用户名: 密码: 验证码:
静电纺丝过程行为及振动静电纺丝技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
静电纺丝技术可以生产纳米纤维并且其生产过程简单而又经济,因此该技术已经引起了世界范围内的广泛关注,静电纺丝技术的研究工作在广泛的开展之中。但是静电纺丝技术中仍存在一些难以解决的问题,还有很多技术和理论工作需要进一步的深入和完善。
     本文构造了静电纺丝过程的一维定常模型,并且考虑到静电纺丝中的热、电效应,得到了改进的Spivak-Dzenis模型和一维静电纺丝模型,对静电纺丝技术进行了理论性的描述,所得的模型相对以往的模型更为完善,对静电纺丝技术的研究具有更强的指导性。
     本文突破了描述单一阶段的Spivak关于射流直径与射流运行距离之间的关系式,得到了不同阶段射流直径与射流运动距离之间的关系式。Spivak关系式已被学术界普遍接受并广泛引用,但是通过对静电纺丝过程中不稳定现象的分析研究,本文认为这一关系式具有一定的局限性,只适用于射流运动过程中的某一阶段,通过对本文所建立模型的分析,本文最终得到了分别对应射流运动中的初始阶段、不稳定阶段和最终阶段的射流直径与射流运动距离之间的关系式,与Spivak的关系式相比,这些关系式更具有普遍适用性与指导意义。
     本文引入标度率分析方法,建立了电流与电压、纤维直径与电压、电流与流量、纤维直径与流量等主要参数之间的标度率关系式,并进行了实验验证。利用这些关系式可以指导静电纺丝工艺的生产和控制,并可以实现对纳米纤维直径的预测,具有重要的实验和生产指导意义。
     本文突破以往静电纺丝装置的研究开发方向,通过理论分析和实验验证证实了振动静电纺丝技术的可行性并自主开发了振动静电纺丝装置。在一般静电纺丝装置中存在纺丝困难的高浓度溶液,利用该设备可以顺利纺丝,并可以获得直径更细的纤维。
     本文利用自主研发的振动静电纺丝装置对若干溶液体系进行了应用研究,考察了振动静电纺丝装置的应用方向和应用前景。在振动静电纺丝实验过程中,不具有流动性的聚氧乙烯凝胶体系呈现了良好的流动性和可纺性,并最终获得了平均直径为100纳米的聚氧乙烯纳米纤维。在对可纺性不强的聚丁二酸丁二醇酯溶液进行的振动静电纺丝实验中,聚丁二酸丁二醇酯溶液呈现了良好的可纺性,纺丝实验非常顺利,与使用普通静电纺丝装置获得的聚丁二酸丁二醇酯纤维相比,使用振动静电纺丝装置纺出的聚丁二酸丁二醇酯纤维直径显著变细了。对添加了未特殊处理碳纳米管的聚丙烯腈溶液的振动电纺丝中,获得了碳纳米管分布均匀、取向良好的碳纳米管增强的聚丙烯腈纤维。这些实验的成功,证明振动静电纺丝技术提高溶液的可纺性,实现对普通静电纺丝装置纺丝存在困难的溶液体系的正常纺丝,并可以得到直径更细的纤维;同时对含有纳米颗粒的高聚物溶液体系的振动静电纺丝,则可以获得颗粒分散均匀、取向良好的纳米纤维。因此,振动静电纺丝技术在静电纺丝溶液体系趋于多样化的情况下具有广泛的可用性和良好的发展前景。
Electrospinning technology has obtained word-wide attention for its convenience in producing nanofibers. Electrospinning is a technology using electric force supplied by a high voltage field to eject Taylor Cone into jets which are finally dried and solidified into nano-scale fibers as solvents vaporized. Mathematical model is a key point for development of electrospinning technology. Though much research has been conducted experimentally and theoretically, its mathematical model is far from perfect possibly due to the complex and nonlinear phenomena and quantum-like properties involved in the proposes, and many factors affecting the procedure such as solutions or melts' viscosity, molecular weight, entanglement of the macromolecule, applied voltage, flow rate and ambience. Based on known models (e.g. Spivak-Dzenis model), a more complete mathematical model is established considering more effects on the procedure, which has wide applications. Its reduced one-dimensional model is of utter simplicity, and has many practical applications.
     Diameter is a key parameter of electrospun nanofiber, which determines whether the obtained fiber could have magic nano-effect properties. Much attention was paid on the prediction. of diameter of electrospun nanofiber. Spivak suggested a ubiquitous scaling law between the jet diameter and its running distance which was widely used. Through analysis of different stages in the procedure of electrospinning, we find the scaling law is valid only for a special stage. Based on our established mathematical model, we obtain different scaling laws for different stages in the procedure. Also we obtain various scaling laws which can not be obtained by other models, such as the relationships between voltage and solution flow rate, diameter of the obtained fiber and voltage, current and voltage, diameter and flow rate, and others. All these scalings are experimentally verified and have many potential applications in experiment.
     Experiments and theoretical analysis reveal that polymer solution Can not be electrospun into nanofibers when the Solution viscosity surpasses a certain threshold. We designed a new set of electrospinning set-up coupled with ultrasonic equipment. Some experiments were carried with the new set-up and experimental results showed that our novel vibration-electrospinning apparatus can produce nanofibers from those solutions with high viscosity or coagulated which can not be ecletrospun by classical electrospinning processes; and also the apparatus leads to much finer nanofibers than those obtained without vibration. Furthermore, eletrospinning of original carbon nanotubes added in polymer solution shows that our vibration-electrospinning apparatus works well on additives enhanced nanofibers with good dispersion and alignment.
引文
[1] Anton Formhals. Process and apparatus for preparing artificial threads[P], US patent 1975704, 1934
    [2] Anton Formhals. Method and apparatus for spinning[P], US patent 2160962,1939
    [3] Kim JS, Reneker DH. Polybenzimidazole nanofiber produced by electrospinning[J]. Polymer Engineering and Science, 1999, 39(5): 849-854.
    [4] Reneker DH, Chun I. Nanometer diameter fibers of polymer, produced by electrospinning[J]. Nanotechnology, 1996(7): 216-223.
    [5] Reneker DH, Kataphinan W, Theron-A, et al. Nanofiber garlands of polycaprolactone by electrospinning[J]. Polymer, 2002, 43(25): 6785-6794.
    [6] Rutledge GC, Warner SB,Electrostatic spinning and properties of ultrafine fibers,National Textile Center Research Briefs - Materials Competency,June 2003
    [7] Ahn YC, Park SK, Kim GT, Hwang YJ, Lee CG, Shin HS, Lee JK. Development of high efficiency nanofilters made of nanofibers[J]. Current Applied Physics, 2006, 6(6):1030-1035
    [8] Hou HQ; Averdung J. Oriented mesotubular and nantotublular non-wovens[P], EP1335999,2003
    [9] Kosmider K, Scott J. Polymeric nanofibre exhibit an enhanced air filtration performance [J]. Filtration and Separation, 2002, 39(6):20-22.
    [10] Shin C, Chase GG, Reneker DH. Recycled expanded polystyrene nanofibers applied in filter media[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 262(1-3): 211-215
    [11]Barhate RS, Loong CK, Ramakrishna S. Preparation and characterization of nanofibrous filtering media[J]. Journal of Membrane Science, 2006, 283(1-2):209-218
    [12] JM Deitzel, W Kosika, SH McKnighta, NC Beck Tan, JM DeSimoneb, S Crette. Electrospinning of polymer nanofibers with specific surface chemistry[J]. Polymer,2002,43(3):1025-1029
    [13]Luu YK, Kim K, Hsiao BS, Chu B, Hadjiargyrou M. Development of a nanostructured DNA delivery scaffold via electrospinning of PLGA and PLA - PEG block copolymers[J]. Journal of Controlled Release, 2003, 89(2):341-353
    [14] Fang X, Reneker DH. DNA fibers by electrospinning[J]. J Polymer, 1996:1-8.
    [15]McManus MC, Boland ED., Koo HP, Barnes CP, Pawlowski KJ, Wnek GE, Simpson DG, Bowlin GL. Mechanical properties of electrospun fibrinogen structures[J]. Acta Biomaterialia, 2006, 2(1):19-28
    [16] Researchers develop natural bandages from fibrinogen[J]. Medical Textiles, 2003(4): 4.
    
    [17] Fisher AC. Fibrous Structures[P]. GB2145443, 1985, 3.
    [18]Choi KJ, Method, apparatus and product for manufacturing nanofiber media[P]. EP1270771.
    [19] Smith D, Reneker D, McManus A, et al. Electrospun fibers and an apparatus therefore[P]. EP1220958.
    [20]Zong X, Kim K, Fang D, et al. Structure and process relationship of electrospun bioabsorbable nanofiber membranes[JJ. Polymer, 2002, 43(16): 4403-4412.
    [21]Li MY, Mondrinos MJ, Gandhi MR, Ko FK, Anthony S. Weissc, Peter I. Lelkes. Electrospun protein fibers as matrices for tissue engineering [J]. Biomaterials, 2005(26):5999 - 6008
    [22]Schreuder G H, Jacquet C. US army develops fabric membrane to provide multipurpose protection[J]. Technical Textiles International, 1998, 7(4): 6.
    [23] Gibson P, Schreuder G H, Pentheny C. Electrospinning technology: Direct application of tailorable ultrathin materials[J]. Journal of Coated Fabrics, 1998, 28(7): 63-72.
    [24] Kim C, Park SH, Lee WJ, Yang KS. Characteristics of supercapaitor electrodes of PBI-based carbon nanofiber web prepared by electrospinning[J]. Electrochimica Acta, 2004, 50(2-3: Pages 877-881
    [25]Rutledge SL, Shaw HC, Benavides JB, Yowell LL, Chen Q, Jacobs BW, Song SP, Ayres VM, Self assembly and correlated properties of electrospun carbon nanofibers[J]. Diamond and Related Materials, 2006, 15(4-8): 1070-1074
    [26] Gu SY, Ren J, Vancso GJ. Process optimization and empirical modeling for electrospun polyacrylonitrile (PAN) nanofiber precursor of carbon nanofibers[J]. European Polymer Journal, 2005, 41(11):2559-2568
    [27] Gu SY, Ren J, Wu QL, Preparation and structures of electrospun PAN nanofibers as a precursor of carbon nanofibers[J]. Synthetic Metals, 2005, 155(1):157-161
    [28] Kim C. Electrochemical characterization of electrospun activated carbon nanofibres as an electrode in supercapacitors[J]. Journal of Power Sources, 2005, 142(1-2):382-388
    [29] Kim C, Choi YO, Lee WJ, Yang KS. Supercapacitor performances of activated carbon fiber webs prepared by electrospinning of PMDA-ODA poly(amic acid) solutions[J]. Electrochimica Acta, 2004, 50(2-3):83-887
    [30]Park SH, Kim C, Jeong Y, Lim DY, Lee YE, Yan KS. Activation behaviors of isotropic pitch-based carbon fibers from electrospinning and meltspinning[J]. Synthetic Metals, 2004, 146(2): 207-212
    [31]Zhou WP, Wu YL, Wei F, Luo GH, Qian WZ. Elastic deformation of multiwalled carbon nanotubes in electrospun MWCNTs. - PEO and MWCNTs - PVA nanofibers[J]. Polymer, 2005, 46(26):12689-12695
    [32]Saeed K, Park SY, Lee HJ, Baek JB, Huh WS. Preparation of electrospun nanofibers of carbon nanotube/polycaprolactone nanocomposite[J]. Polymer, In Press, Corrected Proof, Available online, September 2006
    
    [33]Chakrabarti K, Nambissa PMG, Mukherjee CD, Bardhan KK, Kim C, Yang KS. Positron annihilation spectroscopy of polyacrylonitrile-based carbon fibers embedded with multi-wall carbon nanotubes[J]. Carbon, 2006, 44(5):948-953
    
    [34]Mathew G, Hong JP, Rhee JM, Lee HS, Nah C. Preparation and characterization of properties of electrospun poly(butylene terephthalate) nanofibers filled with carbon nanotubes[J]. Polymer Testing, 2005, 24(6): 712-717
    
    [35]Kim GM, Michler GH, Tschke PP, Kim C, Choi YO, Lee WJ, Yang KS. Deformation processes of ultrahigh porous multiwalled carbon nanotubes/polycarbonate composite fibers prepared by electrospinning[J]. Polymer, 2005, 46(18):7346-7351
    
    [36] F. Ko, Y. Gogotsi, A. Ali, N. Naguib, H. Ye, G. Yang, C.Li, P. Willis. Electrospinning of continuous carbon nanotube-filled nanofiber yarns[J]. Advanced Materials, 2003(15):1161-1165.
    
    [37]H. Ye, H. Lam, N. Titchenal, Y. Gogotsi, F. Ko. Reinforcement and rupture behavior of carbon nanotubes-polymer nanofibers[J]. Applied Physics Letter, 2004(85):1775-1777.
    
    [38] A. Ali, A.J. Geshury, F. Ko, Ultra-fine carbon fibers and fibrous structures from electro-spun PAN polymer solution[A], Proceedings of the Fiber Society Annual Technical Conference, Natick, MA, USA, October 16-18, Fall, 2002.
    
    [39]F. K. Ko, M. Gandhi, C. Karatzas, Carbon nanotube reinforced spider silk-a model for the next generation of super strong and tough fibers[A], Proceedings of the 19th American Society for Composites Annual Technical Conference, Atlanta, GA, October 17-20, 2004.
    
    [40]Pawlowski KJ, Belvin HL, Raney DL, et al. Electrospinning of a micro-air vehicle wing skin[J]. Polymer, 2003, 44(4): 1309-1314.
    [41] Ryu Y, Kim HY, Lee KH, Park HC, Lee DR. Transport properties of electrospun nylon 6 nonwoven mats[J]. European Polymer Journal, 2003, 39(9):1883-1889
    [42]Li Yan, Huang ZM,Lu YD. Electrospinning of nylon-6,66,1010 terpolymer[J]. European Polymer Journal, 2006, 42(7): 1696-1704
    [43]Fong H, Liu WD, Wang S, Vaia RA. Generation of electrospun fibers of nylon 6 and nylon 6-montmorillontte nanocomposite[J]. Polymer, 2002, 43(3):775-780
    [44] Li L, Bellan LM, Craighead HG, Frey MW. Formation and properties of nylon-6 and nylon-6/montmorillonite composite nanofibers[J]. Polymer, 2006, 47(17):6208-6217
    [45]Chronakis IS. Novel nanocomposites and nanoceramics based on polymer nanofibers using electrospinning process-A review[J]. Journal of Materials Processing Technology, 2005, 167(2-3):283-293
    [46]Sphurti V. Doiphode, Darrell H. Reneker, George G. Chase. Nanofibers and spheres by polymerization of cyanoacrylate monomer[J]. Polymer, 2006(47):4328-4332
    [47] Kim JS, Reneker DH. Polybenzimidazole nanofiber produced by electrospinning[J]. Polymer Engineering and Science, 1999, 39(5): 849-854.
    
    [48]Dzenis Y, Spinning continuous fibers for nanotechnology[J], science, 2004(304):1917-1919
    [49]Doshi J, Reneker DH. Electro-spinning process and application of electrospun fibers[J]. Jorunal of Electrostatic, 1995(35): 151-160
    [50] Shin YM, Hohman MM, Brenner MP, Rutledge GC. Electrospinning: A whipping fluid jet generates submicron polymer fibers [J]. Applied physics letters, 2001, 78(8): 1-3
    
    [51]Rayleigh L. Phil. Mag. 1882, 14: 184.
    [52]Rayleigh L. Investigations in capillarity[J]. Phil. Mag., 1899, 48: 321-327
    [53]Zeleny J. The electrical discharge from liquid points and a hydrostatic, method of measuring the electric intensity at their surfaces[J]. The Physical Review, 1914,3(2): 69-91
    
    [54]Zeleny J. Instability of Electrified Liquid Surfaces[J]. Physical Review, 1917, 10(1):1-6
    
    [55]Taylor GS. Electrically driven jets[J]. Proc Roy Soc London (A), 1969, 313: 53-475.
    [56]Buchko CJ, Chen LC, Shen Y, et al. Processing and microstructural, characterization of porous biocompatible protein polymer thin films[J]. Polymer, 1999, 40: 7397-7407.
    [57]Spivak AF, Dzenis YA, Reneker DH. A model of steady state jet in the electrospinning process[J]. Mechanics Research Communicaions, 2000, 27(1): 37-42
    [58] Feng JJ. The stretching of an electrified non-Newtonian jet: A model for electrospinning, Physics of Fluids, 2002, 14:3912-3926
    [59]Fridrikh SV, Yu JH, Brenner MP, et al. Controlling the fiber, diameter during electrospinning , Physical Review Letters , 2003, 90 (14).
    [60]Hayati I, Bailey AI, Tadros ThF. Investigation into the mechanics of electrohydrodynamic spraying of liquid[J]. J Colloid Interface Sci, 1987, 117: 205-221,
    [61]Hayati I, Bailey AI, Tadros ThF, Mechanism of stable jet formation in electrohydrodynamic atomization[J]. Nature, 1986, 319(2): 41-43.
    [62] Smith DPH. The electrohydrodynamic atomization of liquids[A]. IEEE[C], 1986,527-535.
    [63]Baumgarten PK. Electrostatic spinning of acrylic microfibers[J]. Journal of Colloid and Interface Science, 1971, 36(1):71-79.
    [64]Larrondo L, Manley RSJ, Electrostatic fibre spinning from polymer melts. I. Experimental observations on fibre formation and properties[J]. Journal of Polymer Science: Polymer Physics Edition, 1981, 19(6): 909-920.
    [65] Ko, Han BH, Kinnari C, et al. The relationship of Berry number to the Diameter of PLA fibers[A]. Gibersscience: The Fiber Society-New Frontiers [C], May, 2001: 23-25.
    [66] Sukigara S, Gandhi M, Ayutsede J, et al. Regeneration of Bombyx mori silk by electrospinning Part 1: Processing parameters and geometric properties[J]. Polymer, 2003, 44(19): 5721-5727.
    [67] Deitzel JM, Kleinmeyer J, Harris D, et al. The effect of processing variables on the morphology of electrospun nanofibers and textiles[J]. Polymer, 2000, 42(1): 26-1-272.
    [68] Dersch R, Liu T, Schaper AK, et al. Electrospun nanofibers: Internal structure and intrinsic orientation[J]. Journal of Polymer Science, Part A: Polymer Chemistry, 2003, 41(4): 545-553.
    [69] 迟蕾,姚永毅,李瑞霞,高绪珊,吴大诚.静电纺丝方法制备纳米纤维的最新进展,2004 (6):1-6.
    [70] 李丰富,张玉军,黄玉东,舒丽霞,王磊.EVOH-SO_3Na无纺布薄膜的制备及微观形貌研究,哈尔滨理工大学学报,2005,10 (4):41-43,47.
    [71] 贾永堂,董凤春,沈新元,金希贵,PA6静电纺纳米纤维,合成纤维工业,2005,28 (1):13-15.
    [72] 郝秀峰,李振宇,李冬妹,王策.从电纺丝到电喷离子化制备核壳纳米粒子,高等学校化学学报,2005,26 (2):385-387.
    [73] 黄美荣,李新贵,曾剑峰,张炜.导电聚合物纳米纤维的成型,现代化工,2002,22 (12):10-13,22.
    [74] 曾敬,陈学思,景遐斌.电纺丝与聚合物超细纤维,高分子通报,2003 (6):44-47,57.
    [75] 王磊,郑岩,徐军,胡宏林,张玉军.高压静电纺丝法制备偏氟乙烯聚合物无纺布膜的研究,哈尔滨理工大学学报,2005,10(3):11-13,18.
    [76] 张锡玮,夏禾,徐纪钢,杨宇,钟淑芳,金剑.静电纺丝法纺制纳米级聚丙烯腈纤维毡,塑料,2000,29 (2):16-20.
    [77] 王新威,胡祖明,潘婉莲,刘兆峰.丙烯腈纳米微纤的制备,合成纤维,2004 (5):16-18.
    [78] 覃小红,王善元.静电纺丝纳米纤维的工艺原理、现状及应用前景,高科技纤维与应用,2004,29 (2):28-32.
    [79] 袁晓燕,董存海,赵瑾,姚康德.静电纺丝制备生物降解性聚合物超细纤维,天津大学学报,2003,36 (6):707-709.
    [80] Larrondo L, Manley RSJ, Electrostatic fibre spinning from polymer melts. Ⅱ. Examination of the flow field in an electrically-driven jet[J]. Journal of Polymer Science: Polymer Physics Edition. 1981, 19(6): 921-932.
    [81] Larrondo L, Manley RSJ, Electrostatic fibre spinning from polymer melts. Ⅲ. Electrostatic deformation of a pendant drop of polymer melt[J]. Journal of Polymer Science: Polymer Physics Edition. 1981, 19(6): 933-940.
    [82] Kessick R, Fenn J, Tepper G, The use of AC potentials in eltctrospraying and electrospinning processes[J]. Polymer, 2004(45): 2981-2984.
    [83] Jaeger R, Bergschoof M, Martini I, et al. Mcromol Syrup 1998, 127: 141-150
    [84] Deitzel JM, Kleinmeyer J, Hirvonen JK, et al. Controlled deposition of electrospun poly(ethylene oxide) fibers[J]. Polymer, 2001, 42: 8163-8170.
    [85] Lee WS, Jo SM, Go SG. Apparatus. of polymer web by electrospinning process[P], US 6616435.
    [86] Chu B, Hsiao BS, Fang DF. Apparatus and methods for electrospinning polymeric fibers and membranes[P], US 6713011.
    [87] Matthews JA, Wnek GE, Simpson DG, Bowlin GL, Electrospinning of collagen nanofibers[J], biomacromolecules, 2002, 3(2): 232-238.
    [88] Theron A, Zussman E, Yarin A L, Electrostatic field-assisted alignment of electrospun nanofibers[J]. Nanotechnology, 2001, 12: 384-390.
    [89] Bornat Alan. Production of electrostaticaily spun products[P], US 4689186.
    [90] Huang Z M, Zhang Y Z, Kotaki M, Ramakrishna S, A review on polymer nanofibers by electrospinning and their applications in nanocomosites[J]. Composites science and technology, 2003, 63: 2223-2253.
    [91] Berry JP. Method and apparatus for manufacturing electrostatically spun structure[P], US 5042789.
    [1] Zeleny J. Instability of Electrified Liquid Surfaces[J]. Physical Review, 1917, 10(1):1-6
    
    [2] Anton Formhals. Process and apparatus for preparing artificial threads[P], US patent 1975704, 1934
    [3] Fang X, Reneker DH. DNA fibers by electrospinning[J]. J Polymer, 1996:1-8,
    [4] Rutledge GC, Warner SB,Electrostatic spinning and properties of ultrafine fibers,National Textile Center Research Briefs - Materials Competency,June 2003
    [5] Theron SA,Zussman E,Yarin AL.Experimental investigation of the governing parameters in the electrospinning of polymer solutions[J]. Polymer, 2004, 45:2017-2030.
    [6] Feng JJ. The stretching of an electrified non-Newtonian jet: A model for electrospjnning[J]. Physics of Fluids, 2002, 14:3912-3926.
    [7] Spivak AF, Dzenis YA, Reneker DH. A model of steady state jet in the electrospinning process[J]. Mechanics Research Communicaions, 2000, 27(1): 37-42.
    [8] Spivak AF, Dzenis YA. Asymptotic decay of radius of a weakly conductive viscous jet in an external electric field[J]. Applied Physics Letters, 1998, 73(21): 3067-3069.
    [9] Fridrikh SV, Yu JH, Brenner MP, et al. Controlling the fiber diameter during electrospinning [J]. Physical Review Letters , 2003, 90 (14).
    [10] Ko JH, Dulikravich GS. Non-reflective boundary conditions for a consistent model of axisymmetric electro-magneto- hydrodynamic flows[J]. Int. J. Nonl. Sci. Num. Simulation, 2000, 1(4): 247-256.
    [11] Eringen AC, Maugin GA. Electrodynamics of Continua Ⅰ; Foundations and Solid Media, Springer Verlag, New York, 1990.
    [12] Eringen AC, Maugin GA. Electrodynamics of Continua Ⅱ; Foundations and Solid Media, Springer Verlag, New York, 1990.
    [1] Spivak AF, Dzenis YA, Reneker DH. A model of steady state jet in the electrospinning process[J]. Mechanics Research Communicaions, 2000, 27(1): 37-42
    [2] Rutledge GC, Warner SB. Electrostatic spinning and properties of ultrafine fibers[D].NTC:M01-M02, 1999
    [3] Rutledge GC, Warner SB,Electrostatic spinning and properties of ultrafine fibers,National Textile Center Research Briefs - Materials Competency,June 2003
    [4] Larrondo L, Manley RSJ. Electrostatic fibre spinning from polymer melts. II. Examination of the flow field in an electrically-driven jet[J]. Journal of Polymer Science: Polymer Physics Edition. 1981,19(6):921-932
    [5] Larrondo L, Manley RSJ. Electrostatic fibre spinning from polymer melts. I. Experimental observations on fibre formation and propertiesfJ]. Journal of Polymer Science: Polymer Physics Edition.1981,19(6):909-920
    [6] Doshi J, Reneker DH. Electro-spinning process and application of electrospun fibers[J]. Journal of Electrostatic,1995,35:151-160
    [7] Baumgarten PK. Electrostatic spinning of acrylic microfibers[J]. Journal of Colloid and Interface Science, 1971,36( 1 ):71-79
    [8] West BJ. Comments on the renormalization group, scaling and measures of complexity. Chaos, Solitons and Fractals, 2004,20: 33-44
    [9] Harris GH. Introduction to modern theoretical physics, John Wiley & Sons, 1975
    [10]Iovane G, Varying G. accelerating universe, and other relevant consequences of a stochastic self-similar and fractal universe. Chaos, Solitons and Fractals, 20, 2004, 657-667
    [11]He JH, Chen H. Effects of Size and pH on Metabolic Rate. International Journal of Nonlinear Sciences and Numerical Simulation, 2003,4: 429-432
    
    [12]Kuikka JT. Scaling Laws in Physiology: Relationships between Size, unction, Metabolism and Life Expectancy. International Journal of Nonlinear Sciences and Numerical Simulation, 2003,4: 317-328
    [13]Kuikka JT. Fractal analysis of medical imaging. International Journal of Nonlinear Sciences and Numerical Simulation, 2002,3: 81-88
    [14] West GB, Brown JH, Enquist BJ. A general model for origin of allometric scaling laws in biology, Science, 1997,276(5309): 122-126
    [15]Ganan-Calvo AM. Cone-jet analytical extension of Taylor's electrostatic solution and the asymptotic universal scaling laws in electrospraying[J]. Physics Review Letter, 1997, 79(2): 217-220.
    [16]Ganan-Calvo AM. The surface charge in electrospraying: its nature and its universal scaling laws[J]. Journal of Aerosol Science, 1999, 30(7): 863-872
    [17]Ganan-Calvo AM. Davila J, Barrero A. Current and droplet size in the electrospraying of liquids[J]. Scaling laws, Journal of Aerosol Science, 1997, 28(2): 249-275
    [18]Spivak, A.F. and Dzenis, Y.A. Asymptotic decay of radius of a weakly conductive viscous jet in an external electric field[J]. Applied Physics Letters, 73(21), 1998: 3067-3069
    [19]Shin YM, Hohman MM, Brenner MP, Rutledge GC, Experimental characterization of electrospinning: the electrically forced jet and instabilities[J]. Polymer, 2001,42: 9955-9967
    [20]Taylor GS. Electrically driven jets[J]. Proc Roy Soc London (A), 1969, 313: 53-475.
    [21]Buchko CJ, Chen LC, Shen Y, et al. Processing and microstructural, characterization of porous biocompatible protein polymer thin films[J]. Polymer, 1999, 40: 7397-7407.
    [22]Sukigara S, Gandhi M, Ayutsede J,et al. Regeneration of Bombyx mori silk by electrospinning Part 1: Processing parameters and geometric properties[J]. Polymer, 2003, 44(19): 5721-5727.
    [23]Deitzel JM, Kleinmeyer J, Harris D, et al. The effect of processing variables on the morphology of electrospun nanofibers and textiles[J]. Polymer, 2000, 42(1): 261-272.
    [24] Ko, Han BH, Kinnari C, et al. The relationship of Berry number to the Diameter of PLA fibers[A], Gibersscience : The Fiber Society-New Frontiers [C], May.2001:23-25.
    [25]Sukigara S, Gandhi M, Ayutsede J,et al. Regeneration of Bornbyx mori silk by electrospinning Part 1: Processing parameters and geometric properties[J]. Polymer, 2003, 44(19): 5721-5727.
    [26]Guptaa P, Elkins C, Long ET, Wilkes GL. Electrospinning of linear homopolymers of poly(methyl methacrylate): exploring relationships between fiber formation, viscosity, molecular weight and concentration in a good solvent[J]. Polymer 2005, 46:4799-4810.
    [27]Jun Z, Hou HQ, Schaper A, Wendorff JH. Poly-L-lactide nanofibers by electrospinning- Influence of solution viscosity and elcectrical conductivity on fiber diameter and fiber morphology[J]. E-Polymers, 2003, Art. No.009.
    [28]Kenawy, E.-R., Bowlin, G.L. , Mansfield, K., et al. Release of tetracycline hydrochloride from electrospun poly(ethylene-co- vinylacetate), poly(lactic acid), and a blend, Journal of Controlled Release 81(2002) 57-64/
    [29]Hayati I, Bailey AI, Tadros ThF. Investigation into the mechanics of electrohydrodynamic spraying of liquid[J]. J Colloid Interface Sci, 1987, 117: 205-221.
    [30]Hayati I, Bailey AI, Tadros ThF, Mechanism of stable jet formation in electrohydrodynamic atomization[J]. Nature, 1986, 319(2): 41-43.
    [31]Smith DPH. The electrohydrodynamic atomization of liquids[A]. IEEE[C], 1986,527-535.
    [32] Demir MM, Yilgor I, Yilgor E, Erman B. Electrospinning of polyurethane fibers[J]. Polymer, 2002(43): 3303-3309
    [33] Theron SA, Zussmana E, Yarin AL. Experimental investigation of the governing parameters in the electrospinning of polymer solutions[J]. Polymer, 2004(45): 2017-2030
    [1] Royal Kessick, John Fenn, Gary Tepper, The use of AC potentials in eltctrospraying and electrospinning processes[J]. Polymer, 2004(45): 2981-2984
    [2] Jaeger R, Bergschoof M, Martini I, et al. Mcromol Syrup 1998, 127: 141-150
    [3] Deitzel JM, Kleinmeyer J, Hirvonen JK, et al. Controlled deposition of electrospun poly(ethylene oxide) fibers[J]. Polymer, 2001, 42: 8163-8170.
    [4] Doshi J, Reneker DH. Electro-spinning process and application of electrospunfibers[J]. Jorunal of Electrostatic, 1995(35): 151-160
    [5] Matthews JA, Wnek GE, Simpson DG, Bowlin GL, Electrospinning of collagen nanofibers[J], biomacromolecules, 2002, 3(2): 232-238
    [6] Theron A, Zussman E, Yarin A L, Electrostatic field-assisted alignment of electrospun nanofibers[J]. Nanotechnology, 2001, 12: 384-390
    [7] Bornat Alan. Production of electrostatically spun products[P], US 4689186
    [8] Huang Z M, Zhang Y Z, Kotaki M, Ramakrishna S, A review on polymer nanofibers by electrospinning and their applications in nanocomosites[J]. Composites science and technology, 2003, 63: 2223-2253
    [9] Wha Seop Lee, Seong Mu Jo, Seok Gu Go. Apparatus of polymer web by electrospinning process[P], US 6616435
    [10] Chu Benjamin, Hsiao Benjamin S, Fang Dufei. Apparatus and methods for electrospinning polymeric fibers and membranes[P], US 6713011
    [11] Oldrich J, Filip S, David L, Vaclav K, Lenka M, Jiri C. A method of nanofibers production from a polymer solution using electrostatic spinning and a device for carrying out the method[P], WO2005024101
    [12] 冯若.超声手册[M].南京:南京大学出版社,1999.10.
    [13] 陈华,刘亚青.超声波在聚合物成型加工种降粘作用的研究及应用[J].化工技术与开发,2006,35(8):10-13.
    [14] 秦玉廷,宋大勇,申开智.熔体振动成型技术的应用[J],塑料科技,2000,140(6):1-4
    [15] CA 157456v(1972).
    [16] CA 33133j(1973).
    [17] Petukov VI, Abramov OV, Zubko AM. Light Metal Age, 1973, 31: 5-6.
    [18] Isayev AI, Wong CM, Zeng X. SPE ANTEC Tech. Papers, 1987, 33: 207.
    [19] Wong CM. Degree Thesis of University of Akron. 1991.
    [20] Isayev AI, Wong CM, Zeng X. Advanced Polymer Technology. 1990, 10(11): 31-45.
    [21] Chen GS, Guo SY, Li HL. Journal of Applied Polymer Science. 2002, 84: 2451-2460.
    [22] Cao YR, Xiang M, Li HL. Journal of Applied Polymer Science. 2002, 84: 1956-1961.
    [23] Chen YZ, Cao YR, Li HL. Journal Applied Polymer Science. 2003, 90: 3519-3525.
    [24] Liu GD, Li HL, Journal Applied Polymer Science. 2003, 89: 2628-2632.
    [25] 曹玉荣,李惠林.高分子材料科学与工程,2001,17(3):146.
    [26] Astier JF, Feytiat B, Bessaguet L. US Patent: 4500280, 1985.
    [27] Gastone P. US Patent: 5135912, 1995.
    [28] 于妍,张长春,李世辉,迟剑锋,孙国恩.超声场致作用对UHMWPE流变及拉伸性能的影响[J].高分子材料科学与工程,2004,20(6):117-119.
    [29] Isayev AI, Wong CM, Parallel superposition of small and large amplitude oscillations upon steady shear flow of polymer fluids[J]. Journal of Polymer Science: Part B, Polymer Physics, 1988, 26(11): 2303-2327
    [30] Wong CM, Isayev AI, orthogonal superposition of small and large amplitude oscillations upon steady shear flow of polymer fluids[J]. Rheol Acta 1989, 28 (2): 176-189
    [1] 沈钟,王国庭.胶体与表面化学[C],化学工业出版社,2003.
    [2] Jeong EH, Im SS, Youk JH. Electrospinning and structural characterization of ultrafine poly(butylene succinate) fibers, Potymer, 2005, 46(32): 9538-9543.
    [3] Kroto HW, Heath JR, O'Brien SC, Curl RE, Smalley RE, Nature, 1985, 318: 162.
    [4] Ko F, Gogotsi Y, All A, Naguib N, Ye H, Yang G, Li C, Willis P. Electrospinning of continuous carbon nanotube-filled nanofiber yarns[J]. Advanced Materials, 2003, (15): 1161-1165.
    [5] Ye H, Lam H, Titchenal N, Gogotsi Y, Ko F. Reinforcement and rupture behavior of carbon nanotubes-polymer nanofibers[J]. Applied Physics Letter, 2004(85): 1775-1777.
    [6] All A, Geshury AJ, Ko F. Ultra-fine carbon fibers and fibrous structures from electro-spun PAN polymer solution[A], Proceedings of the Fiber Society Annual Technical Conference, Natick, MA, USA, October 16-18, Fall, 2002.
    [7] Ko F, Gandhi M, Karatzas C. Carbon nanotube reinforced spider silk-a model for the next generation of super strong and tough fibers[A], Proceedings of the 19th American Society for Composites Annual Technical Conference, Atlanta, GA, October 17-20, 2004.
    [8] Ko F, Kahn S, Rahman A, Zhou O. Carbon nanotube reinforced nanocomposites by the electrospinning process[A], Proceedings of the ASC 16th Annual Technical Conference, Blacksburg, VA, 2001.
    [9] Salalha W, Dror Y, Khalfin R, Cohen Y, Yarin A, Zussman E. CNs embedded in oriented polymer nanofibers by electrospinning[J]. Langmuir 2003 (19): 7012-7020.
    [10] Ge JJ, Hou H, Li Q, Graham MJ, Greiner A, Reneker DH, Harris FW, Cheng, SD. Assembly of well-aligned multiwalled carbon nanotubes in confined polyacrylonitrile environments: electrospun composite nanofiber sheets[J]. J. Am. Chem. Soc. 2004 (126) : 15754-15761.
    [11]Rubianesa MD, Rivas GA. Dispersion of multi-wall carbon nanotubes in polyethylenimine: A new alternative for preparing electrochemical sensors, Electrochemistry Communications, Article in Press.
    [12] Chen HY, Jacobs O, Wu W, Rudiger G, Schadel B.Effect of dispersion method on tribological properties of carbon nanotube reinforced epoxy resin composites, Polymer Testing, Article in Press
    [13]Xie XL, Mai YW, Zhou XP. Dispersion and alignment of carbon nanotubes in polymer matrix: A review, Materials Science and Engineering: R: Reports, 2005, 49(4): 89-112.
    [14] Wang Y, Wu J, Wei F. A treatment method to give separated multi-walled carbon nanotubes with high purity, high crystallization and a large aspect ratio, Carbon, 2003, 41(15): 2939-2948.
    [15]Zhang DS, Shi LY, Fang JH, Li XK, Dai K. Preparation and modification of carbon nanotubes, Materials Letters, 2005, 59(29-30) :4044-4047.
    [16]Anderson MR, Mattes BR, Reiss H, Kaner RB. Science. 1991 (252): 1412.
    [1] Bozdogan AE. A method for determination of thermodynamic and solubility parameters of polymers from temperature and molecular weight dependence of intrinsic viscosity, Polymer, 45 ( 18) : 6415-6424.
    [2] Fox TG. Properties of dilute polymer solutions III: Intrinsic viscosity/temperature relationships for conventional polymethyl methacrylate, Polymer, 1962,3: 111-128.
    [3] Saeki S, Tsubokawa M, Yamaguchi T. Correlation between the equation of state and the temperature and pressure dependence of viscosity in polymer and simple liquids, Polymer, 1989, 30(10): 1895-1902.
    [4] Guner FS, Baranak M, Soyta S, Erciyes AT. Flow behavior of oil-modified polymer solutions, Progress in Organic Coatings, 2004, 50(3): 172-178.
    [5] Lavygin IA, Chistov SF. Temperature dependence of the viscosity of polymer melts and liquid-liquid transitions. Polymer Science U.S.S.R., 1985, 27, Issue 6, Pages 1478-1485.
    [6] He JH, Wan YQ, Xu Lan, Nano-effects, Quantum-like properties in nanofibers, Chaos, Solitons & Fractals, Available online

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700