用户名: 密码: 验证码:
铣削加工振动主动控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
机床的运行总伴随着振动,机床的振动会造成零件过早出现疲劳破坏,使得机床安全程度、可靠性和强度下降;机床的振动还会导致被加工工件的形状精度和表面精度降低,刀具寿命和生产率下降。同时,机床的振动往往伴随着噪音,刺激操作人员损害健康。当满足一定条件时,稳态的切削振动甚至会发展成切削颤振,从而引发整个切削系统的崩溃。
     为提高切削效率和加工精度,人们在切削振动的控制方面开展了大量研究工作。切削振动控制可分为主、被动两种方法。传统的被动方法主要通过在线调整主轴转速和降低铣削深度避开不稳定切削区来降低切削振动,避免颤振。但通过这些方法来降低振动需要对系统稳定性进行预测,确定其稳定性图,而当由机床-刀具-夹具-工件所组成的加工系统其中有一者改变时其稳定性图也发生改变,为实际应用带来困难。不同于被动方法,主动方法需在切削系统中引入附加的系统并通过该系统提供的主动控制力来实现切削振动的主动控制。相对于被动方法其优势在于能够在不影响加工效率的情况下提高加工精度。由于车削运动形式较为简单使得主动控制系统易于实现,目前的研究多以车刀振动为研究对象。铣削过程中刀具运动的复杂性导致其振动主动控制研究的较少;此外,由于铣削时刀具与工件之间相对振动测量困难从而缺乏能用于控制的反馈量,使得目前的铣削振动控制仅能考虑工件的振动,无法实现对刀具与工件相对振动的控制。
     金属铣削被广泛地应用于机械制造业,提高铣削率以降低成本是金属铣削加工业的必然需求。目前,我国铣床的加工效率远比国外低,加工精度也比国外低1~2数量级。然而,为提高铣削率而增大切削参数会导致切削振动加剧,因此,铣削振动控制是当前机械设计及制造领域受到广泛关注的前沿课题之一,研究铣削系统中刀具和工件的相互振动及其对加工创成表面的影响,实现相对振动的在线控制对提升铣削工艺水平和高性能复杂产品加工能力具有重要的应用和经济价值。本课题面向制造业的重大需求,通过对刀具和工件的相对振动的实验研究,建立了铣削过程动力学模型,分析了切削振动对工件表面形成的影响,设计铣削振动主动控制系统实现对铣削过程中刀具与工件相对振动的主动控制,从而有效地提高加工效率和质量。
     论文首先综述了国内外研究人员在机床振动的实验和理论方面的研究概况,总结了各种振动控制的实现形式并分析了它们的优缺点,对其中涉及的的建模、控制方法以及传感器作动器等问题也作了阐述。
     针对铣削加工过程运动复杂,刀具振动难以测量的特点,提出了一种可直接铣削时刀具和工件振动的方法,设计了相应的实验装置和和方案;应用该方法测量了多种切削参数条件下及铣削不同阶段时刀具和工件的振动位移。通过对多个传感器的输出信号的分析处理验证了该方法的有效性;对实验数据进行分析并探讨了铣削不同阶段时切削振动的特性,为进一步的研究工作提供实验基础。
     为研究切削参数与振动之间的关系,通过模态实验测量了刀具-工件-机床加工系统的力~振动频响函数;基于该频响函数利用参数识别获得了加工系统的动力学参数模型;将该模型与动态切削力模型相结合建立了侧铣加工的切削力和振动预测模型;仿真了动态切削力及切削振动,针对测力仪本身动态特性会造成其测量的切削力失真的情况在切削力仿真时还考虑了该因素的影响;进行切削实验并利用测量获得的数据验证了该模型的有效性。
     推导了考虑切削振动的侧铣加工表面形成模型,利用实测侧铣加工刀具和工件振动位移数据通过仿真程序预测了工件表面形貌;讨论了切削振动在工件表面形成中的作用,结果表明在给定的切削参数下,刀具与工件之间的相对振动是影响加工面表面形成的主要原因。
     根据实际测量的切削振动数据时频域的特征设计了一种用于铣削减振的两自由度主动式工件装夹平台;对该平台进行有限元仿真分析了其主要性能指标;制造并装配了铣削主动减振平台;对最终完成的平台进行了实验验证了设计的平台可应用与铣削主动减振场合。
     分析了被控对象即设计的主动平台的动力学特性并基于实测平台频响函数建立了主动平台的参数模型;根据被控对象及铣削振动的特点利用鲁棒干扰抑制和鲁棒混合灵敏度两种不同方法设计了反馈控制器;通过仿真验证了设计的控制器在实现对振动的有效衰减的同时针对模型的不确定性具有闭环的鲁棒稳定性;
     利用NI PCI-6251数采卡及Labview实现了采用鲁棒混合灵敏度方法设计的控制器;通过切削实验检验了整个铣削振动主动控制系统的有效性。结果表明,主动控制作用可在宽频带内实现铣削时刀具与工件之间相对振动振幅为30%~50%衰减;当振动是工件表面轮廓形成的主要原因时,振动主动控制可明显提高加工精度。
     本文的研究工作对切削振动特性的实验研究,切削过程动力学建模,工件表面形成以及铣削振动主动控制系统的设计与实现等具有一定的参考价值。
The phenomenon of vibration is an inextricable part of any machining processes and modern machine shops are well aware of its detrimental effects. Cutting vibrations can desta-bilize a machining process with severe implications for machine tool, machining quality, tool life, productivity and operator’s health. In extreme situations, uncontrolled cutting vibrations can lead to chatter and collapse the cutting system.
     Considerable research efforts have been put into controlling or reducing the extent of the problem to improve the productivity and machining quality in metal cutting. In general, re-search into vibration control in this area can thus be divided into two categories: classical cut-ting parameter adjustment and active vibration control. In the former category, the cutting pa-rameters (cutting speed, feed rate, etc.) are changed so that the cutting process adapts to dy-namic properties of the structure and the machining process always lies in a stable regime. For this approach, the lobe diagrame should be available to predict the stable cutting regime, and it is a tedious process since cutting dynamics usually variate with cutting conditions. Fur-thermore, the productivity may also be decreased since cutiign parameters are changed. Dif-ferent from the former method, in active method an auxiliary system is introduced to offer an active force to canceal the vibration. Comparing to the former method, it can improve the machining quality with no sacrifice of productivity. For the reason of convenience, active cut-ting vibration control systems for turning process are widely studied. Due to the complicated movements of milling tool, the relative vibration between the tool and workpiece is very dif-ficult to measure, and thus lead to the lack of essential feed back signals. Therfore, little atten-tions have been paid to the researchs in milling process.
     Milling is widely used in metal cutting, the milling productivy and quality in China is severely inferior to developed countries. Therefore,the study of active cutting vibration control system for milling process to improve the milling productivity and quality is an es-sential industrial requirement, and it has great economic and application metrits. In this reae-arch, the design and synthesis of active milling vibration control system which can attenuate the relative vibration between the tool and workpiece are presented, the study of cutting sys-tem dynamics and surface generation are also included.
     First, the domestic and oversea researchs in machine tool vibration have been summa-rized, the realization of vibration control systems and their characteristics are analysized, the modeling method, controller design, sensors and actuactors involved in this research area are also discussed.
     As aforementioned, the difficulty in tool vibration measurement results in the lack of study on active milling vibration control. In charpter II, one method can accurately measuring the vibration displacement of tool and workpiece is proposed, the experimental devices and program are also presented. The vibration displacement of tool and workpiece in different cutting phases under varing cutting parameters is acquired by using the method, and the reli-ability of the method is verified and the characteristics of cutting vibration are obtained through the analysis of sampled data.
     To study the coorelation between the cutting parameters and vibrationsd, cutting dy-namic model is built in charpter III. Modal experiment is carried out to obtain the displace-ment V.S forces FRFs of tool-workpiece-machien tool; parameteric models are obtained bas-ing on the measured FRFs. Combining the models with dynamic cutting forces model a cut-ting forces and vibrations prediction model is built. The validation of the mdel is proved by comparing the predicted and measured cutting force and vibration signals, and the influences of force dynometer dynamics are also discussed.
     The sudy of the coorealtion between the surface generation and cutting vibrations in pe-ripheral milling is presented in charpter IV. A geometric peripheral milling model and surface profile generation algorithm are presented. The surface topography is simulated using actual vibration signals and compared with the real ones, moreover, the effects of cutting vibration are also analyzed. Results show that the simulated surface profile gives a good agreement with the real one, and the vibration plays the leading role in surface generation in given cut-ting parameters.
     Since the tool vibration can not be controlled directly, the strategy for active vibration control milling is drving the workpiece to canceal the relative vibrations between the tool and workpiece. And hence in charpter V, basing on the characteristics of measured cutting vibra-tions, a two-axis piezo-actuators driven active workpiece holding stage, is developed as the executive unite of active milling vibration control system. The main performances of the stage are obtained through the finite element analysis. The stage is manufactured and assembled, followed by tests on the stage, the resuts show that the stage achieves the desired performance and can be used in activ milling vibration control.
     The system dynamics are analysized theoretically and experiment is carried out to derive system parametric model. In controller synthesis, the stage is modeled as controlled plant, while cutting vibrations are treated as disturbances to the system. Basing on the characteristics of the problem, the robust mixed sensitivity and robust disturbance rejection methods are em- ployed in feed back controller synthesis to achieve disturbance rejection and closed-loop sys-tem stabilization against variations of cutting vibrations and unmolded system dynamics in high frequency range. In this effort, the movements of worrkpiece are regulated by the devel-oped system to cancel the relative vibration between the tool and workpiece in cutting process. Numerical simulations are carried out to prove the validation of the designed controller. The hardware of the controller is developed by using NI PCI-6251 and Labview. Extensive cut-ting experiments are carried out to verify the performances of the control system, and the re-sults show that the developed system works well in cutting vibration cancellation and ma-chining quality improvement.
     The work presented in this thesis may beworthily used to study on the characteristics of cutting vibrations, modeling cutting process dynamics, surface generation and develop active vibration control system for milling.
引文
[1]徐耀信,机床振动学。南昌:江西高校出版社,1990
    [2] J. Rojas, C. Liang, Experimental investigation of active machine tool vibration control. Smart structures and materials, Proceedings of SPIE, 1996, 2721: 373-384.
    [3]星铁太郎,机械加工颤振的分析与对策.上海:上海科学技术出版设, 1984.
    [4] Y. S. Liao, Y. C. Young, New on-line spindle speed regulation strategy for chatter control. International journal of machine tools and manufacture, 1996, 36(5): 651-660.
    [5] I. Kenkichi, Y. Keiichi, H. Tetsutaro, Chatter control in screw thread turning by spindle speed variation. Transactions of the Japan Society of Mechanical Engineers, Part C, 2004, 70(5): 1529-1534.
    [6] X. J. Wang, J. Y. Yu, H. W. Zhao, Q. X. Jia, Chatter suppression based on rec-ognizing stable spindle speed. Progress of Machining Technology, Proceedings of the 7th International Conference on Progress of Machining Technology, 2004: 639-644.
    [7] E. Soliman, F. Ismail, Control system for chatter avoidance by ramping the spindle speed. Journal of manufacturing science and engineering, Transactions of the ASME, 1998, 120(4): 674-683.
    [8] E. AL-Regib, J. Ni, S. H. Lee, Programming spindle speed variation for machine tool chatter suppression. International journal of machine tools and manufacture, 2003, 43(12): 1229-1240.
    [9] A. Ylimaz, E. AL-Regib, J. Ni, Machine-tool chatter suppression by multi-level random spindle speed variation. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2002, 208(124): 897-905.
    [10] X. H. Long, B. Balachandran, Stability Analysis for Milling Process. Nonlinear dynamics, 2007, 49(3): 349-359.
    [11] W. Y. Lee, K. W. Kim, H. C. Sin, Design and analysis of a milling cutter with the improved dynamic characteristics. International journal of machine tools and manu-facture, 2002, 42(8): 961-967.
    [12] Rivin, I. Eugene, Tooling structure: Interface between cutting edge and machine tool. CIRP annals of manufacturing technology, 2000, 49(2): 591-609.
    [13] S.K. Choudhury, J. Mathew, Investigations of the effect of non-uniform insert pitch on vibration during face milling. International journal of machine tools andmanufacture, 1995, 35(10): 1435-1444.
    [14] E.I. Rivin, Vibration isolation of precision equipment. Precision engineering, 1995, 17(1): 41-56.
    [15] P.K. Subrahmanyan, D.L. Trumper, Synthesis of passive vibration isolation mounts for machine tools: A control system paradigm. Proceedings of the American Control Conference, Chicago, June 2000: 2886-2891.
    [16]丁文境,减振理论.北京:清华大学出版社, 1998.
    [17]盖玉先,董申,李旦,张明明,超精密机床的振动混合控制.中国机械工程, 2000, 11(3): 289-291.
    [18]张明明,李旦,董申,盖玉先,超精密机床垂向有源隔振系统的实验研究.制造技术与机床, 2001, 2: 12-14.
    [19]盖玉先,李旦,董申,基于模糊神经融合的超精密机床振动主动控制.中国机械工程, 2000, 11(8): 872~874.
    [20]张建卓,李旦,董申,超精密机床三自由度振动主动控制模型与仿真.航空精密制造技术, 2002, 38(6): 4-7.
    [21] K. Kajiwara, M. Hayatu, S. Imaoka, T. Fujita, Application of large scale active microvibration control system using piezoelectric actuator to semiconductor manu-facturing equipment. Smart structures and materials, Proceedings of SPIE 1997, 3044: 258-269.
    [22] H. Yoshioka, N. Murai, Active microvibration control system by pole assignment method using genetic algorithm. Smart structures and materials, Proceedings of SPIE 1999, 3668: 980-986.
    [23] Y.Nakamura, M. Nakayama, K. Masuda, Development of active 6-DOF mi-crovibration control system using giant magnetostrictive actuator. Smart structures and materials, Proceedings of SPIE, 1999, 3671:229-240.
    [24]王鸿,王文,机床摩擦自激振动的研究.烟台大学学报(自然科学与工程版), 1997, 10(1): 59-65.
    [25]廖效果,朱启逑编,数字控制机床.武汉:华中科技大学出版社, 1992.
    [26]胡旭晓,机床进给系统摩擦特性分析及改善措施研究.机械工程学报, 2005, 41(8): 185-189.
    [27] M. Iwasaki, M. Kawafuku, H. Hirai, Residual vibration suppression using initial value compensation. Advanced motion control, Proceedings of the IEEE/ASME in-ternational conference on AMC, 2004: 571-576.
    [28] M.Iwasaki, K.Seki and H.Hira, Fast response positioning using H∞control in machine tools. Advanced motion control, Proceedings of the IEEE/ASME interna-tional conference on AMC, 2002: 46-51.
    [29] Y. H. Choi, E. Y. Choi, S. H. Jang, H. M. Park, J. S. Ha, Vibration analysis and dynamic optimization of a rack and pinion typed feed drive system for router machine. Control systems and robotics, Proceedings of SPIE, 2005, 6042: 1-6.
    [30] S. Mssatoyo, I. Yasusuke, K.Yoshiaki, Vibration suppression control of linear motor driven machine tool. The 7th International Conference on Progress of Machin-ing Technology, 2004: 628-633.
    [31] Y. Morimoto, Y. Ichida, R.Sato etc, Measurement and vibration control of dy-namic characteristics of feed table for machine tool. Proceeding of the 2002 SICE, 2002: 492-494.
    [32] T. Chang, T. Wong, B. Dani etc, Control of ultra-high precision magnetic lead screw using recurrent neural net works. Proceeding of SPIE Conference on Mecha-tronics, 1998: 208-219.
    [33]王加春,董申,李旦,超精密机床溜板的模糊-PID振动主动控制研究.燕山大学学报, 2001, 25(1): 57-60.
    [34] S. Zhou, J. J. Shi, Active balancing and vibration control of rotating machinery: a survey. The shock and vibration digest, 2001, 33(4): 361-371.
    [35] J. D. Moon, B. S. Kim, S. H. Lee,Development of the active balancing device for high-speed spindle system using influence coefficients. International journal of machine tools and manufacture, 2006, 46(9): 978–987.
    [36] Vincent. Tamisier, Stéphane. Font, Optimal vibration control of a milling elec-trospindle. The 9th international symposium on magnetic bearings, 2004: 8-16.
    [37] X. Y. Zhang, T. Shinshi, L. C. Li, A. Shimokohbe, A combined repetitive control for precision rotation of magnetic bearing. Precision Engineering, 2003, 27(3): 273–282.
    [38] S. Lima, S. M. Parka, K. I. Kim, AI vibration control of high-speed rotor systems using electrorheological fluid. Journal of sound and vibration, 2005, 284(3-5): 685–703.
    [39] J. P. Lauffera, M. E. Regelbruggeb, C. M. Kwanc, etc. A smart spindle unit for active chatter suppression of a milling machine Part I: overview fabrication and as-sembly. Industrial and commercial applications of smart structures technologies, Pro-ceedings of SPIE, 1998, 3326: 160-166.
    [40] J. P. Lauffera, M. E. Regelbruggeb, C. M. Kwanc, etc. A smart spindle unit for active chatter suppression of a milling machine Part II: dynamics and control. Indus-trial and commercial applications of smart structures technologies, Proceedings ofSPIE, 1998, 3326: 167-173.
    [41] K. Nagaya, H. Yamazaki. Control of micro-vibration of a machine head by using piezoelectric actuators. International journal of applied electromagnetics and mechan-ics, 1997, 8: 15-328.
    [42] B. Chung, S. Smith, J. Tlusty, Active damping of structure modes in high-speed machine tools. Journal of vibration and control, 1997, 3(3): 279-295.
    [43]李沪曾, G.Spur,郭大津,机床振动学研究的历史回顾与展望.同济大学学报, 1994, 22(3): 378-384.
    [44] M. M. Sadek, S. A. Tobias, Reduction of machine tool vibration. Journal of ap-plied mechanics, Transcations of ASME, 1973,1: 128~135.
    [45] B.W. Wong, B.L. Walcott, K.E. Rouch, Active vibration control via electromag-netic dynamic absorbers. Control applications, Proceedings of the 4th IEEE Confer-ence, 1995: 868-874.
    [46] S.G. Tewani, K.E. Rouch, B.L. Walcott, A study of cutting process stability of a boring bar with active dynamic absorber. International journal of machine tools and manufacture, 1995, 35(1): 91-108.
    [47] S.G. Tewani, T.C. Switzer, K.E. Rouch, Active control of machine tool chatter for a boring bar: Experimental results. Vibration and control of mechanical systems, 1993, 61: 103-115.
    [48] M.A. Marra, K.E. Rouch, S.G. Tewani, Vibration control for machining Using H infinite technology. Southeastcon 95 Visualize the Future , Proceedings of IEEE, 1995: 436-442.
    [49] M.A. Marra, B.L. Walcott and K.E. Rouch, H infinite vibration control for ma-chining using active dynamic absorber technology. Proceedings of the American Con-trol Conference, 1995: 739-743.
    [50] G. Pan, H. Xu and C.M. Kwan, Modelling and intelligent chatter control strate-gies for lathe machine, Proceedings of the 1996 IEEE International Conference on Control Applications, 1996: 235-240.
    [51] D.R. Browing, I.G. Norman, B.Thompson, Active chatter control system for long-overhang boring bars. Smart Structures and Materials, Proceedings of SPIE, 1997, 3044: 270-280.
    [52] J.R. Pratt, A.H. Nayfeh, Design and modeling for chatter control. Nonlinear dy-namics, 1999, 19(1): 49-69.
    [53] L. Pettersson, L. Hákansson, I. Claesson, Active vibration control of boring bar vibration in cutting operations. The 9th international congress on sound and vibration,2002: 512-528.
    [54] L. Pettersson, L. Hákansson, I. Claesson, S. Olsson, Active control of internal turning operations using boring bar. The 9th IEEE Conference on Mechatronics and Machine Vision in Practice, 2002: 478-484
    [55] L. Andren, L. Hákansson, I. Claesson, Actuactor placement and vibrations in the path estimates in the active control of boring bar vibrations. The 11th International congress on sound and vibration, 2004: 438-444.
    [56] M. Wang, R. Fei, Chatter suppression based on nonlinear vibration characteristic of electrorheological fluids. International journal of machine tools and manufacture, 1999, 39(12): 1925-1934.
    [57] I. Claesson, L. Hakansson, Adaptive active control of machine tool vibration in a lathe. International journal of acoustics and vibration, 1998, 13(4): 155-162.
    [58] I. Claesson, L. Hakansson, T.Lago, Robust control of machine-tool vibration in a lathe. The 6th international congress on sound and vibration, 1999: 1719-1730.
    [59] A. H. El-Sinawi, Reza Kashani, Improving surface roughness in turning using optimal control of tool’s radial position. Journal of materials processing technology, 2005, 167(1): 54-61.
    [60] I. T. Al-Zaharnah, Suppression vibration of machining processes in both feed and radial directions using optimal control strategy: The case of interrupted cutting. Jour-nal of materials processing technology, 2006, 172(2): 305-310.
    [61] I. T. Al-Zaharnah, A. H. El-Sinawi, Two dimensional vibration suppression in machining a smooth surface with uniform cross section and zero modulation. Interna-tional conference on control and automation, Proceedings of IEEE, 2005, 2: 919-924.
    [62] J. Wang, C. Y. Su, Y. Stepanenko, Two DOF modeling with three dimensional forces and robust chatter control in metal cutting by piezoactuator. Proceedings of the IEEE/ASME International Conference on Advanced Intelligent Mechatronics, 2003, 4: 844-849.
    [63] Jian Wang, Chun-Yi Su and Masahiro Oya, Theoretic Modeling and adaptive control for two DOF Piezo Electric Actuated Chatter suppression system. Proceedings of the 42nd IEEE Conference on decision and Control, Maui Hawaii, USA, 11,2003: 4315-4320.
    [64] S. K. Choudhury, N. N. Goudimenko, V.A. Kudinov, On line control of machine tool vibration in turning. International journal of machine tools manufacture, 1997, 37(6): 801-811.
    [65] S. K. Choudhury, M. S. Sharath, On-line control of machine tool vibration during turning operation. Journal of materials processing technology, 1995, 47(3-4): 251-259.
    [66] S. Lockwood, F. Haase, D.G.Ford, Active vibration control of machine tool structures Part I: DSP algorithms. Laser Metrology and Machine Performance VI, 2003: 441-450.
    [67] S. Lockwood, F. Haase, D. G. Ford, Active vibration control of machine tool structures Part II: An experimental active-vibration control system. Laser Metrology and Machine Performance VI, 2003: 451-460.
    [68] A. Rashid, C. M. Nicolescu, Active vibration control in palletised workholding system for milling. International journal of machine tools and manufacture, 2006, 46(12-13): 1626-1636.
    [69] Y. Zhang, N. D. Sims, Milling workpiece chatter avoidance using piezoelectric active damping: A feasibility study. Smart materials and structures, 2005, 14(6): 65-70.
    [70] N.D.Sims, Y. Zhang, Active damping for chatter reduction in high speed ma-chining. Smart materials and structures, 2003, 195-212.
    [71] B.Allotta, F.Angiolo, M.Rinch, Constraints identification for vibration control of time-varying boundary conditions systems. IEEE/ASME international conference on advanced intelligent mechatronics proceedings. 2001: 606-611
    [72]王建军,钱济国,机床动力学.徐州:中国矿业大学出版社, 1993.
    [73] K. Marchelek, J. Tomlow, Vibrostability of a multidimensional machine tool-workpiece-tool system, part II: Modeling the mechanical structure and cutting process. Journal of vibration and control, 1998, 4: 99-112.
    [74] K. Marchelek, J. Tomlow, Vibrostability of a multidimensional machine tool-workpiece-tool system, part II: An example of vibrostability analysis made on a vertical lathe. Journal of Vibration and Control, 1998, 4: 113-130.
    [75] S. Berczynski, P. Gutowski, Identification of the dynamic models of machine tool supporting system, Part I: An algorithm of the method. Journal of vibration and con-trol, 2006, 12: 257-277.
    [76] P, Gutowski, S, Berczynski, Identification of the dynamic models of machine tool supporting system, Part II: An example of application of the method. Journal of vibra-tion and control, Vol. 2006, 12: 279-295.
    [77] G. Holroyd, C. Pislaru, D.G. Ford, Modelling the dynamic behaviour of a ball screw system taking into account the changing position of the ball-screw nut. Laser Metrology and Machine Performance VI, 2002: 337-347.
    [78] Y.H.Choi, S.M.Cha and J.H.Hong, etc, A study on the vibration analysis of a ball screw feed drive system. Materials Science Forum, 2004, 471-472: 149-154
    [79] G. Holroyd, C. Pislaru, and D.G. Ford, Identification of damping elements in a CNC machine tool drive. Laser Metrology and Machine Performance VI, 2002: 337: 289-299.
    [80] M.M. Sadek, W.A. Knight, Dynamic acceptance tests applied to a center-type lathe. Journal of engineering industruy, Transcations of ASME, 1975,97(1): 203-210.
    [81] F. Haase, S. Lockwood and D.G. Ford, Vibration modeling of machine tool structures. Laser Metrology and Machine Performance V, 2001: 137-146.
    [82] Y. Morimoto, Y. Ichida, Estimation of dynamic characteristics of machine struc-ture by pseudo inverse matrix. SICE 2004 annual conference, 2004, 2: 1005-101.
    [83] N. Tounsi, A. Otho, Identification of machine-tool-workpiece system dynamics. International journal of machine tools and manufacture, 2000, 40(9): 1367-1384.
    [84]冯巧玲主编,自动控制原理.北京:北京航空航天大学出版社, 2003
    [85]刘豹主编,现代控制理论.北京:机械工业出版社, 2003.
    [86]梅生伟,申铁龙,刘康志编著,现代鲁棒控制理论与应用.北京:清华大学出版社, 2003.
    [87]李清泉,自适应控制系统理论、设计与应用.北京:科学出版社, 1990.3.
    [88]高为炳著,变结构控制理论基础.北京:中国科学技术出版社, 1990.
    [89]刘增良,刘有才著,模糊逻辑与神经网络-理论研究与探索.北京:北京航空航天大学出版社, 1996.
    [90]王加春,超精密机床溜板的振动主动控制系统研究.哈尔滨工业大学博士学位论文, 2001.12
    [91]顾仲权,马扣根,陈卫东著,振动主动控制.北京:国防工业出版社, 1997.
    [92] T. Delio, J. Tlusty, S. Smith, Use of audio signals for chatter detection and con-trol. Journal of Engineering Industry, Transcations of ASME, 1992, 114(2): 146-157.
    [93] Y. Altintas, P. K. Chan, In-process detection and suppression of chatter in mill-ing. International journal of machine tools and manufacture, 1992, 32(3): 329-347.
    [94]谭平,娄炳森,陈振藩,以压电陶瓷为作动器的主动隔振研究.振动、测试与诊断,1994, 14(1): 44-48.
    [95]欧阳光耀,施引,磁致伸缩材料及其作动器设计.海军工程学院院报, 1998, 82(1): 44-48.
    [96]盖玉先,李旦,董申,电磁作动器动态特性对隔振性能的影响.航空精密制造技术, 2000, 136(4): 1-4.
    [97]姚国志,孟光,电流变液的性能及其应用研究.力学进展, 1996, 26(4):521-531.
    [98]王茂华,于骏一,张永亮,电流变技术在机床颤振控制中应用的研究.机械工程学报,2000, 36(11): 94-97.
    [99] T. Bailey, Y. Ruget, A. Spence, M. A. Elbestawi. Open-architecture controller for die and mold machining. America Control Conference, Proceedings of IEEE, 1995(1): 194-199.
    [100] J.D. Kim, I. H. Choi, Development of a tool failure detection system using multi-sensors. International journal of machine tools and manufacture. 1996, 36(8): 86-870.
    [101] K.Y.Lee, M.C.Kang and Y.H.Jeong, D. W. Lee, J. S. Kim, Simulation of surface roughness and profile in high-speed end milling. Journal of materials processing technology, 2001,113(1-3): 410-415.
    [102] L. J. Dohner, J. P. Lauffer, and T. D. Hinnerichs, et.al, Mitigation of chatter in-stabilities in milling by active structural control. Journal of sound and vibration, 2004, 269(1-2): 197-211.
    [103] J. Tlusty, P. Macneil, Dynamics of cutting forces in end milling. Annals of CIRP, 1975 24(1): 21-25.
    [104].F. Ismail, M. A. Elbestawi, R. Du, K. Urbasik, Generation of milled surface in-cluding tool dynamics and wear. Journal of Engineering for Industry, Transactions of ASME, 1993, 115(3): 245-252.
    [105] F. M. Kolarits, W. R. DeVries, A mechanistic dynamic model of end milling for process controller simiulation. Journal of Engineering for Industry, Transactions of ASME, 1991,113(2): 176-183.
    [106]A. E. Bayoumi, G. Yucesan, L. A. Kendall, An analytic mechanistic cutting force model for milling operations: a theory and methodology. Journal of Engineering for Industry, Transactions of ASME, 1994, 116(3): 324–339.
    [107] Y. Altintas, P. Lee, Mechanics and dynamics of ball end milling. Journal of en-gineering for industry, Transactions ASME, 1998, 120(4): 684–692.
    [108]胡创国,张定华,任军学,杨蕾,切削力建模方法总述.力学进展, 2006, 36(4): 564-570.
    [109] M. C. Shaw. Metal Cutting Princples, Oxford University Press, Oxford, 1984
    [110] X. W. Liu, K. Cheng, D. Webb and X. C. Luo. Improved dynamic cutting force model in peripheral milling part I: theoretical model and simulation, International journal of advanced manufacturing technology, 2002, 20(9): 631-638.
    [111] X. W. Liu, K. Cheng, D. Webb, A. P. Longstaff, M.H. Widiyarto. Improved dy-namic cutting force model in peripheral milling part II: experimental verification and prediction, International journal of advanced manufacturing technology, 2004, 24(11-12): 794-805.
    [112] X. Liu, K. Cheng. Modelling the machining dynamics of peripheral milling, In-ternational journal of machine tools and manufacture, 2005, 45(11): 1301-1320.
    [113] L. R. Castro, P. Vieville, P, Lipinski. Correction of dynamic effects on force measurements made with piezoelectric dynamometers, International journal of ma-chine tools and manufacture, 2006, 46(14): 1707-1715.
    [114]袁长良,丁志华,武文堂.表面粗糙度及其测量.北京:机械工业出版社, 1989.
    [115]阎兵,张大卫,徐安平等.球头铣刀铣削表面形貌建模与仿真.计算机辅助设计与图形学学报, 2001, 13(2): 135~140.
    [116] G.Peigne, H.Paris and D.Brissaud, et al. Impact of the cutting dynamics of small ra-dial immersion milling operations on machined surface roughness. International Journal of Machine Tools and Manufacture, 2004, 44(11): 1133~1142.
    [117] H. Paris, G.Peigne, R.Mayer, Ultra precision positioning system for servo mo-tor-piezo actuator using the dual servo loop and digital filter. International journal of ma-chine tools and manufacture, 2004, 44(1): 1567-1576.
    [118]廉哲满,文学洙,车削加工中振动对表面轮廓影响的仿真分析.中国机械工程, 2004, 15(23): 2085-2087.
    [119] K. F. Ehmann, M. S. Hong, A generalized model of the surface generation process in metal cutting. Annals of CIRP, 1994, 43(1): 483-486.
    [120] H. J. Pahk, D. S. Lee, J. H. Park., Ultra precision positioning system for servo motor-piezo actuator using the dual servo loop and digital filter. International journal of machine tools and manufacture, 2001, 41(1): 51-63.
    [121] N. C. Timothy, K. Roger, J. C. Reggie, Vibration control of linear robots using a piezoelectric actuator. IEEE transactions on mechatronics, 2003, 8(4): 439-445.
    [122] E. J. Davison, The robust control of a servomechanism problem for linear time-invariant multivariable systems. IEEE transactions on automatic control, 1976, 21(1): 25-34.
    [123]百度百科,LabVIEW, http://baike.baidu.com/view/230451.htm

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700