2003).
    [28]K. Ueda, H. Tabata, and T. Kawai, Appl. Phys. Lett.79,988 (2001); X. X. Lin, Y. F. Zhu, and W. Z. Shen, J. Phys. Chem. C 113,1812 (2009).
    [29]S. K. Mandal, A. K. Das, T. K. Nath, and D. Karmaker, Appl. Phys.Lett.89,144105 (2006); C. J. Cong, L. Liao, J. C. Li, L. X. Fan, and K. L. Zhang, Nanotechnology 17, 1520(2006).
    [30]X. X. Lin, Y. F. Zhu, and W. Z. Shen, J. Phys. Chem. C 113,1812 (2009); P. Sharma, A. Gupta, K. V. Rao, F. J. Owens, R. Sharma, R. Ahuja, J. M. O. Guillen, B. Johansson, and G. A. Gehring, Nat. Mater.2,673 (2003).
    [31]K. R. Kittilstved, N. S. Norberg, and D. R. Gamelin, Phys. Rev. Lett.94,147209 (2005); D. A. Schwartz, N. S. Norberg, Q. B. Nguyen, J. M. Parker, and D. R. Gamelin, J. Am. Chem. Soc.125,13205 (2003).
    [32]B. B. Straumal, A. A. Mazilkin, S. G. Protasova, A. A. Myatiev, P. B. Straumal, G. Schutz, P. A. Van Aken, E. Goering, and B. Baretzky, Phys. Rev. B 79,205206 (2009).
    [33]P. V. Radovanovic and D. R. Gamelin, Phys. Rev. Lett.91,157202 (2003).
    [34]H. Kimura, T. Fukumura, M. Kawasaki, K. Inaba, T. Hasegawa, and H. Koinuma, Appl. Phys. Lett.80,94 (2002).
    [35]K.Gopinadhan, S. C. Kashyap, D. K. Pandya, and S. Chauhary, J. Appl. Phys.102, 113513(2007).
    [36]H. S. Kim, L. Bi, G. F. Dionne, and C. A. Ross, Phys. Rev. B 77,214436 (2008).
    [37]C. K. Ghosh, S. Malkhand, M. K. Mitra, and K. K. Chattopadhyay, J. Phys. D:Apply. Phys.41,245113 (2008).
    [38]G. Ghosh,Appl. Phys. Lett.66,3570 (1995).
    [39]L. Vina, S. Logothetidis and M. Cardona,Phys. Rev. B 30,1979 (1984).
    [40]Y. Q. Shen, W. Hu, T. W. Zhang, X. F. Xu, J. Sun, J. D. Wu, Z. F. Ying, and N. Xu, Mater. Sci. Eng. A 473,201 (2008).
    [41]Y. H. Xiao, S. H. Ge, L. Xi, Y. L. Zuo, X. Y. Zhou, B. M. Zhang, L. Zhang, C. X. Li, X. F. Han, and Z. C. Wen, Appl. Surf. Sci.254,7459 (2008).
    [42]H. Tang, F. Levy, H. Berger, and P. E. Schmid, Phys. Rev. B 52,7771 (1995).
    [43]S. Adachi, Phys. Rev. B 35,7454 (1987); S. Adachi, Phys. Rev. B 38,12345 (1988).
    [44]M. Cardona, Phys. Rev.140, A651 (1965).
    [45]Y. R. Park and K. J. Kim, J. Appl. Phys.94,6401 (2003).
    [46]Z. G. Hu, Y. W. Li, M. Zhu, Z. Q. Zhu, and J. H. Chu, Appl. Phys. Lett.92,081904 (2008).
    [47]K. C. Mishra, K. H. Johnson, and P. C. Schmidt, Phys. Rev. B 51,13972 (1995).
    [48]S. B. Ogale, R. J. Choudhary, J. P. Buban, S. E. Lofland, S. R. Shinde, S. N. Kale, V. N. Kulkarni, J. Higgins, C. Lanci, J. R. Simpson, N. D. Browning, S. Das Sarma, H. D. Drew, R. L. Greene, and T. Venkatesan, Phys. Rev. Lett.91,077205 (2003).
    [49]N. B. Chen, H. Z. Wu, D. J. Qiu, T. N. Xu, J. Chen, and W. Z. Shen, J. Phys.: Condens. Matter 16,2973 (2004).
    [50]X. Tang, F. Hossain, K. Wongchotigul, and M. G. Spencer, Appl. Phys. Lett.72, 1501 (1998).
    [51]E. Kaldis, current topics in materials science Amsterdam, North-Holland, vol.7, p. 143-482(1981).
    [52]K. B. Nam, J. Li, Y. Lin, and H. X. Jiang,Appl. Phys. Lett.85,3489 (2004).
    [53]L. L. Guo, W. Z. Shen, and Y. H. Zhang, J. Appl. Phys.99,113533 (2006).
    [54]S. Saha, N. Mehan, K. Sreenivas, and V. Gupta, Appl. Phys. Lett.95,071106 (2009).
    [55]F. Yakuphanoglu, M. Arslan, Kucukislamoglu, M. and M. Zengin, Solar Energy 79, 96 (2005).
    [56]B. S. Li, Y. C. Liu, Z. Z. Zhi, D. Z. Shen, Y. M. Lu, J. Y. Zhang, and X. W. Fan, J. Cryst. Growth 240,479 (2002).
    [1]C. H. Chen and Z. Y. Fan, Appl. Phys. Lett.95,262106 (2009).
    [2]S. Biermann, A. Poteryaev, A. I. Lichtenstein, and A. Georges, Phys. Rev. Lett.94, 026404 (2005).
    [3]C. H. Chen and Z. P. Zhou, Appl. Phys. Lett.91,011107 (2007).
    [4]X. F. Xu, A. Y. Yin, X. L. Du, J. Q. Wang, J. D. Liu, X. F. He, X. X. Liu, and Y. L. Huan, Appl. Surf. Sci.256,2750 (2010).
    [5]S. Lysenko, V. Vikhnin, F. Fernandez, A. Rua, and H. Liu, Phys. Rev. B 75,075109 (2007).
    [6]T.-H. Yang, R. Aggarwal, A. Gupta, H. H. Zhou, R. J. Narayan, and J. Narayan, J. Appl. Phys.107,053514 (2010).
    [7]L. T. Kang, Y. F. Gao, Z. T. Zhang, J. Du, Z. Chen, and H. J. Luo, J. Phys. Chem. C 114,1901 (2010).
    [8]A. Continenza, S. Massidda, and M. Posternak, Phys. Rev. B 60,15699 (1999).
    [9]A. Gavini and C. C. Y. Kwan, Phys. Rev. B 5,3138 (1972).
    [10]K. Okazaki, H. Wadati, A. Fujimori, M. Onoda, Y. Muraoka, and Z. Hiroi, Phys. Rev. B 69,165104(2004).
    [11]M. M. Qazilbash, A. A. Schafgans, K. S. Burch, S. J. Yun, B. G. Chae, B. J. Kim, H. T. Kim, and D. N. Basov, Phys. Rev. B 77,115121 (2008).
    [12]J. Goodenough, J. Solid State Chem.3,490 (1971).
    [13]W. W. Li, J. J. Zhu, J. D. Wu, J. Gan, Z. G. Hu, M. Zhu, and J. H. Chu, Appl. Phys. Lett.97,121102(2010).
    [14]K. Okazaki, S. Sugai, Y. Muraoka, and Z. Hiroi, Phys. Rev. B 73,165116 (2006).
    [15]C. N. Berglund and H. J. Guggenheim, Phys. Rev.185,1022 (1069).
    [16]J. Cao, E. Ertekin, V. Srinivasan, S. Huang, W. Fan, H. Zheng, J. W. L. Yim, D. R. Khanal, D. F. Ogletree, J. C. Grossman, and J. Wu, Nat. Nanotech.4,732 (2009).
    [17]H. W. Verleur, A. S. Barker, Jr., and C. N. Berglund, Phys. Rev.172,788 (1968).
    [18]N. R. Mlyuka, G. A. Niklasson, and C. G. Granqvist, Appl. Phys. Lett.95,171909 (2009).
    [19]J. I. Sohn, H. J. Joo, D. Ahn, H. H. Lee, A. E. Porter, K. Kim, D. J. Kang, and M. E. Welland, Nano. Lett.9,3392 (2009).
    [20]C. Ko and S. Ramanathan, Appl. Phys. Lett.93,252101 (2008).
    [21]H. T. Kim, B. G. Chae, D. H. Youn, G. Kim, K. Y. Kang, S. J. Lee, K. Kim, and Y. S. Lim, Appl. Phys. Lett.86,242101 (2005).
    [22]H. T. Kim, Y. W. Lee, B. J. Kim, B. G. Chae, S. J. Yun, K. Y. Kang, K. J. Han, K. J. Yee, and Y. S. Lim, Phys. Rev. Lett.97,266401 (2006).
    [23]T. Yao, X. D. Zhang, Z. H. Sun, S. J. Liu, Y. Y. Huang, Y. Xie, C. Z. Wu, X. Yuan, W. Q. Zhang, Z. Y. Wu, G. Q. Pan, F. C. Hu, L. H. Wu, Q. H. Liu, and S. Q. Wei, Phys. Rev. Lett.105,226405(2010).
    [24]Z. Yang, C. Ko, and S. Ramanathan, J. Appl. Phys.108,073708 (2010).
    [25]B. J. Kim, Y. W. Lee, B. G. Chae, S. J. Yun, S. Y. Oh, H. T. Kim, and Y. S. Lim, Appl. Phys. Lett.90,023515 (2007).
    [26]J. Q. Wu, Q. Gu, B. S. Guiton, N. P. de Leon, L. Ouyang,and H. Park, Nano Lett.6, 2313(2006).
    [27]J. Wei, Z. Wang, W. Chen, and D. H. Cobden, Nat. Nanotcchnol.4,420 (2009).
    [28]K. Appavoo and R. F. Haglund, Jr, Nano. Lett.11,1025 (2011).
    [29]J. R. Liang, M. Hu, X. D. Wang, G. K. Li, A. Ji, F. H. Yang, J. Liu, N. J. Wu, and H. D. Chen, Acta Phys.-Chim. Sin.2009,25,1523.
    [30]H. T. Kim, B. G. Chae, D. H. Youn, S. L. Maeng, G. Kim, K. Y. Kang, Y. S. Lim, New J. Phys.6,52 (2004).
    [31]A. Tselev, V. Meunier, E. Strelcov, W. A. Jr. Shelton, I. A. Luk'yanchuk, K. Jones, R. Proksch, A. Kolmakov, and S. V. Kalinin, ACS Nano 4,4412 (2010).
    [32]S. X. Zhang, J. Y. Chou, and L. J. Lauhon, Nano Lett.9,4527 (2009).
    [33]B. S. Mun, K. Chen, Y. Leem, C. Dejoie, N. Tamura, M. Kunz, Z. Liu, M. E. Grass, C. Park, J. Yoon, Y. Y. Lee, and H. Ju, Phys. Status Solidi. RRL 5,107 (2011).
    [34]Y. Shin, J. Moon, and H. Ju, J. Korean Phys. Soc.52,1828 (2008).
    [35]C. H. Chen, R. F. Wang, L. Shang, and C. F. Guo, Appl. Phys. Lett.93,171101 (2008).
    [36]P. Schilbe, Phys. B 316-317,600 (2002).
    [37]E. Arcangeletti, L. Baldassarre, D. Di Castro, S. Lupi, L. Malavasi, C. Marini, A. Perucchi, and P. Postorino, Phys. Rev. Lett.98,196406 (2007).
    [38]C. Z. Wu, H. Wei, B. Ning, and Y. Xie, Adv. Mater.22,1972 (2010).
    [39]W. T. Liu, J. Cao, W. Fan, Z. Hao, M. C. Martin, Y. R. Shen, J. Wu, and F. Wang, Nano Lett.11,466(2011).
    [40]Q. Liu, S. B. Long, W. Wang, S. Tanachutiwat, Y. T. Li, Q. Wang, M. H. Zhang, Z. L. Huo, J. N. Chen, and M. Liu, IEEE Electron Device Lett.31,1299 (2010).
    [41]D. Ruzmetov, D. Heiman, B. B. Claflin, V. Narayanamurti, and S. Ramanathan, Phys. Rev. B 79,153107(2009).
    [42]V. Eyert, Ann. Phys.11,650 (2002).
    [43]A. Frenzcl, M. M. Qazilbash, M. Brehm, B. G. Chae, B. J. Kim, H. T. Kim, A. V. Balatsky, F. Keilmann, and D. N. Basov, Phys. Rev. B 80,115115 (2009).
    [44]J. Kim, C. Ko, A. Frenzel, S. Ramanathan, and J. E. Hoffman, Appl. Phys. Lett.96, 213106(2010).
    [45]M. M. Qazilbash, M. Brehm, B. G. Chae, P.-C. Ho, G. O. Andreev, B. J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H. T. Kim, and D. N. Basov, Science 318, 1750(2007).
    [46]F. Wooten, Optical Properties of Solids (Academic, New York,1972).
    [47]P. Patsalas and S. Logothetidis, J. Appl. Phys.93,4870 (2003).
    [48]Z. Yang, C. Ko, V. Balakrishnan, G. Gopalakrishnan, and S. Ramanathan, Phys. Rev. B 82,205101 (2010).
    [49]M. M. Qazilbash, M. Brehm, G. O. Andreev, A. Frenzel, P.-C. Ho, B. G. Chae, B. J. Kim, S. J. Yun, H. T. Kim, A. V. Balatsky, O. G. Shpyrko, M. B. Maple, F. Keilmann, and D. N. Basov, Phys. Rev. B 79,075107 (2009).
    [50]J. S. Lee, M. W. Kim, and T. W. Noh, New J. Phys.7,147 (2005).
    [51]G. H. Liu, X. Y. Deng, and R. Wen, J. Mater. Sci.45,3270 (2010).
    [52]C. Blaauw, F. Leenhouts, F. van der Woude, and G. A. Sawatzky, J. Phys. C 8,459 (1975).
    [1]C. H. Ahn, K. M. Rabe, and J.-M. Triscone, Science 303,488 (2004).
    [2]J. F. Scott, Science 315,954 (2007).
    [3]H. Shin, H. J. Chang, R. W. Boyd, M. R. Choi, and W. Jo, Opt. Lett.32,2453 (2007).
    [4]R. Ramesh, J. Lee, T. Sands, V. G. Keramidas, and O. Auciello, Appl. Phys. Lett.64, 2511(1994).
    [5]B. Yang, S. Aggarwal, A. M. Dhote, T. K. Song, R. Ramesh, and J. S. Lee, Appl. Phys. Lett.71,356(1997).
    [6]M. Imamura, N. Matsubayashi, and H. Shimada, J. Phys. Chem. B 104,7348 (2000).
    [7]Z. G. Hu, Z. M. Huang, Y. N. Wu, Q. Zhao, G. S. Wang, and J. H. Chu, J. Appl. Phys. 95,4036 (2004).
    [8]B. Berini, N. Keller, Y. Dumont, E. Popova, W. Noun, M. Guyot, J. Vigneron, A. Etcheberry, N. Franco, and M. C. Rui da Silva, Phys. Rev. B 76,205417 (2007).
    [9]A. McKinlay, P. Connor, T. S. IrvineJohn, and W. Z. Zhou, J. Phys. Chem. C 111, 19120(2007).
    [10]Wenwu Li, Yawei Li, Zhigao Hu, Ziqiang Zhu, and Junhao Chu, Infrared & Millim. Waves.28,410 (2009).
    [11]1. I. Naumov, L. Bellaiche, and H. Fu, Nature 432,737 (2004).
    [12]J. Kim, S. A. Yang, Y. C. Choi, J. K. Han, K. O. Jeong, Y. J. Yun, D. J. Kim, S. M. Yang, D. Yoon, H. Cheong, K.-S. Chang, T. W. Noh, and S. D. Bu, Nano Lett.8,1813 (2008).
    [13]J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin, K. M. Rabe, M. Wuttig, and R. Ramesh, Science 299,1719 (2003).
    [14]P. Chen, N. J. Podraza, X. S. Xu, A. Melville, E. Vlahos, V. Gopalan, R. Ramesh, D. G. Schlom, and J. L. Musfeldt, Appl. Phys. Lett.96,131907 (2010).
    [15]M. K. Singh, H. M. Jang, S. Ryu, and M. H. Jo, Appl. Phys. Lett.88,042907 (2006).
    [16]A. Kumar, R. C. Rai, N. J. Podraza, S. Denev, M. Ramirez, Y. H. Chu, L. W. Martin, J. Ihlefeld, T. Heeg, J. Schubert, D. G. Schlom, J. Orenstein, R. Ramesh, R. W. Collins, J. L. Musfeldt, and V. Gopalan, Appl. Phys. Lett.92,121915 (2008).
    [17]J. Allibe, K. Bougot-Robin, E. Jacquet, I. C. Infante, S. Fusil, C. Carretero, J.-L. Reverchon, B. Marcilhac, D. Cretee, J.-C. Mage, A. Barthelemy, and M. Bibes, Appl. Phys. Lett.96,182902 (2010).
    [18]R. V. Pisarev, A. S. Moskvin, A. M. Kalashnikova, and Th. Rasing, Phys. Rev. B 79, 235128(2009).
    [19]X. S. Xu, T. V. Brinzari, S. Lee, Y. H. Chu, L. W. Martin, A. Kumar, S. McGill, R. C. Rai, R. Ramesh, V. Gopalan, S. W. Cheong, and J. L. Musfeldt, Phys. Rev. B 79,134425 (2009).
    [20]R. P. S. M. Lobo, R. L. Moreira, D. Lebeugle, and D. Colson, Phys. Rev. B 76, 172105(2007).
    [21]Y. Yang, J. Y. Sun, K. Zhu, Y. L. Liu, and L. Wan, J. Appl. Phys.103,093532 (2008).
    [22]P. Hermet, M. Goffinet, J. Kreisel, and Ph. Ghosez, Phys. Rev. B 75,220102 (2007).
    [23]G. E. Jellison, Jr. and F. A. Modine, Appl. Phys. Lett.69,371 (1996); 69,2137 (1996).
    [24]S. R. Basu, L. W. Martin, Y. H. Chu, M. Gajek, R. Ramesh, R. C. Rai, X. Xu, and J. L. Musfeldt, Appl. Phys. Lett.92,091905 (2008).
    [25]M. O. Ramirez, A. Kumar, S. A. Denev, N. J. Podraza, X. S. Xu, R. C. Rai, Y. H. Chu, J. Seidel, L. W. Martin, S.-Y. Yang, E. Saiz, J. F. Ihlefeld, S. Lee, J. Klug, S. W. Cheong, M. J. Bedzyk, O. Auciello, D. G. Schlom, R. Ramesh, J. Orenstein, J. L, Musfeldt, and V. Gopalan, Phys. Rev.B 79,224106 (2009).
    [26]M. O. Ramirez, A. Kumar, S. A. Denev, Y. H. Chu, J. Seidel, L. W. Martin, S.-Y. Yang, R. C. Rai, X. S. Xue, J. F. Ihlefeld, N. J. Podraza, E. Saiz, S. Lee, J. Klug, S. W. Cheong, M. J. Bedzyk, O. Auciello, D. G. Schlom, J. Orenstein, R. Ramesh, J. L. Musfeldt, A. P. Litvinchuk, and V. Gopalan, Appl. Phys. Lett.94,161905 (2009).
    [27]J. F. Scott, M. K. Singh, and R. S. Katiyar, J. Phys.:Condens. Matter 20,322203 (2008); 20,425223 (2008).
    [28]P. Rovillain, M. Cazayous, Y. Gallais, A. Sacuto, R. P. S. M. Lobo, D. Lebeugle, and D. Colson, Phys. Rev. B 79,180411 (2009).
    [29]M. K. Singh, R. S. Katiyar, and J. F. Scott, J. Phys.:Condens. Matter 20,252203 (2008).
    [30]C. Himcinschi, I. Vrejoiu, M. Friedrich, E. Nikulina, L. Ding, C. Cobet, N. Esser, M. Alexe, D. Rafaja, and D. R. T. Zahn, J. Appl. Phys.107,123524 (2010).
    [31]S. J. Clark and J. Robertson, Appl. Phys. Lett.90,132903 (2007).
    [32]S. A. Lourenco, I. F. L. Dias, J. L. Duarte, E. Laureto, E. A. Meneses, J. R. Leite, and I. Mazzaro, J. Appl. Phys.89,6159 (2001).
    [33]S. Biernacki, U. Scherz, and B. K. Meyer, Phys. Rev. B 49,4501 (1994).
    [34]F. Yakuphanoglu, M. Arslan, M. Kucukislamoglu, and M. Zengin, Sol. Energy 79, 96 (2005).
    [35]B. S. Li, Y. C. Liu, Z. Z. Zhi, D. Z. Shen, Y. M. Liu, J. Y. Zhang, and X. W. Fan, J. Cryst. Growth 240,479 (2002).
    [36]Y. M. Xiong, X. H. Chen, X. G. Luo, C. H. Wang, H. B. Song, C. L. Chen, and H. Y. Chang, J. Phys.:Condens. Matter 16,553 (2004).
    [37]D. Fuchs, T. Schwarz, O. Moran, P. Schweiss, and R. Schneider, Phys. Rev. B 71, 092406 (2005).
    [38]A, Gossling, M. W. Haverkort, M. Benomar, H. Wu, D. Senff, T. Moller, M. Braden, J. A. Mydosh, and M. Gruninger, Phys. Rev. B 77,035109 (2008).
    [39]Z. G. Hu, Y. W. Li, M. Zhu, Z. Q. Zhu, and J. H. Chu, Phys. Lett. A 372,4521 (2008).
    [40]Z. G. Hu, W. W. Li, Y. W. Li, M. Zhu, Z. Q. Zhu, and J. H. Chu, Appl. Phys. Lett.94, 221104(2009).
    [41]A. Rusydi, R. Rauer, G. Neuber, M. Bastjan, I. Mahns, S. Muller, P. Saichu, B. Schulz, S. G. Singer, A. I. Lichtenstein, D. Qi, X. Gao, X. Yu, A. T. S. Wee, G. Stryganyuk, K. Dorr, G. A. Sawatzky, S. L. Cooper, and M. Rubhausen, Phys. Rev. B 78,125110 (2008).
    [42]M. A. Quijada, J. R. Simpson, L. Vasiliu-Doloc, J. W. Lynn, H. D. Drew, Y. M. Mukovskii, and S. G. Karabashev, Phys. Rev. B 64,224426 (2001).
    [43]I. Bozovic, J. H. Kim, J. S. Harris Jr, C. B. Eom, J. M. Phillips, and J. T. Cheung, Phys. Rev. Lett.73,1436 (1994).
    [44]M. Imada, A. Fujimori, and Y. Tokura, Rev. Mod. Phys.70,1039 (1998).
    [45]Y. Tokura, Y. Okimoto, S. Yamaguchi, H. Taniguchi, T. Kimura, and H. Takagi, Phys. Rev. B 58, R1699(1998).
    [46]D. N. Basov and T. Timusk, Rev. Mod. Phys.77,721 (2005).
    [47]Z. G. Hu, Y. W. Li, M. Zhu, Z. Q. Zhu, and J. H. Chu, Appl. Phys. Lett.92,081904 (2008).
    [48]Z. G. Hu and P. Hess, Appl. Phys. Lett.89,081906 (2006).
    [49]Z. G. Hu, Z. M. Huang, Y. N. Wu, Q. Zhao, G. S. Wang, and J. H. Chu, J. Appl. Phys. 95,4036 (2004).
    [50]Y. W. Li, Z. G. Hu, F. Y. Yue, W. Z. Zhou, P. X. Yang, and J. H. Chu, Appl. Phys. A: Mater. Sci. Process.95,721 (2009).
    [51]O. S. Heaven, Optical Properties of Thin Solid Films (Dover, New York,1991).
    [52]Z. G. Hu, A. G. U. Perera, Y. Paltiel, A. Raizman, and A. Sher, J. Appl. Phys.98, 023511(2005).
    [53]I. Bozovic, J. H. Kim, J. S. Harris, Jr., C. B. Eom, J. M. Phillips, and J. T. Cheung, Phys. Rev. Lett.73,1436 (1994).
    [54]A. Rusydi, R. Rauer, G. Neuber, M. Bastjan, I. Mahns, S. Muller, P. Saichu, B. Schulz, S. G. Singer, A. I. Lichtenstein, D. Qi, X. Gao, X. Yu, A. T. S. Wee, G. Stryganyuk, K. Dorr, G. A. Sawatzky, S. L. Cooper, and M. Rubhausen, Phys. Rev. B 78,125110 (2008).
    [55]K. Sreedhar, J. M. Honig, M. Darwin, M. McElfresh, P. M. Shand, J. Xu, B. C. Crooker, and J. Spalek, Phys. Rev. B 46,6382 (1992).
    [56]K. Horiba, R. Eguchi, M. Taguchi, A. Chainani, A. Kikkawa, Y. Senba, H. Ohashi, and S. Shin, Phys. Rev. B 76,155104 (2007).
    [57]W. S. Choi, S. S. A. Seo, K. W. Kim, T. W. Noh, M. Y. Kim, and S. Shin, Phys. Rev. B 74,205117(2006).
    [58]S. R. Barman, A. Chainani, and D. D. Sarma, Phys. Rev. B 49,8475 (1994).
    [59]A. Yu. Dobin, K. R. Nikolaev, I. N. Krivorotov, R. M. Wentzcovitch, E. D. Dahlberg, and A. M. Goldman, Phys. Rev. B 68.113408 (2003).
    [60]Z. G. Hu, Y. W. Li, F. Y. Yue, Z. Q. Zhu, and J. H. Chu, Appl. Phys. Lett.91,221903 (2007).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700