用户名: 密码: 验证码:
运动平台上跟踪系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
运动平台上的跟踪在目标检测、跟踪及识别等方面有着广泛的应用,在武器装备及民用产品中有重要作用,在此背景下,对运动平台上跟踪的研究尤为重要。基于工程实际和现代控制理论,本文对运动平台上跟踪技术进行了较为深入的理论探讨和实践尝试。
     通过适当简化运动平台上跟踪系统结构,分析并建立了运动平台上跟踪系统动力学模型,依据现代控制理论,对建立的系统动力学模型进行了分析,采用状态反馈方法设计渐进跟踪鲁棒器,对执行装置俯仰姿态进行精确控制。分析并建立运动平台上跟踪系统的内环模型。
     通过跟踪算法的改进,对运动平台和机动目标的运动状态进行精确描述,建立运动平台上的跟踪系统的外环模型。利用卡尔曼滤波算法实现对目标运动轨迹进行较为精确的预测和跟踪。
     对本文建立的模型进行了仿真,结果证明了本文工作的有效性和显著意义。
Object detecting, tracking and recognizing have a wide range of applications, for example, in military, the object's observation, identification and trace on the battlefield, including fire control system on the platforms of armoured vehicles, aircraft, ships and others, and also the observing and aiming equipments such as anti-tank missiles, air defence missiles carried by a soldier; in civilian applications, such as the monitoring and tracking of unusual people and objects in security monitoring and controlling in some important places, including building surveillance, site security etc; and the detecting and tracking of rule-breaking vehicles on the highway or the intersection, as well as the important applications of CNC equipment, flexible manufacturing in the manufacturing field.
     With the continuous development of science and technology, especially the progress of information technology and controlling methods, the object tracking systems have evolved into a integrated system of multi-sensor information fusion technology and control engineering. And it has widely applications in lots of the fields, and plays important roles. So the research in tracking moving objects becomes particularly important and meaningful. The objective of this thesis is to an in-depth study and practice of trying, combined with real engineering.
     Usually, a dynamic tracking system on a moving platform consists of four parts: (1) the vehicle body part, i.e., footing part; (2) the implementation part, i.e., the crane and its auxiliary devices, also known as the upper part; (3) upper supporting part, i.e., the upper rotation body; (4) dynamic tracking parts, including observation and computing devices.
     A lots of work have been done internal and abroad in this field, especially in the research of moving platform, but there are following deficiencies:
     in the mechanical analysis of moving platform with caterpillar, people usually only consider the caterpillar and its forces from the ground, and ignore the forces on the loading wheels on the sides; various of methods are applied on the control of implementation devices to improve accuracy and speed of response, but the results are still not meet the actual requirements; dynamic tracking of objects are based on the relative gyroscope-based coordinate system, the accuracy of tracking the object space state is still to be improved.
     The moving platform is sensitive to the force from the ground, especially in the low speed case, the cause of the system vibration is very obvious. Considering the works on moving platform such as precise tank firing and precision engineering vehicles operating, mostly are implemented under low speed conditions, therefore the forces from ground and the vibration are most important factors during the design of the moving platform, and can not be ignored. Through appropriately simplifying structure and taking into account the relationship among the upper part's vertical amplitude, vibration angle, body horizontally rotation and angle of depression and elevation, this thesis analyses and creates a mechanical model for dynamic tracking system on moving platform, and analyses the mechanical features when the moving platform get forced from ground, to reduce errors caused by system vibration, reduce response time and overshoot. On this basis, based on the modern control theory, we analysed the mechanical model of dynamical tracking on moving platform, and discussed the affections and interactions to vibrating angle of implementing device from multi factors. Using state feedback method, we convert coupled nonlinear multi input-output system into several independent single-input-output integral decoupling systems. Then design progressive tracking robust device, and accurately control the device positioning attitude. Through improving control, we analyse and create mechanical model of implementing devices on the moving platform, and then solve its control model, and analyze the model through Matlab simulation. The results of simulation verified the effectiveness of the control model and gave a conclusion that the control model can be applied to a variety of ground.
     The improvement of automatic tracking algorithm in this thesis can reduce the system response time and improve tracking forecast accuracy. Through the coordinate transformation based on earth coordinate system and the accurate description of the moving state of the moving platform and moving objects, we create the dynamic tracking model. After coordinate transformation, the object and our vehicle are mapped into a single reference coordinate system, and are accurately described. Thus a status equation describes the moving states of our and the enemy's vehicles, it is very important to the further study of automatically tracking fire control system and improve the accuracy of first firing during battle. On this basis, the prediction of moving target's track using Kalman filtering algorithm and with the improvement of the automatic tracking algorithm improvement, can shorten system response time and improve the tracking forecast accuracy. We also improve the controlling accuracy of implementing devices horizontally and vertically, and reduce the systematic errors and random disturbance sensitivity, also create the dynamic tracking system model on the moving platform, and verify the accuracy with the Monte Carlo shooting model.
     With analysis and study, this thesis provides the following main results:
     1, with the optimal control strategies, the vertical control accuracy of the implementing devices is improved. Comparing the traditional control performance, the overshoot is reduced by 90%, and angle accuracy increased by 40%.
     2, the existing dynamic tracking technology can simply calculate target angular velocity and speed with high precision, but cannot accurately measure the relative angle and relative angular acceleration and the position and acceleration. This thesis presents an algorithm with the use of the existing tank sensors and coordinate transformation, mapping the spatial coordinates into geodetic coordinate system, then can more accurately measure the relative target angle, the relative angular acceleration and the position and acceleration.
     3, Kalman filtering has been widely used for over 30 years, including robot navigation, control, sensor data fusion and even in military radar systems and missile tracking and so on. This thesis presents an automatic tracking algorithm based Kalman filter, with the recursive correction of the data of target's real-time location, making the detection of spatial location on the target is more precise and more rapid.
     It is clearly seen from the simulation data that the application of the dynamic system tracking model provided by this thesis makes shooting accuracy significantly improved, and the experimental results show that the moving platform and moving state affect the model's accuracy, in particular the object's spatial state results in the decrease of tracking accuracy of the model. All these proved that the work on platform force analysis of platform from ground in this thesis is successful but the dynamic tracking on moving platform needs to be improved. In general, the simulation results prove the effectiveness and significance of the work in this thesis.
引文
[1]屈岳波,洪波,潘际銮,尹懿,袁灿,黄俊.一种自动跟踪焊接小车的驱动方法[J].焊接技术,33(6),2004 ,12,pp:38-40.
    [2]赵治国.车辆动力学及其非线性控制理论、技术的研究[D].西北工业大学博士学位文,2002.6.
    [3]张立军.车辆非平稳行驶动力学及控制研究[D].东北大学工学博士学位文,2006.2.
    [4]王莹.基于四自由度车辆模型的汽车主动悬架系统的控制研究[D].合肥工业大学硕士学位论文,2003.6.
    [5]方敏,王峻,陈无畏.汽车半主动悬架的自适应LQG控制[J].汽车工程,1997.19(4),pp:200-205.
    [6]包继华,张建武,于岩.汽车整车多体系统动力学建模和仿真[J].计算机仿真,2004.21(1),pp:53-156.
    [7]郑浩哲.随机路面行驶车辆振动响应的快速虚拟激励算法[J].汽车工程,1993.15(5),pp:268-277.
    [8]丁科,侯朝桢,罗莉.车辆主动悬架的神经网络模糊控制[J].汽车工程,2001,23(5),pp:341-343.
    [9]贾启芬,王影,刘习军.汽车悬架振动系统的若干控制技术和发展[J].机床与液压,2005(1),pp:12-14.
    [10]王影.随机激励下汽车悬架的非线性特性分析[D].天津大学硕士学位论文,2005.1.
    [11]吴志成,陈思忠,杨林,张斌.越野车辆可控悬架及其控制理论的发展现状[J].兵工学报,2006.27(5),pp:903-910.
    [12]曹民.主动悬架的参数估计自校正控制[J].汽车工程,2001,23(3),pp:177-180.
    [13]于学华,张家栋.基于曲轴弹性振动的动力传动装置振动预测[J].华南理工大学学报(自然科学版), 2007.35(2),pp:47-49.
    [14]孙国春.汽车动力总成振动主动控制关键技术研究[D].吉林大学博士学位论文,2007.10.
    [15]邵朋礼,王玉兰.大型振动问题研究及在装甲车辆综合传动系统上的应用[J].兵工学报(坦克装甲车与发动机分册), 1994(3),pp:1-12.
    [16]熊超,郑坚,张进秋,张莉.履带车辆半主动悬挂系统建模与仿真[J].武器装备自动化, 2005.24(1),pp:9-11.
    [17]胡陈,曹玉坤,程钢,王红岩.履带车辆动力传动系统仿真与试验验证[J].装甲兵工程学院学报, 2005.19(4),pp:51-54.
    [18]郑慕侨,刘建兴.履带装甲车辆动力传动装置摇架式隔振方案研究[J].兵工学报, 1998.19(2),pp:97-102.
    [19]史力晨,王良曦,张兵志.高速履带车辆悬挂系统动力学仿真[J].系统仿真学报,2004.16(7),pp:1429-1432.
    [20]袁芬,张明.高速履带车辆诱导轮张紧力的计算与仿真[J].车辆与动力技术,2008,pp:54-84.
    [21]董明晓,刘伟民.回转塔式起重机动力学模型及时滞控制研究[J].应用基础与工程科学学报(增刊),2005,pp:71-75.
    [22]史力晨,王良曦,张兵志.路面对坦克火炮动态特性影响的计算机模拟[J].火力与指挥控制,2005,30(1),pp:62-65.
    [23]董新建.履带车辆行动部分动力学分析与仿真[D].湖南大学硕士学位论文,2007.4.
    [24]王学宁.越野环境中坦克动力学建模研究[D].国防科技大学研究生院学位论文,2002.1.
    [25]吴承鉴,郭海涛.车-炮系统动力学分析[J].南京理工大学学报,1993 (5),pp:60-66.
    [26]陈运生,敖勇,毛保全.自行火炮动力学分析的一种广义模态综合法[J].弹道学报,1997.9(1),pp: 31-33.
    [27] Narendra K S,Valavani L S.Direct and indirect model reference adaptive control[J].Automatica,1917 15(6),pp:653-664.
    [28] Parks P C.Lyapunov redesign of model reference adaptive control systems[J].IEEE Trans.Autom. Control,1969, AC-11,pp:362-367.
    [29] Landau I D.A generalization of the hyperstability conditions for model reference adaptive system[J]. IEEE Trans.Autom.Control,1972,AC-17,pp:243-247.
    [30]李强,周济.重型越野车的非平稳随机激励系统优化设计方法[J].机械强度,1998,20(1),pp:46-52.
    [31] Lin J,Yu J,Lewis F L,Huang T.A Systematic Formulation and Simulation of the Dynamic Model For Bridge Vibration Control [C].American Control Conference,1994(2),pp:1469-1473.
    [32]穆平安,戴曙光,金暄宏,施华.基于计算机视觉技术的稳定器性能的自动检测[J].仪器仪表学报,2004,25 (4),pp:595-597.
    [33]门义双.具有通用惯性单元的坦克火控系统方案研究[J].万方数据,2002,pp:16-22.
    [34] S.麦格金里蒂,G.W爱尔文.机动目标跟踪的模糊逻辑方法,情报指挥控制系统与仿真技术,2000 (4),pp:45-53.
    [35]丁春山,安瑾,何佳洲.机动目标跟踪典型算法评述[J].舰船电子工程,2006,26(1),pp:25-35.
    [36]杨国振,邱晓波,周启煌.基于ADSP的坦克目标自动跟踪系统设计[J].火力与指挥控制,2006,vol. 31,89-91.
    [37]王晓卫,周启煌,孙军涛.基于DSP的运动目标跟踪技术在火控系统中的应用[J].装甲兵工程学院学报,2005,19(4),pp:77-79.
    [38]周启煌,邱晓波,谢志宏.卡尔曼滤波在坦克目标状态估计中的应用[J].装甲兵工程学院学报,1998,12(2),pp:40-46。
    [39]刘晨,冯新喜.杂波环境下基于红外传感器和雷达融合的机动目标跟踪算法[J].空军工程大学学报,2006,7(2),pp:25-28.
    [40]周启煌,单东升,汤霞清.坦克火炮在目标跟踪控制中输入方式误差的分析[J].火炮发射与控制学报,1997(2),pp:1-6.
    [41]周启煌.坦克火控系统机动目标的自适应滤波与自适应解命中问题[J].火力与指挥控制,1997 (3),pp:25-33.
    [42] Wurth L,Hannemann R,Marquardt W.Neighboring-extremal updates for nonlinear model-predictive control and dynamic real-time optimization [J].Journal of Process control,2009.19(8),pp:1277-1288.
    [43]赵二陇.火炮稳定系统动力学模型及系统稳定精度分析[J].火力与指挥控制,2003(28),pp:51-54.
    [44]廖自力,马晓军,减克茂,朱志昆.基于交流调速的新型坦克炮控系统研究[J].火炮发射与控制学报,2005(3),pp:32-36.
    [45]张豫南,臧克茂,马晓军,颜南明.炮塔传动系统模糊控制和限区域积分控制与仿真[J].火炮发射与控制学报(增刊),2003, pp:1-4.
    [46]何凤霞,张翠莲.蒙特卡罗方法的应用及算例[J].华北电力大学学报,2005.5,32(3),pp:110-112.
    [47]张艳,黄敏,赵宇,于丹.基于置信分布的系统可靠度评估蒙特卡罗方法[J].北京航空航天大学学报,2006,9,32(9),pp:1023-1025.
    [48]高云飞,李晓燕,王宁.蒙特卡罗法在火箭布雷中的应用[C].科学发展观与系统工程,2006. 7 6
    [49]履带式起重机的组成及工作原理.http://www.crncn.com/detail.jsp? id=2937.
    [50]刘延柱,陈文良,陈立群.振动力学[M].北京:高等教育出版社,1998.10.
    [51]王学宁.越野环境中坦克动力学建模研究[D].国防科技大学研究生院学位论文,2002.1.
    [52]史力晨,王良曦,张兵志.路面对坦克火炮动态特性影响的计算机模拟[J].火力与指挥控制,30(1), 2005.2.
    [53] Kwak B h,ARORA J S, et al..Dynamic analysis and optimal design formulation of a weapon-vehicle system,1974.
    [54] Lessem A S,Murphy N R.Studies of the dynamic of tracked vehicles.1976.
    [55]朱孔源.车辆一柔性路面力学相互作用系统的研究[D].中国农业大学博士论文,2001.6.
    [56]钟同才.路面的统计特性[J].兵工学报坦克装甲车及发动机分册,1983(3) ,pp:31236.
    [57]万超,王伟,赵高波.基于速度—加速度测量的炮弹弹道辨识方法[J].理论与方法,2007,26(9),pp: 61-64.
    [58]王国锋,李志宁,张锡恩.某型坦克火炮稳定器系统仿真分析[J].军械工程学院学报,1999.11(1),pp: 21-27.
    [59] SUN pF.Weapon-vehicle Modeling and solution. Jowa Univercity,1974.
    [60]张佳,窦丽华,刘文果,陈杰.坦克火控系统误差分析及仿真系统设计与实现[J].火力与指挥控制,2006,31(8),pp:68-71.
    [61]苏佰丽,陈增强,袁著祉.多变量非线性系统的有约束模糊预测解耦控制[J].系统工程学报,2007.22(5),pp:546-550.
    [62]阂娟,黄之初.多变量解耦控制方法[J].控制工程,2005.12,pp:125-127.
    [63]郝久玉,陈伟,李惠敏.多变量模糊控制系统的前馈解耦[J].天津大学学报,2004.37(5),pp:396-399.
    [64]胡军.多变量系统的干扰和输入输出同时解耦问题[J].郑州轻工业学院学报(自然科学版),2005.20(4),pp:89-91.
    [65]胡慧,刘国荣.多变量系统模糊自适应解耦控制方法综述[J].湖南工程学院学报,2004,14 (3),pp:11-13.
    [66]谢春利,李平.多变量系统预测函数解耦控制[J].系统工程与电子技术,2003.25(5),pp:584-587.
    [67] Wu,C; Ayers, PD,Anderson,AB,Quantifying the intensity of vehicle impacts using vehicle tracking devices during live training exercises[J].TERRAMECHANICS,2008,45(1-2),pp:1-11.
    [68] Baguette L,Leva A.FIR based causal design of 2-d.o.f. controllers for optimal set point tracking[J].PROCESS CONTROL,2008,18(5),pp:465-478.
    [69] Palazzo, AJ,Jensen, KB,Waldron, BL, et al.Effects of tank tracking on range grasses[J]. TERRAMECHANICS,2005,42(3-4),pp:177-191.
    [70]杨立功,郭齐胜,史立晨.蒙特卡罗法及其在射弹散布仿真中的应用[J],计算机仿真.2001,18(1),pp:48-58.
    [71]臧克茂,薛传庚,纪象普.高瞄准精度方向炮控系统的研究[J].装甲兵工程学院学报, 1998. 12(2),pp:14-18.
    [72]张佳,窦丽华,刘文果.坦克火控系统误差分析及仿真系统设计与实现[J].火力与指挥控制,2006 (8),pp:68-71.
    [73]吕强,李立春,周启煌.坦克火炮控制系统动态仿真[J].装甲兵工程学院学报,1998 (2),pp:73-77.
    [74]吕振华,范让林.动力总成一悬置系统振动解耦设计方法[J].机械工程学报,2005,41(4),pp:49-54.
    [75]胡晖,韩朝晖,刘建国,魏彦.多变量反馈解耦控制系统研究[J].控制工程,2004,11(6),pp:500-502. 77
    [76]赵景波,周祥龙,朱海斌.多变量非线性系统的逆系统解耦控制[J].青岛大学学报,2001.14 (1),pp:6-12.
    [77] J.M.Norwood.Exterior Ballistics for Airborne Applications.Technical Report No.AFAR-TR-73- 196,Texas University,Austin,TX,June,1976.
    [78] Pannetier B,Nimier V,Rombaut M.Multiple ground target tracking [J].AEROSPACE SCIENCE AND TECHNOLOGY,2007,11(4),pp:271-278.
    [79] Lee,YW.Neural solution to the target intercept problems in a gun fire control system[J]. NEUROCOMPUTING,2007,70(4-6),pp:689-696.
    [80] Kim, BG; Park, DJ,Novel target segmentation and tracking based on fuzzy membership distribution for vision-based target tracking system[J].IMAGE AND VISION COMPUTING,2006,24(12), pp:1319-1331.
    [81] Kaplan, LM; Le, Q,On exploiting propagation delays for passive target localization using bearings -only measurements[J].JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS,2005,342(2),pp:193-211.
    [82] Meurer, T; Kugi, A,Tracking control for boundary controlled parabolic PDEs with varying parameters: Combining backstepping and differential flatness[J].AUTOMATICA,2009,45(5),p p:1182-1194.
    [83] Ravichandran, B; Gandhe, A; Smith, R, et al.Robust automatic target recognition using learning classifier systems[J].INFORMATION FUSION,2007,8(3):252-265.
    [84] Frank Mulder, Frans Voorbraak, A formal description of tactical plan recognition[J].Information Fusion,2003,4:47-61.
    [85] Chraskova, J; Kaminsky, Y; Krekule, Ivan Krekule,An automatic 3D tracking system with a PC and a single TV camera[J].JOURNAL OF NEUROSCIENCE METHODS,1999,88(2):195-200.
    [86] Simon Ahlberg,Pontus Horling,Katarina Johansson,Karsten Jored, Hedvig Kjellstrom,Christian Martenson,Goran Neider,Johan Schubert, Pontus Svenson,Per Svensson,Johan Walter,An information fusion demonstrator for tactical intelligence processing in network-based defense[J].Information Fusion,2007,8(1):84-107.
    [87]朱斌,张磊,常天庆,郭志安.卡尔曼滤波在某型坦克火炮控制.检测系统中的应用[J].火炮发射与控制学报,2006增刊,pp:14-17.
    [88]王家骐.光学仪器总体设计.长春:长春光机所,2003.4.
    [89] Ahmed A. Bahnasawi,A switching models gain rotation algorithm for tracking a maneuvering target[J].Simulation Practice and Theory,1997,7(1):71-89.
    [90] W.Wrigley and J.Hovorka,fire Control Principles,McGraw-Hill Book Company,Inc,NewYork,NY, 1959.
    [91] M.Skolnik,Introduction to Radar Systems, McGraw-Hill Book Company, Inc. New York,NY,1962.
    [92] Lee, YW,Neural solution to the target intercept problems in a gun fire control system[J].NEURO COMPUTING,2007,70(4-6):689-696.
    [93] M.Skolnik,Introduction to Radar Systems, McGraw-Hill Book Company, Inc. New York,NY,1962
    [94] Kaplan, LM; Le, Q,On exploiting propagation delays for passive target localization using bearings -only measurements[J].JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS,2005,342(2):193-211.
    [95] R.Lieske and R.McCoy,Equation of Motion fo a Rigid Prijectile,BRL Report No.1244,US Army Balliatias Research Laboratories,Aberdeen Proving Ground,MD,March 1964
    [96] Ahmed A. Bahnasawi,A switching models gain rotation algorithm for tracking a maneuvering target[J].Simulation Practice and Theory,1997,7(1):71-89.
    [97] S. McGinnity, G W. Irwin. Fuzzy Logic Approach to Manoeuvring Target Tracking [C].IEE Proc-radar, Sonar Naving, Vol.145, No.6, December 1996.
    [98]罗志强,王耀南.基于DSP的运动目标自动跟踪系统的设计与实现[J].光电子技术与信息,2005,18 (1),pp:46-49.
    [99]徐钟济.蒙特卡洛法[M].上海科学技术出版社,1985.
    [100]王欣,曲晓光,王育欣.蒙特卡罗法在多管火箭弹落点散布仿真中的应用[J].沈阳理工大学学报,2007,26(5),pp:75-77.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700