用户名: 密码: 验证码:
建筑废弃物粉尘的活化与制备轻质建材的试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文对建筑废弃物在预处理过程中经除尘器收集的粉尘(简称建筑废弃物粉尘)进行了分析研究,主要通过热法活化、热法.研磨活化方法对建筑废弃物粉尘进行活化,采用热法-研磨活化细粉/碱性活化工艺制备泡沫混凝土,并进行了利用活化细粉制备水泥基复合材料—活化细粉泡沫混凝土(轻质建材)的试验研究。
     (1)热法活化温度600℃活化时间150min的建筑废弃物粉尘效果最优,对比未经活化处理的建筑废弃物粉尘:①物理性能发生改变,热法活化后发生脱水反应。②做为胶凝材料和做为掺合料对水泥砂浆抗压强度具有提高作用。③颗粒形状圆整,表面附着的水化产物明显减少,提高了分离效果。④热法活化提高了研磨活化的效果:热法活化温度在400℃、600℃、800℃活化时间150min的建筑废弃物粉尘在相同的球磨时间、球料比的情况下,0.075mm筛余均小于未经热法活化处理的建筑废弃物粉尘,随着热法活化温度的提高,0.075mm筛余随着减小。
     (2)热法-研磨活化使得建筑废弃物粉尘物理性能得到提高,有效地实现了包裹在硬化水泥浆体中的水泥熟料颗粒分离;热法活化温度600℃活化时间150mmin,研磨活化4h的建筑废弃物粉尘做为胶凝材料和掺合料对比未经活化处理的粉尘,均对水泥砂浆抗压强度起到提高作用。
     (3)热法-研磨活化细粉/碱性活化工艺,对活化细粉做为胶凝材料和掺合料的水泥砂浆抗压强度均起到了提高作用。其中NaOH的掺入量为建筑废弃物粉尘的1.5%效果最佳。
     (4)本课题确定的建筑废弃物粉尘的活化方法为:热法活化温度600℃活化时间150mmin,球料比为2:1的3MZ-30A三筒式振动球磨机研磨4h(0.075mm筛余27.6%),激发剂NaOH的掺入量是建筑废弃物粉尘质量的1.5%。
     (5)活化细粉泡沫混凝土的制备工艺简单,免去了高压釜蒸养和烧结等工艺,降低了二次污染和成本;活化细粉的利用率可达总料量的24%,实现了对建筑废弃物回收再利用。
     (6)通过进行工艺因素分析,优化的试验配合比得到本课题试验配比为:水泥加入量30%,石灰加入量10%,粉煤灰加入量36%,活化细粉加入量24%,浓度0.4%的十二烷基硫酸钠作为发泡剂加入量为2ml/kg,水灰比为0.42,减水剂FDN-2加入量为水泥量的1%,早强剂硫酸钠加入量为水泥量的1%。
     (7)活化细粉泡沫混凝土的性能指标:抗压强度4.1MPa,容重843 kg/m3,抗压强度达到并且超过了《新型墙体材料》中硅酸盐泡沫混凝土绝干28d抗压强度2.5~3.5MPa的要求;根据JC/T 1062—2007《泡沫混凝土砌块》行业标准,本课题产品28d绝干抗压强度等级达到A3.5(平均值≥3.5MPa,单组最小值≥2.8),容重等级达到B09(830 kg/m3≤干表观密度≤930 kg/m3)。
This research has analyzed and researched the dus which was collected by dust collector when construction waste in pretreatment(short title construction waste dust).From the main methods of thermal activation and thermal- grind activation, activated the construction waste dust. And use activated powder to preparae the cement-based composite materials-activated powder foam concrete(lightweight materials).
     (1) The best effection of construction waste dust was thermal activation temperature 600℃activation time 150min. Compared to the construction waste dust without activation:①The physical properties had changed, dehydration had appeared after activation thermal.②As cementitious materials and admixtures had improved the compressive strength.③Particle shape was round,the surface attachment significantly reduced the hydration products and improved the separation effect.④The construction waste dust with thermal activation increased the effect of grinding activation:thermal activation temperature 400℃, 600℃,800℃,activation time 150min in the same milling time,at the same ratio of ball and materials,0.075mm sieve were less than construction waste dust without thermal activation, the thermal activation temperature increased,0.075mm sieve decreased.
     (2)The physical properties of construction waste dust with thermal-grind activation had improved. The separation of cement paste and cement clinker had effectively achieved. The dus with thermal activation temperature 600℃activation time 150min grind activation 4h had improved the compressive strength as cementitious materials and admixtures.
     (3) Thermal-grind activated powder/alkali activation process had improved the compressive strength when activated powder as cementitious materials and admixtures. The best effection was:NaOH was 1.5% of construction waste dust.
     (4) This research determined the activation method of construction waste dust was: heating treatment at 600℃for 150min,3MZ-30A three cylindrical vibration ball mill at ratio of ball and materials 2:1, grinding 4h (0.075mm sieve27.6%), incorporation of activators NaOH is 1.5% of the quality of construction waste dust.
     (5) The production process of activated powder foam concrete is simple,eliminated the need for autoclave steam curing and sintering processes, reducing of secondary pollution and cost;Activated powder utilization is 24% of the total feeding amount, the construction wasted recycling has achieved.
     (6)From analysising the technological factors and experimental ratio.The experimental ratio of this research is:30% cement,10% lime, fly ash36%, construction waste dust24%, SBS concentration of 0.4% addition is 2ml/kg, water-cement ratio is 0.42, water reducing agent FDN-2 addition is 1% of the amount of cement, Na2SO4 addition is 1% of the amount of cement.
     (7) The performance of activated powder foam concrete is:compressive strength is 4.1MPa, bulk density is 843 kg/m3.Compressive strength reached and surpassed the requirements of "new wall material".which required the 28d compressive strength at 2.5~3.5MPa; according to JC/T 1062-2007 "foam concrete block" industry standard, this research 28d compressive strength reached A3.5 level (average≥3.5MPa, one group minimum≥2.8MPa), bulk density reached B09 level (830 kg/m3≤dry apparent density≤930 kg/m3).
引文
[1]周清长.建筑垃圾再生混合骨料混凝土的受力性能及透水性研究[D].厦门:厦门大学,2009年.
    [2]林海燕,何星华.建筑节能与建筑材料[C].中国硅酸盐学会编.新型建筑材料论文集.北京:中国建材工业出版社,2003.20~24.
    [3]杨子江.建筑垃圾对城市环境的影响及解决途径[J].城市问题.2003.(4):60~63.
    [4]陈道普.废弃混凝土的再生利用—再生混凝土[J].河南建材,2003,(2):20~22.
    [5]李军华,刘今朝.浅谈建筑垃圾的再利用[J].安阳师范学院学报.2000:116~120.
    [6]杜婷,张勇,昌永红.国外建筑垃圾的处理对我国的借鉴[J].湖南城建高等专科学校学报.2002.(6):35~36.
    [7]李伟雄,唐晓雪,余忠.建筑垃圾的再生循环与回收利用途径的探讨[J].山西建筑.2003.(15):130~131.
    [8]王健,李懿.建筑垃圾的处理及再生利用研究[J].环境工程.2003.(6):49~52.
    [9]Akash Rao,Kumar Jha.Use of aggragate from recycled constructionand demolition waste in concrete[J].Resources,conservation and Recycling.2006(50):71-81.
    [10]李坤,张英华.再生混凝土粗骨料的基本性能实验研究[J].建筑科学,2006.10,22(5):58~60.
    [11]J M Khatib.Properties of concrete incorporating fine recycled aggregate[J].Cement and Concrete Research.2005(35):763-769.
    [12]国家环境保护总局污染控制司.城市固体废物管理与处理处置技术[M].北京:中国石化出版社,2000.
    [13]大卫.皮尔斯.绿色经济的蓝图(3):衡量可持续发展[M].北京:北京师范大学出版社.
    [14]张越,城市生活垃圾减量化管理经济学[M].北京:化学工业出版社,2004.
    [15]赵波,徐庆瑞.21世纪中国要为能源而战[J].辽宁经济统计.2004(12):11~13.
    [16]李大华,盛洲发.我国建筑垃圾的现状和资源化处置的对策商榷[J].安徽建筑工业学院学报.2006,14(6):67~70.
    [17]李美蓉等.建筑垃圾的资源化利用是保护生态的有效途径[J].新疆环境保护.2006,28(3):40~43.
    [18]范小平.再生骨料混凝土的开发与研究[J].福建建材.2006,10(12):4~5.
    [19]谢平荣.我国建筑垃圾的现状与综合利用[J].山西建筑.2006,32(11):339~340.
    [20]杜婷,罗利华.理性,新型建材发展的必由之路[J].国外建材科技.2003,24(6):17~18.
    [21]刘富玲等.美国公路水泥混凝土的再生利用[J].新型建筑材料.2002(6):37~39.
    [22]陈永刚,曹贝贝.再生混凝土国外发展动态[J].广东建设信息.2005(3):57~58.
    [23]王志新,陈鹤云,刘光华.超轻水泥混凝土在工程中的应用[J].混凝土与水泥制品.1999(1):44~45.
    [24]刘佳奇,霍冀川,雷永林,李娴.发泡剂及泡沫混凝土的研究进展[J].化学工业与工程.2010(1):73~77.
    [24]王永滋.粉煤灰泡沫混凝土的生产与应用[J].福建建设科技.2001,(2):35~36.
    [25]刘子全,王波,李兆海,蒋润乾.泡沫混凝土的研究开发进展[J].混凝土.2008,(12):24~26.
    [26]程光甫,宋存义.粉煤灰性能的基本分析[J].粉煤灰综合利用,1992,(1):39-43.
    [27]王攒.粉煤灰胶凝系数及其品质评价研究[D].大连:大连理工大学,2002.
    [28]马保国,郝先成等.建筑垃圾中细粉料的活性研究[J].新型建材与施工技术.
    [29]马纯滔,宋建夏,王彩波,张峰.建筑垃圾再生微粉利用的试验研究[J],宁夏工程技术.2009,(1):55~58.
    [30]杨久俊,毋雪梅,张海涛,张磊,黄明.建筑垃圾作矿物掺料对水泥物理力学性能的影响[J],粉煤灰,2005,(2):12~14.
    [31]水中和,玄东兴,曹蓓蓓.热.机械力分离制备高品质再生骨料的研究[J].混凝土,2006(12):60~62.
    [32]玄东兴,水中和,曹蓓蓓.水泥基材料组分热变形差异性研究[J].武汉理工大学学报,2007,(1):30~32.
    [33]昊静,丁庆军,何永佳,吕林女,胡曙光.利用废弃混凝土制备高活性水泥混台材的研究[J].水泥工程,2006,(4):13~15.
    [34]钱大行,孙犁,张日华.再生磨细掺合料的研制和应用[J].混凝土,2008(9):48~49.
    [35]孙犁,钱大行.废弃混凝土磨细粉与矿粉复合性能试验研究[J].洛阳理工学院学报(自然科学版),009,(2):6-8.
    [36]郑立,姚通稳.新型墙体材料技术读本[M].北京:化学工业出版社,2004.
    [37]Alexander K.M, wardlaw J, Ivanusec I, Fly Ash:The Manner of Its Contribution to Strength and Magnitude of Its Effect of Greep and Related Properties of High Quanlity Concrete[J].Civil Transitions,Institution of Engineers, Australia,1984, (4): 296-305.
    [38]秋小安.再生混凝土微粉昀性能及其国内外研究坝状分析[J].工程技术.
    [39]钱大行,孙犁,张日华.再生磨细掺合料与磨细矿粉复合的试验研究[J].四川建筑科学研究,2009(6):235~240.
    [40]吕雪源,王乐生,陈雪,李秋义.混凝土再生微粉活性试验研究[J].青岛理工大学学报,2009(4):137~179.
    [41]李秋义,李云霞,朱崇绩.颗粒整形对冉生细骨料性能的影响[J].新型建筑材料,2006,(6):17~20.
    [42]路新瀛,张华新,工晓睿.混凝土渗透性电测方法评述[J].混凝土与水泥制 品,2003,(4):7-9.
    [43]易成,谢和平,孙华飞,高伟.混凝土抗渗性能研究的现状与进展[J].混凝土,2003,160(2):7-11.
    [44]shima H,etal. Cycle Analysis of High Quahcy Recycled Aggreate with Use of Byproduct Powder as Soil Stabilisher.Concrete Research and Tecnology,2004, 15(1):81-91.
    [45]孟姗姗,陶珍东等.废弃混凝土中基质胶凝组分作原料锻烧水泥熟料的研究[J].水泥工程,2006(1):1~5.
    [46]毛若卿,潘国耀等.CSH相脱水过程中.B—C2S的形成过程研究.武汉理工大学学报[J],1996,18(3):41-43.
    [47]郑芳宇.水泥混凝土材料过程工程学研究:[D].大连:大连理工大学,2006.
    [48]王海燕.新型墙体材料应用介绍[J].山东建材,2003,24(2):37~39.
    [49]Pollet V, Loutz S, Fontaine R. Blocs de Maconnerie a Base de Granulats Recycles [J]. CSTC2magazine,1997, (2):12-19.
    [50]Shelburne W M, Degroot D J. Use of Waste & Recycled Materials in Highway Construction [J]. Civil Engineering Practice,1998,13(1):5-16.
    [50]盖广清,肖力光,殷维河,材料因素对陶粒泡沫混凝土拌合物和易性影响的探讨,吉林建筑工程学院报.
    [51]水中和,曹蓓蓓,万惠文.废弃混凝土再生利用技术及其发展前景[J].资源节约与综合利用.
    [52]A Laukaitis.Influence of technologieal factors on foam cement concrete Formation mixtures and Produet ProPerties, Styatba(CivilEngineering)(Lithunai),1997,11 (3): 52-56.
    [53]张磊,杨鼎宜.轻质泡沫混凝土的研究及应用现状[J].混凝土,2005,(8):10~11.
    [54]赵铁军,王兆利,高倩.泡沫混凝土.青岛建筑工程学院学报[J],2002,23(3):13-15.
    [55]闫振甲,何艳君,泡沫混凝土实用生产技术[M].北京:化学工业出版社,2006.
    [56]尹忠,陈馥,梁发书,王永玉.泡沫评价及发泡剂复配的实验研究[J].西南石油学院学报,2004(4):56~58.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700