用户名: 密码: 验证码:
基于人工免疫系统的水电机组智能诊断方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
国民经济的快速发展对能源需求的不断增大和电力市场的自由竞争的引入,使得水电生产企业在提高生产效率的同时,也要重视降低生产成本,尤其是减少由于机组检修或者故障停机导致的无法预计的经济损失和社会影响。故障诊断的研究领域应该朝着预知方向发展,研究如何在故障发生之前发现各种故障发生的可能性,如何让机器避免故障的发生、“知道”故障何时发生和发生轻微故障后如何防止进一步扩散、传播,做到防患于未然。为了提高水电机组故障诊断的准确性、实时性及鲁棒性,一方面需要对现有方法进行改进优化,另一方面需要加强新方法的研究,特别是基于生物智能的新方法研究。
     人工免疫系统是借鉴生物免疫系统的结构特征和工作机理而建立起来的、解决某方面工程技术问题的系统形式或者算法结构的统称。本文在全面总结现有智能诊断技术和人工免疫系统发展的基础上,针对水电机组状态检修体制下智能诊断中存在的问题,将人工免疫系统理论与智能诊断技术有机地结合,研究出了一系列的免疫诊断方法,并应用于水电机组的故障诊断、状态预测和检修决策中。主要从以下几个方面开展研究并取得了如下成果:
     首先明确了本文研究的问题、目的和意义。阐述了“状态检修为主、多种检修方式并存”的检修体制下智能诊断概念的内涵和重要意义;介绍了水电机组故障的特点;综述了智能诊断方法的研究现状,指出了目前存在的不足;对人工免疫系统的理论研究与应用研究现状进行了阐述。在此基础上,给出了本文研究的总体思路和主要内容。系统地对生物免疫系统及其运行机制、免疫系统的主要特点作了描述;介绍了人工免疫系统的基本原理,包括形态空间模型和免疫细胞模型;讨论了几种典型的人工免疫算法;着重对人工免疫系统在智能诊断领域中的应用潜力进行了剖析。
     针对水电机组状态监测中特征提取方法的局限与不足,提出了故障诊断中的复合特征概念,并建立了集成小波分析、模糊理论和径向基神经网络(Radial Basis Function Neural Network,RBFNN)的水电机组故障诊断模型。重点讨论了采用小波分析方法提取稳定性状态信号能量特征、运用模糊理论提取关系型征兆以及水电机组RBFNN故障诊断模型的构建过程。工程应用结果表明,该方法能够全面准确地提取水电机组稳定性状态特征,能够诊断出机组的典型故障类型及其严重程度,具有一定的可行性和有效性。
     针对传统诊断方法中对样本要求高、缺乏自主学习能力等问题,根据免疫系统中抗体对抗原的识别机理,提出了基于免疫应答机制的故障诊断方法。建立了机组诊断系统与免疫系统的映射关系,详细阐述了分别对应于免疫初次应答和二次应答的诊断流程。该方法能够实现已知状态的识别,而且能够自主记忆并识别机组未知状态,具有一定的快速反应性和鲁棒性。将该方法应用于水电机组振动故障诊断,验证了其可行性和准确性。
     从免疫系统的视角分析了RBFNN结构设计与免疫系统机制的相似性,根据免疫系统多样性和免疫响应亲和力成熟的过程,提出一种新型的免疫优化算法。将免疫优化算法用于选择和确定RBFNN模型结构,并与递推最小二乘法相结合,形成免疫优化RBFNN混合学习算法。采用免疫优化RBFNN对某水电机组水导轴承处的振动状态进行预测,并与K均值聚类RBFNN和BPNN的预测结果进行了对比。计算结果证明,免疫优化RBFNN的预测结果更接近实测值,且精度较高,具有一定的准确性和实用性。
     在分析人工免疫系统与多智能体系统(Multi-Agent System,MAS)相似之处的基础上,提出了一种免疫Agent模型;阐述了相关知识的获取、组织与管理方法,建立了基于免疫Agent的水电机组状态检修系统模型,并对各功能免疫Agent作了描述;最后对该模型框架下的免疫协同诊断策略作了较为细致的阐述。
     基于人工免疫系统的水电机组智能诊断方法研究,是将人工免疫系统理论方法与智能诊断技术相结合,并运用于水电机组状态检修领域的一次探索。尽管取得了一些研究成果,但由于人工免疫系统的理论与应用研究起步较晚,要实现人工免疫系统理论与智能诊断技术的高度融合,实现水电机组状态检修体制下的自主诊断、高精度预测以及优化决策维护,还需做大量的工作。论文最后指出了人工免疫系统理论在水电机组智能诊断领域中需要进一步研究的问题。
The demands on energies from the fast-developing national economy are increasing and the freely competing mechanism has been introduced into the electric power market. Hydropower enterprises have to try to improve their producing efficiency and reduce the production cost, especially the unpredictable economical costs and social effects, which results from the breakdown of Hydroelectric Generating Unit (HGU) due to casualties or maintenance actions. The researches on fault diagnosis should advance towards the direction of prognosis, emphasizing on how to determine the probability of the faults before their occurrence, how to avoid the faults, when the faults will occur, and how to prevent their development at their primary states. In order to improve the correctness, real-timeness, and robustness of the fault diagnosis of HGU, on the one hand, the current approaches should be improved and optimized. On the other hand, new approaches should be resorted to, especially those inspired by biological intelligences.
     Artificial Immune System (AIS) includes the system forms or algorithm structures to solve some engineering technique problems, inspired from the structure characteristics and function mechanism of Biological Immune System (BIS).
     Previous research works on the modern intelligent diagnostic techniques and the theory and applications of AIS have been summarized first in the dissertation. Aiming to solve the diagnosis problems under the conditioned maintenance of HGU, diagnosis techniques are combined with AIS appropriately. Several immune diagnostic approaches are researched, and have been applied to the fault diagnosis, state prognosis and maintenance decision of HGU. The outline of this dissertation is as follows:
     The problems, purposes and significance of this research are firstly presented. The intension and significance of the intelligent diagnosis are discussed under the maintenance system where conditioned maintenance takes the predominant place and other maintenance forms coexist. Then the characteristics of the fault of HGU and the status in researches on intelligent diagnostic techniques are summarized, followed with the existing problems in intelligent diagnosis. After the description of the status in both theoretic research and application of AIS, the universal thought and the main content of this dissertation are presented.
     BIS and its function mechanism are described in details as well as its main characteristics. Then the basic principles which include shape-space model and immunocyte model and several typical AIS algorithms are present. The potentials of AIS in the intelligent diagnosis field are analyzed and emphasized on.
     In order to overcome the limitations of the traditional FFT in non-stationary signal processing and overdependence on the energy characteristics during the analysis and fault diagnosis for HGU, the concept of combined feature is proposed, and a novel fault diagnosis model integrating the combined feature and RBFNN is built. How to extract relative energy feature of the stability signals via wavelet transform and how to evaluate the influences of the processing parameter changes on the stability state and extract the relationship symptoms are described in details, as well as the construction of the proposed fault diagnosis model based on RBFNN. Application results show that this proposed method is feasible and efficient in the overall feature extraction of HGU as well as the appropriate evaluation of fault types and severity degrees.
     In order to solve the problems such as large sample demands and lacking ability of active learning in the fault diagnosis techniques, a new diagnosis method based on immune response mechanisms is proposed. It is inspired from the recognition progress of antibodies with antigens. The mapping relations between the diagnosis system of HGU and AIS are set up. The diagnostic schemes corresponding to the primary response and the second response are discussed detail. This method can not only recognize the known states, but also remember the unknown ones and recognize them with fast reactions and robustness. The proposed method was applied to the vibration diagnosis of hydroelectric generating unit. Results indicate the high diagnosis accuracy with low demands on fault samples, and the merits of this method in application as well.
     The analysis on similarities between the structure design and the immune mechanism is implemented at the view of the immune system. A novel immune optimization algorithm is proposed. It is used to select and determine the structure of RBFNN, and jointed with the recursive least squares (RLS) algorithm to form the hybrid learning algorithm of immune-optimized RBFNN. The prediction of the vibration state at the water guide bearing of HGU based on the above immune-optimized RBFNN is performed. The results are compared with those by K-mean clustering RBFNN and BPNN, which show the high accuracy, correctness and feasibility of the proposed immune optimization algorithm. The immune agent model is proposed after the comparison of AIS and MAS. The approaches to acquire, organize and manage relative knowledge are discussed. Then the frame of the immune agent based conditioned maintenance system of HGU is presented, followed with the detailed description of each immune agent with different functions. Finally the immune co-operation diagnostic strategy under the frame is expounded.
     Study on AIS based intelligent diagnosis technology of HGU integrates the theory and approaches of AIS and those of intelligent diagnosis. It is a brave try in the research field of conditioned maintenance of HGU. Some research fruits are achieved. Because the theoretic and application researches on AIS start relatively late, there remains a large quantity of work to do, to implement the highly fusion of AIS and intelligent diagnosis technology, to realize the active diagnosis, the high-accuracy prognosis, and the optimal maintenance decision making.
     At the end of this dissertation, the future research directions in the field of AIS based intelligent diagnosis technology are pointed out.
引文
[1] Laird, T., Hoof, M. An economic strategy for turbine generator condition based maintenance. in: 2004 IEEE International Symposium on Electrical Insulation. USA: 2004. 440-445.
    [2] Frimpong, G., Taylor, T. Developing an effective condition based maintenance program for substation equipment. in: Rural Electric Power Conference: vol. 6, 2003. 1-9.
    [3]中国水利电力部.发电厂检修规程.北京:水利电力出版社, 1987.
    [4]陈仁.水电厂建立状态检修制度的探索.水力发电学报. 2000, 71(4): 97-106.
    [5]黄雅罗,黄树红,彭忠泽等.发电设备状态检修.北京:中国电力出版社, 2000.
    [6]王善永,范文,钟敦美.基于状态监测的水电厂主设备检修计划决策系统.电力系统自动化. 2001, 25(16): 45-47,66.
    [7]冯辅周,褚福磊,张伟.水电机组状态监测分析诊断系统的研制与应用实例.水力发电. 1999, (5): 36-40.
    [8] Bevilacqua, M., Braglia, M. The analytic hierarchy process applied to maintenance strategy selection. Reliability Engineering and System Safety. 2000, 70: 71-83.
    [9] Sarangaa, H., Knezevic, J. Reliability prediction for condition-based maintained systems. Reliability Engineering and System Safety. 2001, 71: 219-224.
    [10] Maillart, L. M., Pollock, S. M. Cost-optimal condition-monitoring for predictive maintenance of 2-phase systems. IEEE Transactions on Reliability. 2002, 51(3): 322 -333.
    [11]傅闯,叶鲁卿,余刃,等.基于多智能体和人工神经网络的水电厂预知维护系统的研究.中国电机工程学报. 2005, 25(6): 81-87.
    [12] Lebold, M., Thurston, M. Open standards for condition-based maintenance and prognostic systems. in: Maintenance and Reliability Conference (MARCON): 2001.
    [13]焦李成,杜海峰.人工免疫系统进展与展望.电子学报. 2003, 31(10): 1540-1548.
    [14] J. D. Farmer, N. H. Packard, A. S. Perelson. The Immune System, Adaptation and Machine Learning. Physica 22D. 1986: 187-204.
    [15] Hunt, J. E., Cooke, D. E. An adaptive,distributed learning system based on immune system. in: IEEE international conference on system, man and cybernetics: vol. 3, 1995. 2494-2499.
    [16] Dasgupta, D. Advances in artificial immune systems. IEEE Computational Intelligence Magazine. 2006, 1(4): 40 - 49
    [17]沈东,褚福涛,陈思.水轮发电机组振动故障诊断与识别.水动力学研究与进展. 2000, 15(1): 129-133.
    [18]王海.水轮发电机组状态检修技术.北京:中国电力出版社, 2004.
    [19] Venkatasubramanian, V., Rengaswamy, R., Yin, K., Kavuri, S. N. A review of process fault detection and diagnosis Part I:Quantitative model-based methods. Computers and Chemical Engineering. 2003, 27: 293-311.
    [20] Venkatasubramanian, V., Rengaswamy, R., Yin, K., Kavuri, S. N. A review of process fault detection and diagnosis Part II: Qualitative models and search strategies. Computers and Chemical Engineering 2003, 27: 313-326.
    [21] Venkatasubramanian, V., Rengaswamy, R., Yin, K., Kavuri, S. N. A review of process fault detection and diagnosis Part III: Process history based methods. Computers and Chemical Engineering. 2003, 27: 327-346.
    [22]徐波,于劲松,李行善.复杂系统的智能故障诊断.信息与控制. 2004, 33(1): 56-60.
    [23]吴今培,肖健华.智能故障诊断与专家系统.北京:科学出版社, 1997.
    [24]杨叔子.基于知识的故障诊断技术.北京:清华大学出版社, 1993.
    [25]吴翠娟,陈莹,王致杰,李冬.现代大型设备故障智能诊断技术的现状与展望.电子技术应用. 2003, 29(2): 41-43.
    [26] Venkatasubramanian, V., Chan, K. A neural network methodology for process fault diagnosis. Journal of Artificial Intelligence in Chemical Engineering. 1989, 35(12): 1993-2002.
    [27] S.Simani, C.Fantuzzi. Fault diagnosis in power plant using neural networks. Information Sciences. 2000, 127 125-136.
    [28]王海,郑莉媛.水轮发电机组轴心轨迹自动识别方法研究.水力发电学报. 2002, 78(3): 73-79.
    [29]符向前,刘光临,蒋劲等.基于不变性矩的径向基函数神经网络转子轴心轨迹自动识别.武汉大学学报(工学版). 2003, 36(2): 133-136.
    [30]杨晓萍,解建宝,孙超图.水轮发电机组振动故障诊断的神经网络方法研究.水利学报. 1998, 4(增刊): 94-97.
    [31] R.Rengaswamya, Mylaraswamy, D. A comparison of model-based and neural network-based diagnostic methods. Engineering Applications of Artificial Intelligence. 2001, (14): 805-818.
    [32]王红军,徐小力,张建民,韩秋实.大型旋转机械状态组合预示模型研究.机械强度. 2006, 28(副刊): 44-47.
    [33]王建玲,缪思恩.合成BP网络在汽轮发电机组振动预测中的应用.汽轮机技术. 2006, 48(1): 49-51.
    [34]胡清忠,张军.应用神经网络研究煤气鼓风机振动趋势预报.现代制造工程. 2006, (2): 97-99.
    [35]胡桥,何正嘉,訾艳阳,雷亚国,刘京科.一种新的机电设备状态趋势智能混合预测模型.机械强度. 2005, 27(4): 425-431.
    [36]符向前,刘光临,蒋劲. BP神经网络在水轮发电机组状态监测与诊断系统中的应用.武汉大学学报(工学版). 2002, 35(1): 24-28.
    [37]刘峰,杨晓萍,刘晓黎,贾嵘.基于神经网络的水轮发电机组振动故障诊断专家系统的研究.西安理工大学学报. 2003, 19(4): 372-376.
    [38]杨廷勇,施冲.基于神经网络和专家系统的水电厂状态监测系统.水电自动化与大坝监测. 2002, 26(3): 19-22.
    [39]虞和济,陈长征,张省等.基于神经网络的智能诊断.北京:冶金工业出版社, 2000.
    [40]王计生,黄惟公,喻俊馨.小波分析和神经网络技术在故障诊断中的应用.振动、测试与诊断. 2004, 24(1): 46-49.
    [41] G.Betta, Liguori, C., Pietrosanto, A. The use of genetic algorithms for advanced instrument fault detection and isolation schemes. in: Proceedings from IEEE Instrumentation and Measurement Technology Conference 1996. 1129 - 1134.
    [42]沈亮,吴克坚.混合遗传算法对BP神经网络算法的改进.机械设计与研究. 2004, 20(2): 10-12.
    [43]曲正伟,王云静.基于混沌神经网络的电机故障诊断.控制工程. 2003, 10(4): 302-345.
    [44]张吉先,钟秋海,戴亚平. RBF及模糊神经网络在旋转机械故障诊断中的应用.系统仿真学报. 2004, 16(3): 560-563.
    [45]何成兵,顾煜炯,杨昆.一种改进模糊神经网络及其在故障诊断中的应用.振动工程学报. 2003, 16(1): 95-98.
    [46]陈铁华,陈启卷.模糊聚类分析在水电机组振动故障诊断中的应用.中国电机工程学报. 2002, 22(3): 43-47.
    [47]余波,张礼达,王辉.水轮机故障诊断专家系统的一种模糊诊断方法.水力发电. 2004, 28(4): 38-39.
    [48]何永勇,褚福磊,钟秉林.基于模糊积分理论的故障智能集成诊断策略的研究.机械科学与技术. 2001, 20(3): 331-333.
    [49]喻道远,林文.基于ANN和FUZZY的装载机故障诊断模型.华中科技大学学报(自然科学版). 2005, 33(1): 71-74.
    [50] Guo, Q., Yu, H., Xu, A. An online self-constructing wavelet fuzzy neural network for machine condition monitoring. in: the 4th International Conference on Machine Learning and Cybernetics. Guangzhou: 2005. 4193-4200.
    [51] Salido, J. M. F., Murakami, S. A comparison of two learning mechanisms for the automatic design of fuzzy diagnosis systems for rotating machinery. Applied Soft Computing. 2004, (4): 413-422.
    [52]云庆夏.进化算法.北京:冶金工业出版社, 2000.
    [53]陈真勇,何永勇,褚福磊,等.递阶结构进化神经网络在故障诊断中的应用.清华大学学报. 2002, 42(6): 750-753.
    [54]慈建平,张卫民,那荣起,等.基于遗传算法的压缩机故障诊断.北京理工大学学报. 2001, 21(3): 310-313.
    [55]陈长征,刘强.汽轮机故障诊断的遗传神经网络法.振动与冲击. 2000, 19(3): 46-48.
    [56]廖志伟,孙雅明,叶青华.人工智能技术在电力系统故障诊断中应用.电力系统及其自动化学报. 2003, 15(6): 71-79.
    [57] Wooldridge, M. J., Jennings, N. R. Intelligent agents: theory and practice. Knowledge Engineering Review. 1995, 10(2): 115-152.
    [58]何永勇,褚福磊,陈真勇.基于多Agent的分布式故障智能诊断原型系统研究.计算机工程与科学. 2002, 24(1): 88-92.
    [59] Mangina, E. E., Mcarthurs, D. J., Mcdonald, J. R., al, e. A multi-agent system for monitoring industrial gas turbine startup sequences. IEEE Transactions on Power Systems. 2001, 16(3): 396-401.
    [60] Yu, R., Ye, L., Fu, C. A Multi-Agent-Based Remote Maintenance Support and Management System. in: IEEE/WIC/ACM International Conference on Intelligent Agent Technology (ITA2004): 2004.
    [61] McArthur, S. D. J., Booth, C. D., McDonald, J. R. An Agent-Based Anomaly Detection Architecture for Condition Monitoring. IEEE Transactions on Power Systems. 2005, (20): 1675-1681.
    [62]孙健,王红霞,潘成胜.基于多Agent故障诊断知识系统通信模型的设计与实现.沈阳理工大学学报. 2005, 24(4): 10-13.
    [63]赵伟,白晓民,丁剑,等.基于协同式专家系统及多智能体技术的电网故障诊断方法.中国电机工程学报. 2006, 26(20): 1-8.
    [64]万丽荣,曾庆良.分布式机械故障诊断系统的协调机制及其分析.煤炭学报. 2004, 29(4): 492-496.
    [65]夏敬华,陆宝春,张世琪.协同监控和诊断中一致性求解技术研究.中国机械工程. 2001, 12(8): 926-930.
    [66]胡建中,许飞云,贾民平,等.故障诊断系统中专家评价技术的研究.中国电机工程学报. 2002, 22(12): 21-25.
    [67]刘凤玉,李千目,衷宜.基于贝叶斯分类的分布式网络故障诊断模型.南京理工大学学报. 2003, 27(5): 546-550.
    [68]曹立军,马吉胜,秦俊奇,等.基于正反向混合推理的故障仿真预测模型.系统仿真学报. 2006, 18(3): 742-746.
    [69]肖小锋,蔡金燕,李文钊.基于证据理论的多诊断智能体解的综合方法.兵工学报. 2006, 27(4): 737-740.
    [70] Dasgupta, D., Attoh-Okine, N. Immunity-Based Systems: A Survey. in: The IEEE International Conference on Systems, Man, and Cybernetics. Orlando, USA: 1997. 363-374.
    [71]肖人彬,王磊.人工免疫系统:原理、模型、分析及展望.计算机学报. 2002, 25(12): 1282-1293.
    [72]王煦法,张显俊,曹先彬,等.一种基于免疫原理的遗传算法.小型微型计算机系统. 1999, 20(2): 117~120.
    [73]王磊,潘进,焦李成.免疫算法.电子学报. 2000, 28(7): 74-78.
    [74] Stepney, S., Smith, R. E., Timmis, J., Tyrrell, A. M. Towards a Conceptual Framework for Artificial Immune Systems. 2004: 53-64.
    [75] Jerne, N. K. Toward a network theory of the immune system. Annual Immunology. 1974, 125: 373-389.
    [76] Timmis, J., Neal, M. A resource limited artificial immune system for data analysis. Knowledge-Based Systems. 2001, 14(3-4): 121-130.
    [77] Neal, M. An artificial immune system for continuous analysis of time-varying data. in: 1st International Conference on Artificial Immune Systems (ICARIS). Canterbury, UK.: 2002. 75-86.
    [78] Nasraoui, O., Dasgupta, D. A Novel Artificial Immune System Approach to Robust Data Mining. in: the Genetic and Evolutionary Computation Conference (GECCO2002). New York: 2002.
    [79] Ishida, A., Shirai, Y., Kondo, T., et.al. Immunoid: An Architechure for Behavior Arbitration Based on the Immune Networks. in: IEEE/RSJ International Conference on Intelligent Robots and Systems. Osaka, Japan: 1996. 1730-1738.
    [80] Tang, Z., Yamaguchi, T., K.Tashima, Ishizuka, O., et al. A Multiple valued immune network and its applications. IEICE Trans. Fundamentals. 1999, E82-A(6): 1102-1108.
    [81] de Castro, L. N., Von Zuben, F. J. An Evolutionary Immune Network for Data Clustering. in: IEEE Brazilian Symposium on Artificial Neural Networks. Rio de Janeiro, Brazil: 2000.
    [82] de Castro, L. N., Von Zuben, F. J. aiNet: An Artificial Immune Network for DataAnalysis. International Journal of Computational Intelligence and Applications (IJCIA). 2001, 1(3): 231-259.
    [83] Smith, D. J., Forrest, S., Perelson, A. S. Immunological memory is associative. in: International conference on Multiagent System. Tokyo,Japa: 1996. 62-70.
    [84] Ishida, Y., Adachi, N. An immune algorithm for multiagent: application to adaptive noise neutralization. in: International Conference on Intelligent Robots and System: vol. 3, 1996. 1739-1746.
    [85] Chun, J. S., Lim, J. P., Jun, H. K. Shape optimization of electromagnetic devices using immune algorithm. IEEE Trans on Magnetics. 1997, 33(2): 1876-1897.
    [86] Naruaki, T., Satoshi, E., Koji, Y. Immune algorithm with immune network and MHC for adaptive problem solving. in: IEEE SMC Conference. Tokyo, Japan: vol. 4, 1999. 271-276.
    [87] de Castro, L. N., Von Zuben, F. J. The Clonal Selection Algorithm with Engineering Applications. in: Workshop on Artificial Immune Systems and Their Applications. Las Vegas, USA: 2000. 36-37.
    [88] Perelson, A. S. The evolution of emergent organization in immune system Gene libraryes. in: the sixth international conference on genetic algorithm,. Morgan Kaufmann, San Francisco, CA: 1995. 344-350.
    [89] Hightower, R., Forrest, S. The baldwin effect in the immune system: learning by somatic hypermutation adaptive individual in evolving populations. MA: Addison-Wesley reading, 1996.
    [90] Opera, M., Forrest, R. Simulated evolution of antibody gene libraries under pathogen selection. in: IEEE international conference on system, man and cybernetics. Los Alamitos: vol. 4, 1998. 3793-3798.
    [91] Varela, F. J., Stewart, J. Dynamics of a Class of Immune Network. Theoretical Biology. 1990, 144(1): 93-101.
    [92]丁永生,任立红.一种新颖的模糊自调整免疫反馈控制系统.控制与决策. 2000, 15(4 ): 443-446.
    [93] Sasaki, M., Kawafuku, M., Takahashi, K. An Immune Feedback Mechanism Based on Adaptive Learning of Neural Network Controller. in: The 6th InternationalConference on Neutral Information Processing: vol. 2, 1997. 502-507.
    [94] Takahashi, K., Yamada, T. Application of an Immune Feedback Mechanism to Control System. JSME International Journal, Series C. 1998, 41(2): 184-191.
    [95] Lee, D. W., Sim, K. B. Artificial Immune Network-based Cooperative Control in Collective Autonomous robots. in: The 6 th IEEE International Workshop on Robot and Human Communication. Sendai: 1997. 58-63.
    [96] Mitsumoto, N., Fukuta, T. Control of distributed autonomous robotic based biologically inspired immunological architecture. in: IEEE international conference robotics and automation. Albuquerque, NM, USA: vol. 4, 1997. 3551-3556.
    [97] Kumar, K. K., Neidhoefer, J. Immunised Neurocontrol Expert Systems with Applications. 1997, 13(3): 201-214.
    [98] Dasgupta, D., Cao, Y., Yang, C. Immunogenetic approach to spectra recognition. in: GECCO '99. San Francisco,CA,USA 1999. 149-155.
    [99] Dasgupta, D., Forrest, S. Artificial immune systems in industrial applications. in: The 2nd International Conference on Intelligent Processing and Manufacturing of Materials. Honolulu: 1999. 257-267.
    [100] Araujo, M., Aguilar, J., Aponte, H. Fault detection system in gas lift well based on artificial immune system. in: 2003 the International Joint Conference on Neural Networks: vol. 3, 2003. 1673 - 1677.
    [101]刘树林,张嘉钟,王日新,时文刚.基于免疫系统的旋转机械在线故障诊断.大庆石油学院学报. 2001, 25(4): 69-72.
    [102]杜海峰,王孙安.基于ART-人工免疫网络的多级压缩机故障诊断.机械工程学报. 2002, 38(4): 88-90.
    [103]汤红诚,李著信,武华峰,王考杰.基于人工免疫的异步电机故障诊断系统.中国电机工程学报. 2005, 25(23): 158-162.
    [104]樊友平,黄席樾,柴毅,等.基于细胞免疫应答理论重建故障诊断智能体.系统仿真学报. 2003, 15(1): 50-55.
    [105] Hajela, P., Lee, P. J. Constrained genetic search via schema adaptation: an immune network solution. Structural optimization. 1996, 12(1): 11-15.
    [106] Mori, K., Tsukiyama, M., Fukuda, T. Application of an immune algorithm tomulti-optimization problems. Electrical Engineering (Japan). 1998, 122(2): 30-37.
    [107]张军,刘克胜,王煦法.一种基于免疫调节算法的BP网络设计.安徽大学学报(自然科学版). 1999, 23(1): 63-66.
    [108]孙勇智,韦巍.基于人工免疫算法的电力系统最优潮流计算.电力系统自动化. 2002, 26 (12): 30-34.
    [109]崔逊学,李淼,方廷健.基于免疫原理的多目标进化算法群体多样性研究.模式识别与人工智能. 2001, 14(3): 291-295.
    [110] deCastro, L. N., Timmis, J. An artificial immune network for multi-modal function optimization. in: the 2002 Confess on Evolutionary Computation: vol. 1, 2002. 699-704.
    [111] K.Parthasarathy. Clonal selection method for immuntiv based intrusion detection systems. in: International conference on systems, man and cybernetics. Orlando, FL, USA: vol. 1, 1997. 667-674.
    [112] D.H.Kim. Intelligent tuning of a PID controller for multivariable process using immune network model based on fuzry set. in: The 10th IEEE International Conference on Fuzry Systems: vol. 1, 2001. 93-98.
    [113] D.H.Kim. Tuning of 2-DOF PID controller by immune algorithm. in: the 2002 Congress on Evolutionary Computation: vol. 1, 2002. 675-680.
    [114]张韵农,何振亚,蔚承建,裴文江.图像增强的自适应免疫算法.东南大学学报(自然科学版). 2002, 32(3): 346-350.
    [115] de Castro, L. N., Von Zuben, F. J. Learning and Optimization Using the Clonal Selection Principle. IEEE Trans on Evolutionary computation. 2002, 6(3): 239-251.
    [116]张著洪.人工免疫系统中智能优化及免疫网络算法理论与应用研究: [博士学位论文].重庆大学, 2004.
    [117]陈慰峰.医学免疫学.北京:人民出版社, 2001.
    [118] Dasgupta, D. Artificial Neural Network and Artificial Immune Systems: Similarities and Differences. in: IEEE International Conference on System, Man, and Cybernetics. Orland: vol. 1, 1999. 873-878.
    [119]丁永生,任立红.人工免疫系统:理论与应用.模式识别与人工智能. 2000, 13(1): 52-59.
    [120] Perelson, A. S., Weisbuch, G. Immunology for Physicist. Review of Modern Physics. 1997, 69(4).
    [121] Hunt, J. E., Cooke, D. E. Learning using an artificial immune system Journal of Network and Computer Applications. 1996, 19(2): 189-212.
    [122] Gonzalez, F., Dasgupta, D., Kozma, R. Combining negative selection and classification techniques for anomaly detection. in: the 2002 Congress on Evolutionary Computation, 2002(CEC '02): vol. 1, 2002. 705 - 710.
    [123] Amaral, J. L. M., Amaral, J. F. M., Tanscheit, R., Pacheco, M. An immune inspired fault diagnosis system for analog circuits using wavelet signatures. in: 2004 NASA/DoD Conference on Evolvable Hardware(EH' 04): 2004. 138 - 141.
    [124] Freitas, A. A., Timmis, J. Revisiting the Foundations of Artificial Immune Systems: A Problem-oriented Perspective. in: ICARIS 2003: Springer Verlag, 2003.
    [125] Zhang, J., Li, R.-x., Han, P., Wang, D.-F., et al. Wavelet packet feature extraction for vibration monitoring and fault diagnosis of turbo-generator. in: the 2nd International Conference on Machine Learning and Cybernetics. Xi'an: 2003. 76-81.
    [126]程宝清,韩凤琴,桂中华.基于小波的灰色预测理论在水电机组故障预测中的应用.电网技术. 2005, 29(13): 40-44.
    [127]符向前,刘光临,蒋劲,等.基于信息熵的机组运行劣化度综合指标.电力系统自动化. 2005, 29(7): 75-78.
    [128]熊建秋,李祚泳,汪嘉杨,等.基于PNN的水轮发电机组振动故障诊断.水力发电. 2005, 31(7): 55-57.
    [129]彭文季,罗兴锜,赵道利.基于频谱法与径向基函数网络的水电机组振动故障诊断.中国电机工程学报. 2006, 26(9): 155-158.
    [130]刘忠,周建中,张勇传,等.基于水电机组复合特征提取的RBFNN故障诊断.电力系统自动化. 2007, 31(11): 87-91.
    [131]宋光雄,何永勇,褚福磊.基于双参数方法的水轮发电机组故障诊断规则表示和推理问题研究.中国电机工程学报. 2006, 26(11): 87-92.
    [132]鹿卫国,戴亚平,高峰.一种基于概率分布估计的水电机组故障预警方法.中国电机工程学报. 2005, 25(4): 94-98.
    [133]梁武科,张彦宁,贾嵘,等.小波分析在水力发电机组振动信号去噪中的应用.中国农村水利水电. 2003, (6): 8-10.
    [134]欧阳森,宋政湘,陈德桂,等.小波软阈值去噪技术在电能质量检测中的应用.电力系统自动化. 2002, 26(19): 56-60.
    [135]王士同.模糊推理理论与模糊专家系统.上海:上海科学技术文献出版社, 1994.
    [136]余涛,王晶,高峰,等.水电机组故障诊断的集成知识表示与推理.中国电机工程学报. 2000, 20(4): 68-71,86.
    [137]万书亭,李和明,李永刚.基于两层迭代聚类算法的RBFNN及在发电机诊断中的应用.电力系统自动化. 2004, 28(21): 65-68.
    [138] Yuan, S., Wu, Z. An Infrastructure for Engineering Cooperative Agents. International Journal of Software Engineering and Knowledge Engineering. 2000, 10(6): 681-711.
    [139] Chen,S., Billings,S.A. Neural networks for nonlinear dynamic system modelling and identification. International Journal of Control. 1992, 56(2): 319-346.
    [140]刘晓波,黄其柏,黄开启.基于框架式规则的水轮机组故障诊断专家系统研究.水力发电. 2005, 31(12): 50-53.
    [141]刘忠,周建中,张勇传,等.基于免疫原理的水电机组故障诊断方法.水力发电. 2007, 33(3): 54-56.
    [142] Bradley, D. W., Tyrrell, A. M. Immunotronics - Novel Finite-State-Machine Architectures with Built-in Self-Test Using Self-Nonself Differentiation. IEEE Transactions on Evolutionary Computation. 2002, 6(3): 227 - 238.
    [143] Castiglione, F., Motta, S., Nicosia, G. Pattern recognition by primary and secondary response of an Artificial Immune System Theory in Biosciences. 2001, 120(2): 93-106.
    [144] Dasgupta, D., Majumdar, N. S. Anomaly detection in multidimensional data using negative selection algorithm. in: the 2002 Congress on Evolutionary Computation, 2002(CEC '02): vol. 2, 2002. 1039 - 1044
    [145]孙辉,姜梅,陈继侠.灰色理论在中长期负荷预测中的应用研究.东北电力学院学报. 1997, 17(2): 18-23.
    [146] Jiang, H., Guan, Y., Li, D., Xu, J. Self-adaptive Clustering Algorithm Based RBF Neural Network and its Application in the Fault Diagnosis of Power Systems. in: IEEE/PES Transmission and Distribution Conference & Exhibition. Dalian, China:2005. 1-6.
    [147]曹先彬,刘克胜,王煦法.基于免疫进化的多层前馈网络设计.软件学报. 1999, 10(11): 1180-1184.
    [148] Diao, Y., Passino, K. M. Immunity-based hybrid learning methods for approximator structure and parameter adjustment Engineering Applications of Artificial Intelligence. 2002, 15(6): 587-600.
    [149] deCastro, L. N., Zuben, F. J. V. Learning and Optimization Using the Clonal Selection Principle. IEEE Trans on Evolutionary computation. 2002, 6(3): 239-251.
    [150] deCastro, L. N., VonZuben, F. J. An Immunological Approach to Initialize Centers of Radial Basis Function Neural Networks. in: V Brazilian Conference on Neural Networks - V Congresso Brasileiro de Redes Neurais. PUC, Rio de Janeiro - RJ - Brazil: 2001. 79-84.
    [151] Barra, T. V., Bezerra, G. B., deCastro, L. N., VonZuben, F. J. An Immunological Density-Preserving Approach to the Synthesis of RBF Neural Networks for classification. in: IJCNN '06. International Joint Conference on Neural Networks: 2006. 929-935.
    [152]李凌均,张周锁,何正嘉.基于支持向量机的机械设备状态趋势预测研究.西安交通大学学报. 2004, 38(3): 230-233,238.
    [153]代开锋.基于特征的水电机组状态趋势预测: [硕士学位论文].华中科技大学, 2005.
    [154]陈光柱,李志蜀,蒋亚平.基于免疫计算的agent系统研究.计算机工程与应用. 2005, (15): 13-16.
    [155] Djurdjanovic, D., Lee, J., Ni, J. Watchdog Agent—an infotronics-based prognostics approach for product performance degradation assessment and prediction. Advanced Engineering Informatics. 2003, 17(3-4): 109-125.
    [156]马笑潇,黄席樾,柴毅,等.免疫agent概念与模型.控制与决策. 2002, 17(4): 509-512.
    [157] Yeom, K., Park, J. An Artificial Immune System Model for Multi Agents based Resource Discovery in Distributed Environments. in: the First International Conference on Innovative Computing, Information and Control (ICICIC '06): vol. 12006. 234 - 239
    [158]卢文秀,褚福磊,张正松.抽水蓄能机组的状态监测和故障诊断.中国电力. 2000, 33(4): 19-22.
    [159]张晓阳,孙宇,王胜红,等.产品研发过程中的诊断维护知识管理与建模.计算机集成制造系统-CIMS. 2005, 11(3): 347-351.
    [160]刘航,李玉忍,齐容. CIMS中的数据库集成.电气传动自动化. 2001, 23(5): 42-44.
    [161]胡建中,许飞云,贾民平,等.基于多Agent技术的协同诊断策略研究.计算机工程与应用. 2007, 43(8): 177-179.
    [162] Rosin, C. D., Belew, R. K. New Methods for Competitive Co-evolution. Evolutionary Computation. 1997, (5): 1-29.
    [163] Pagie, L., Mitchell, M. A comparison of evolutionary and coevolutionary search. International Journal of Computational Intelligence and Applications. 2002, 2(1): 53-69.
    [164] Poter, M. A., deJong., K. A. A Cooperative Coevolutionary Approach to Function Optimization. in: the Third Conference on Parallel Problem Solving from Nature: Springer-Verlag, 1994. 249-257.
    [165]郑浩然,吴赵斌,齐培申,等.基于共生策略的多模式进化算法.计算机工程. 2000, 26(8): 7-8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700