用户名: 密码: 验证码:
铝电解用TiB_2基可湿润性阴极的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文在前人工作的基础上,研究了熔盐电沉积TiB2镀层的若干问题,如阴极电流密度的大小对镀层质量的影响,镀层的耐电解质腐蚀性能,所用电解质体系的部分物理化学性质和电化学行为等。还研究了不同阴极材料抗钠和电解质的渗透性能以及常温固化TiB2/C复合阴极涂层在300kA预焙铝电解槽上的工业试验。
     采用了循环扫描伏安法、线性扫描伏安法、恒电流计时电位法(时间间隔<0.1s)和计时电流法(时间间隔<0.1s)研究了熔盐电沉积TiB2镀层的电解质体系在钨电极上的电化学行为。结果表明,在KF-KCI-KBF4体系中,B(Ⅲ)在钨电极上的电化学还原为简单的三电子一步反应,即B3++3e-→B。阴极过程在0.1~2V·s-1的扫描速率下接近于可逆过程,且受扩散控制,硼在钨电极上形成可溶性产物。在KF-KCl-K2TiF6体系中,Ti(Ⅳ)分三步还原为单质钛:Ti4++e-(?)Ti3+,Ti3++e-(?)Ti2+,Ti2++2e-(?)Ti。Ti(Ⅳ)在钨电极上沉积的成核过程为瞬时成核。在KF-KCl-K2TiF6-KBF4体系中,电活性物质K2TiF6和KBF4的摩尔比对B(Ⅲ)和Ti(Ⅳ)的还原电位以TiB2的阴极过程有较大的影响。当硼钛摩尔比B/Ti<2时,向负电位方向扫描时,基本上能区分出体系中不同离子还原所对应的还原波;而当硼钛摩尔比B/Ti>2时,Ti(Ⅳ)与B(Ⅲ)的还原波几乎合并为一个波。线性伏安曲线上峰电位的移动可能是由于钛与硼相互作用形成TiB2产生去极化作用以及离子产生浓差极化等因素造成的。这些基础理论的研究对于采用熔盐电沉积的方法来制备TiB2镀层提供了理论依据。
     研究了熔盐电沉积TiB2镀层两种电解质体系的部分物理化学性质,如密度、初晶温度和电导率。两种电解质体系中K2TiF6和KBF4的摩尔比不同。采用直接阿基米德法研究了电解质体系的密度;采用数字万用表与计算机串口相结合的测量技术,利用热分析法,根据步冷曲线研究了电解质体系的初晶温度;采用可变电导池常数(CVCC)法研究了电解质体系的电导率。结果表明,当温度在740~800℃之间变化时,两种电解质体系的密度均随温度的升高而略微降低,初晶温度分别为680℃和678℃,电导率的平均值分别为2.10772和2.02972,两种电解质体系的电导率均随温度的升高而增大。这部分物理化学性质的研究对于改善电解过程中的技术参数,提高电流效率,减少能耗等具有重要意义。
     采用熔盐电沉积的方法在石墨基体上制备了TiB2镀层,并对影响镀层质量的因素进行了研究,对镀层的成分以及元素分布情况等进行了分析。研究结果表明,阴极电流密度的大小对镀层质量有较大影响。所制备的镀层成分主要为TiB2,元素分布均匀,镀层厚度为0.2mm左右。将所制TiB2镀层作为铝电解渗透实验的阴极材料在工业铝电解条件下电解4小时,研究了镀层抗钠和电解质的腐蚀渗透能力。结果表明TiB2镀层较普通石墨阴极具有更好的抗Na和电解质腐蚀渗透的能力。
     研究了不同阴极材料在电解过程中的抗钠和电解质的渗透性能。结果表明,在石墨质阴极材料中,随着石墨含量的增加,其抗钠和电解质的渗透能力逐渐增强。振动成型TiB2阴极和全石墨化阴极炭块较石墨质阴极炭块具有更好的抗钠和电解质的渗透能力。但目前它们生产成本较高而限制了其大规模工业化应用。通过进一步改进它们的生产工艺和降低生产成本,它们将具有很好的工业化应用前景。
     研究开发了常温固化TiB2/C复合阴极涂层技术,并在两台300kA预焙铝电解槽上进行了工业试验。结果表明,两台试验槽启动5个月后与同期启动的对比槽相比,平均分别降低炉底压降9.2mV和10.7mV,平均提高0.67%和0.84%。TiB2/C复合阴极涂层的有效使用寿命为30个月左右。因此TiB2/C复合阴极涂层的使用对铝电解的生产起到了较好的节能降耗的作用,并且可效延长铝电解槽的使用寿命。
Based on some previous research, following researches were studied in this paper on the preparation of TiB2 coating by molten salt electrolysis, such as influence of cathode current density on coating quality, corrosion resistance capability to electrolyte of TiB2 coating, some physical chemistry properties and electrochemical behavior of the electrolyte. Furthermore, penetration of sodium and electrolyte into different cathode materials during electrolysis and industrial testing of TiB2/C coating solidified at ambient temperature in 300kA prebaked aluminium reduction cells were also studied this paper.
     Cyclic voltammetry, linear sweep voltammetry, galvanostatic potentiometry (interval time<0.1s) and amperometry (interval time<0.1s) methods were used in the study of electrochemical behavior of electrolyte on tungsten electrode. The results showed that in KF-KCI-KBF4 molten salt system, electrochemical reduction of B(Ⅲ) was simple one-step reaction:B3++3e-→B. Cathode reduction process was reversible approximately at the scan rate of 0.1~2V·s-1, electrodeposition process was diffusion-control, and the reduction product of boron was soluble. In KF-KCl-K2TiF6 molten salt system, the reduction process of Ti(IV) was three-step:Ti4++e-←→Ti3+, Ti3++e-←→Ti2+, Ti2++2e-←→Ti. The electrochemical reduction of Ti(Ⅳ) on tungsten electrode was instantaneous nucleation. In KF-KCl-K2TiF6-KBF4 molten salt system, the reduction potential of boron and titanium and the cathode process of TiB2 were determined by the mole rate and concentration of K2TiF6 and KBF4. When mole rate of B/Ti<2, different reduction wave can be differentiated; when mole rate of B/Ti>2, the reduction wave of Ti(Ⅳ) and B(Ⅲ) merged one wave. The formation of TiB2 through interaction of boron and titanium and concentration polarization of ions may explain the potential alternation. These basic theory researches supplied warranty for electrodeposition of TiB2 by molten salt electrolysis.
     Some physical chemistry properties of electrolyte were tested, such as density, crystallizing point and conductivity. The mole rate of K2TiF6 and KBF4 in the electrolyte was different. Archimedes method was adapted to research the density of electrolyte; combination of digital universal meter and computer serial interface measuring technique was adopted, thermal analysis method was used, according to the step gradual cooling graph, crystallizing point of the electrolyte was determined; conductivity of the electrolyte was tested by CVCC technique. The results showed that, when temperature varied from 740℃to 800℃, the density of the two electrolyte systems decreased gradually with the increasing of temperature, crystallizing point of two electrolyte was 680℃and 678℃, the average conductivity of two electrolyte was 2.10772 and 2.02972. Conductivity of the electrolyte rose with the gradual increase of temperature. These researches can improve technical parameter of electrolysis, increase current efficiency and reduce consumption of energy.
     TiB2 coating was electrodeposited on graphite substrate by molten salt electrolysis. Influencing factor of TiB2 coating quality was studied, the component and element distribution were analyzed. The results showed that the quantity of coating was influenced by cathode current density, the component of the coating was TiB2 mostly and the distribution of Ti and B elements was well-proportioned, the thickness of the coating was about 0.2 mm. The penetration resistance capability of TiB2 coating used as cathode during electrolysis was studied. After 4hrs electrolysis, the analysis showed that TiB2 coating can slow up sodium penetration effectively compared with graphite cathode.
     Penetration resistance capability of different cathode materials to sodium and electrolyte was studied in this work. The results showed that the penetration resistance capability was enhanced with the increasing of graphite in the graphitic cathodes. Penetration resistance capability of vibratory compaction TiB2 cathode and graphited cathode was better than graphitic cathode, but the cost of them was too high which limited the large scale industrial application. Through improving of production technology and reducing of production cost, they may be used in aluminium reduction cells comprehensively.
     Introduced the technique of TiB2/C composite cathode coating solidified under ambient temperature and the industrial application of the coating in the 300kA aluminium reduction cells were studied in this paper. The bottom average voltage drop of two test cells was lessened by 9.2mV and 10.7mV after startup 5 months. The current efficiency of the two test cells was increased about 0.67% and 0.84%. The validity life of TiB2/C composite cathode coating in aluminium reduction cells can reach about 30 months. The TiB2/C coating can save energy and increase pot life obviously.
引文
1.邱竹贤.预焙槽炼铝(第3版)[M],北京:冶金工业出版社,2005,1-12.
    2.邱竹贤.铝电解原理与应用[M],北京:中国矿业大学出版社,1998,466-474.
    3. Grjotheim K, Kvande H. Introduction to aluminium electrolysis (2nd Edition)[M], Dusseldorf:Aluminium-Verlag,1993,6-25.
    4. Thonstad J, Fellner P, Haarberg G. M etal. Aluminium electrolysis (3nd Edition) [M], Dusseldorf:Aluminium-Verlag,2001,8-22.
    5. Haupin W E. Principles of aluminum electrolysis[C], Light Metals,1995,195-203.
    6. Vanvoren C, Iiomsi P, Basquin J L. Ap50:the 500kA cell[C], Light Metals,2001, 221-226.
    7.邱竹贤.世界铝工业与新技术发展趋势[J],有色冶炼,2000,29(2):1-6.
    8.邱竹贤.21世纪伊始铝电解工业的新进展[J],中国工程科学,2003,5(4):41-46.
    9. Pawlek R P. Review of the Aluminium Reduction Sessions, Part Ⅰ. Aluminium,1999, 75(7/8):621-625.
    10. Pawlek R P. Review of the Aluminium Reduction Sessions, Part Ⅱ. Aluminium,1999, 75(11):1006-1009.
    11. Tabereaux A T. Reviewing advances in cathode refracetory materials [J], JOM,1992, 44(11):20-21.
    12.姚广春.冶金炭素材料性能及生产工艺[M],北京:冶金工业出版社,1992,54-65.
    13.李冰.铝电解质对阴极渗透的研究[D],沈阳东北大学,2001.
    14.李庆宏,王平甫.铝用炭素材料[J],炭素技术,2001,113(2):45-47.
    15. Keniry J. The economics of inert anodes and wettable cathodes for aluminium reduction cells[J], JOM,2001,53(5):43-47.
    16.姜绍娴,王平甫.铝用炭素材料[J],炭素技术,2001,112(1):45-46.
    17. Sorlie M, Oye H A. Asurvey on deterioration of carbon linings in aluminium reduction cells[J], Metal,1982,36(6):635-642.
    18. James B J, Welch B J, Hyland M M, etal. Interfacial processes and the performance of cathode linings in aluminum smelters[J], JOM,1995,2:22-25.
    19. Siegfried W, Pierre R. Erosion rate testing of graphite cathode materials[C], Light Metals, 2004,597-602.
    20. Sorlie M, Oye H A. Evaluation of cathode material properties relevant to the life of Hall-Heroult cells[J], Journal of Applied Electrochemistry,1989,19(4):580-588.
    21.刘业翔.铝电解惰性阳极与可润湿阴极的研究与开发进展[J],轻金属,2001,5:26-29.
    22. Patel P, Hyland M, Hiltmann F. Influnce of internal cathode structure on behavior during electrolysis part III:wera behavior in graphitic materials[C], Light Metals,2006, 633-638.
    23. Lambard D. Aluminium Pechiney experience with graphitized cathode blocks [J]. Light Metals,1998:653-658.
    24.李永军,刘洪波,陈杰,等.铝电解槽用无烟煤基石墨化阴极材料的初步研究[J],炭素技术,25,2006(3):1-5.
    25.廖贤安,包崇爱,赵无畏,等.我国优质阴极炭素材料急需开发[J],轻金属,2003,4:49-51.
    26. Dell M B. Extractive metallurgy of aluminium[M]. New York:Interscience Publishers, 1963,403-405.
    27. Tabereaux A, Brown J, Eldridge I etal. Operational performance of 70kA prebake cells retrofitted with TiB2-G cathode elements[C], Light Metals,1998,257-264.
    28. Sekhar J A, Bello V,Nora V D, etal. Cathodic coating for improved cell performance [C], Light Metals,1995,507-513
    29.段学良,冯乃祥.TiB2/复合材料阴极在电解过程中的膨胀和对钠的渗透性研究[J],材料与冶金学报[J],2004,3(1):30-33.
    30. Keller R, Burgman J W, Sides P J. Electrochemical reactions in the Hall-Heroult cathode[C], Light Metals,1988,629-631.
    31. Khramenko S A, Polyakov P V, Rozin A V. Effect of porosity structure on penetration and performance of lining materials[C], Light Metals,2005,795-799.
    32. Brilloit P, Lassius L P, Oye H A. Melt penetration and chemical reaction in carbon cathodes during aluminium electrolysis I:Laboratory experiments[C], Light Metals, 1993,321-330.
    33. Frolov A V, Gusev A O, Shurov N I, etal. Wetting and cryolite bath penetration graphitized cathode materials[C], Light Metals,2006,645-649.
    34. Zolochevsky A, Hop J G, Oye H A. Surface exchange of sodium, anisotropy of diffusion and diffusion creep in carbon cathode materials[C], Light Metals,2005,745-750.
    35.邱竹贤,张明杰,姚广春,等.铝电解中界面现象及界面反应[M],沈阳:东北工学 院出版社,1986,170-177.
    36.何允平,段继文.铝电解槽寿命的研究[M],北京:冶金工业出版社,1988,137-153.
    37. Welch B J, Hyland M M, Utley M, etal. Interrelationship of cathode mechanical properties and carbon/electrolyte reaction during start-up[C], Light Metals,1991, 721-733.
    38. Hop J G. Sodium expansion and creep of cathode carbon[D], Trondheim Insitute of Technology,2003.
    39. Sorlie M, Gran H, Oye H A. Propertiy change of cathode lining materials during cell operation[C], Light Metals,1995,497-506.
    40. Stevens D A, Dahn J R. The mechanisms of lithium and sodium insertion in carbon materials[J], Electrochem Soc,2001,148(8):803-811.
    41. Oye H A, Welch B J. Cathode performance:the influnce of design operation and operating conditions[J], JOM,1988:18-23.
    42. Xue J L, Oye H A. Sodium and bath penetration into TiB2-carbon cathodes during laboratory aluminium electrolysis[C], Light Metals,1991,773-778.
    43. Oye H A, Nora V, Duruz J J, etal. Properties of a colloidal alumina-bonded TiB2 coating on cathode carbon materials[C], Light Metals,1997,279-286.
    44. Chan B K, Thomas K M, Marsh H. The interactions of carbons with potassium[M], Carbon,1993,31(7):1071-1082.
    45. Gudbrandsen H, Sterten A, Odegard R. Cathodic dissolution of carbon in cryolitic melts[C], Light Metals,1991,521-528.
    46. Diez M A, Marsh H. Modeling the degradation of carbon cathodes by sodium[C], Light Metals,2001,739-746.
    47.冯乃祥,谭亚菊,断学良,等.铝电解槽阴极炭块钠侵蚀膨胀测定与研究[J],轻金属,1997,6:37-40.
    48.冯乃祥.冰晶石熔体和金属钠在铝电解阴极炭块中的共同渗透[J],金属学报,1999,35(6):611-617.
    49.李庆余,赖延清,李劼等.常温固化TiB2涂层阴极抗钠渗透性[J].中南大学学报,2004,12:907-910.
    50.格罗泰姆,威尔奇.铝电解厂技术(中译本)[M],沈阳:轻金属编辑部,1997,134-172.
    51. Sun Y, Wang Q, Rye K A, etal. Modelling of thermal and sodium expansion in prebaked aluminum reduction cells [C], Light Metals,2003,603-610.
    52. Naas T, Oye H A. Interactions of alkali metal with cathode carbon [C], Light Metals, 1999,193-198.
    53.冯乃祥,邱竹贤.金属钠与冰晶石熔体的反应[J],有色金属,1996,48(4):50-53.
    54.李冰,高炳亮,邱竹贤.铝电解阴极炭块渗透现象的研究[J],轻金属,2001,7:37-40.
    55. Oye H A, Thonstand J. Reduction of sodium induced stresses in Hall-Heroult cells[J], Aluminium,1996,72(12):845-849.
    56. Sorlie M, Oye H A. Deteriaration of carbon linings in aluminium reduction cells[J], Metall,1984,38(2):109-115.
    57.田小卫.半石墨质阴极炭块在铝电解槽上的应用[J],甘肃冶金,2005,27(2):52-53.
    58.廖贤安,姚世焕,韦涵光.采用优质阴极炭块开发大型高效节能长寿铝电解槽[J],轻金属,2006,1:34-36.
    59.吴智明,张平,王平,等.铝电解用高石墨质阴极炭块的应用分析及工业实践[J],世界有色金属,2004,4:19-25.
    60.刘业翔.功能电极材料及其应用,中南工业大学出版社,长沙,1996.
    61.王皓,闵新民,王为民,等.二硼化钛电子结构的量子化学计算[J].中国有色金属学报,2002,12(6):1229-1233.
    62.董仕毅,晏金,吕霖,等.TiB2可湿润性阴极材料的特性与工程化实验研究[J].云南冶金,2000,21:13-15.
    63.向军辉.TiB2材料的研究现状及其应用[J].陶瓷工程,1996,29(4):40-44.
    64.邱竹贤.铝电解槽可湿润性阴极材料的研究进展[J].轻金属,1991,11:28-31.
    65. Brown C W. Wettability of TiB2-based cathodes in low-temperature slurry-electrolyte reduction cells[J]. J of Metals,1998,50(5):38-40.
    66. Sekhar J A, de Nora V, Liu J etal. TiB2/colloidal alumina carbon cathode coatings in Hall-heroult drained cells. Light Metals, Warrendale:TMS,1998:605-615.
    67.冯乃祥,戚喜全,彭建平.1.35kA TiB2/阴极泄流式铝电解槽电解实验[J].中国有色金属学报,2005,12:2047-2053.
    68.李庆余,赖延清,李吉力,等.TiB2复合阴极涂层的高温电阻率[J].中南大学学报,2005,6:417-421.
    69. Sckhar JA. US Patent. NO.5320717.
    70.卢惠民,邱竹贤.铝冶金进展[M].北京,冶金工业出版社,2000.
    71.蒙延双,王达健.复合溶胶凝胶法制备TiB2可湿性阴极涂层[J].甘肃冶金,2005,3: 1-4.
    72. Lantelme F, Barhoun A, Zahidi E M etal. Titanium, boron and titanium diboride deposition in alkali fluorochloride melts. Plasmas & Ions,1999, (2),133-143.
    73. Cook N C. Cathode Process in the Electrolysis of Molten Mixtures Containing KBF4. Science American,1969,221:38.
    74. Yukin G I. Mechanism of boron deposition in molten salts. Metalloved Term Obrab Met, 1971(8):42.
    75. Brookes H C. The Electrochemistry of the boriding of ferrous metal surfaces. Trans Inst Metals Finish,1976,54:191.
    76. Makyta M. Mechanism of the cathode process in the electrolytic boriding in molten salts. Electrochim Acta,1984,29:1653.
    77. Makyta M. Mechanism of the cathode process in the electrochemical synthesis of TiB2 in molten salts-Ⅰ. The synthesis in an all-fluoride electrolyte. Electrochim Acta,1989,34: 861.
    78. Taranenko V I. Mechanism of the cathode process in the electrochemical synthesis of TiB2 in molten salts-Ⅱ. Chloride-fluoride electrolytes. Electrochim Acta,1992,37:263.
    79.石青荣,段淑贞,武世民.氟化物熔盐中B(Ⅲ)的电化学还原.北京科技大学学报.(16)1994:599-603.
    80. Q uemper F, Deroo D, R igaudM. J. Electrochem. Soc.1972,119:1353
    81. Chassaing E, Basile F, Lo rth io ir G. J. App 1. Electrochem,1981,11:187
    82.杨绮琴,刘冠昆,方北友,等.稀有金属,1982,1(1):38.
    83.段淑贞,顾学范,乔芝郁,等.稀有金属,1992,(2):102.
    84. Duan S, Gu X, Mo W, et al. RareM etals,1989,8 (4):6.
    85. Clayton F R, Mamantov G, Manning D L. J. Electrochem. Soc,1973,120(9):1193.
    86. De Lepinay J, Pallere P. Electroch im. A cta,1984,29:1243.
    87. Li J, Li B. Electrochemical reduction and electrocrystallization process of Ti(IV) in the LiF-NaF-KF-K2TiF6 molten salts. Rare metal materials and engineering. (36)2007,15-19.
    88.王化章,汤啸,杨建红,等.氯化物熔体中电化学合成硼化钛.中国有色金属学报.(7)2,1997:34-38.
    89. Ett G, Pessine E J. Electrochimica Acta[J],1999,44:2859-2870.
    90. Sekhar J A, US Patent No:5320717.
    91. Li J, Li B, Jiang L S etal. Preparation of TiB2 Coatings by Electroplating in KF-KC1 Molten Salts. Rare metal materials and engineering. (35)2006,4:629-633.
    92.孙荣幸,张同俊,戴伟,等.射频磁控溅射法制备TiB2涂层及其性能分析[J].材料科学与工程学报,2006,2:249-257.
    93.孙荣幸,张同俊,戴伟,等.TiB2和Ti-B-N涂层的性能对比研究[J].材料工程,2006,4:41-43.
    94. MATSUSHITA J, SUZUKI T, SANO A. Wire electrical dischargemachining of TiB2 composite[J]. J Ceram Soc Jap,1992,100:219-222。
    95. Finch C B, Tennery V J. Crack Formation and Swelling of TiB2-Ni Ceramics in Liquid Aluminium [J]. J Am Ceram Soc,1982,7:c100-c101.
    96. Wieslaw A, Zdaniewski. Degradation of Hot-Presses TiB2-TiC Composite in Liquid Aluminium [J]. Am Ceram Soc Bull,1986,65(10):1408-1414.
    97.王化章,王惠林,刘业翔.用于铝电解的硼化钛基陶瓷阴极[J],轻金属,1993,5:28-31.
    98.王兆文,孙淑萍,李冰,等.MoSi2对二硼化钛可湿润性阴极材料性能的影响[J],东北大学学报,1999,12:619-621.
    99. Ge Qilu(葛启录), Han Huanqing(韩欢庆), et al. Microstructure and Mechanical Properties of Hot Pressed TiB2-ZrO2 Composites [J]. J. Iron Steel Res., Int.,1996,3 (2): 35-39.
    100.张文静,李银俊.燃烧合成法制备TiB2-Al2O3复相陶瓷的研究[J].山东陶瓷,2006,2:3-5.
    101.于志强,杨振国.燃烧合成TiB2-Al2O3陶瓷复合粉体及其表征[J].稀有金属材料与工程,2005,11:1818-1822.
    102.栗卓新,方建筠,史耀武,等.高速电弧喷涂Fe-TiB2/Al2O3复合涂层的组织及性能[J].中国有色金属学报,2005,11:1800-1805.
    103.李庆余,赖延清,李劼等.呋喃树脂粘均分子量与铝电解用TiB2涂层阴极抗拉强度关系的研究[J].矿冶工程,2002,6:81-86.
    104.王晓峰,单平,王惜宝,等.等离子弧堆焊TiB2-金属陶瓷涂层的组织及性能[J].焊接学报,2005,7:33-43.
    105.李淑青,贺定勇,秦灏,等.电弧喷涂含TiB2金属陶瓷复合涂层的性能[J].材料保护,2005,7:49-51.
    106.成庚,吕增旭,王醒钟,等.铝电解可湿润性阴极的研究开发与工业试验[J],包头钢铁学院学报,2002,9:288-292.
    107.李庆余,赖延清,刘业翔,等.中低温烧结铝电解用TiB2-炭素复合阴极材料[J],中南工业大学学报,2003,2:24-27.
    108.成庚.铝用TiB2-C复合阴极炭块的开发与应用.轻金属,2001,2:50-52.
    109.吕增旭,成庚,王醒钟.铝电解阴极新技术.有色金属,2000,3:23-25.
    110.刘凤琴.新型复合阴极炭块的研究及应用.铝电解高新技术国际研讨会论文集.2000.5,郑州,167-171.
    111.邱竹贤.铝工业应用新型电极材料的研究.轻金属,2001 9:30-34.
    112.Donald R, Sadoway. Inert Anodes for the Hall-Heroult Cell:The Ultimate Materials Challenge, JOM,2001(5).
    113.Thonstad Jomar, Olsen Espen. Cell Operation and Metal Purity:Challenges for the Use of Iinert Anode. JOM,2001(5).
    114.Wang X X. Processing and Characterization of TiB2-Colloidal Alumina Coating on Carbon Cathode in Hall-Heroult Cell. A dissertation for doctor of philosophy,1999(8).
    115.Wendt H, Reuhl K, Schwarz V. Electrochim. Acta 37(1992)237-244.
    116.Lantelme F, Alexopoulos H, Devilliers D etal. J. Electrochem. Soc.138(1991) 1665-1671.
    117.Nekrasov V N, Dr. Sci. (Chemistry) Thesis, Sverdlovsk,1986.
    118.Lantelme F, Cherrat E J. Electroanal. Chem.244(1988)61-68.
    119.Berghoute Y, Slimi A, Lantelme F. J. Electroanal. Chem.365(1994)171-177.
    120.巴德A J,福克纳L R.电化学方法—原理及应用.谷林英等译.北京:化学工业出版社,1986.252.
    121.蒋汉赢.冶金电化学[M].北京:冶金工业出版社,1983.110.
    122.张祖训,汪尔康.电化学原理和方法[M].北京:科学出版社,2000.55.
    123.路贵民,邱竹贤.氟化物熔体中镁在钨丝电极上的沉积.轻金属,12(1997)38-40.
    124.Duan S Z, Kang Y, Gu X F, etal. Chinese Journal of Rare Metals.17(1993)348.
    125.Tsuda T, Nohira T, Ito Y. Electrochimica. Acta.47(2002)2817.
    126.任凤莲,李海斌,蔡震峰,等.铝电解质初晶温度测定装置及初晶数模的研究[J].冶金分析,2005,25(3):9-12.
    127.李国华,李德祥.NaF-AlF3-BaCl2-NaCl系物化性质及铝精炼节能型电解质成份选择[J].中国有色金属学报,1994,4(1):28-32.
    128.Madsen D J, Temperature measurement and control in reduction cell [C]. Warrendale: Minerals, Metals & Materials Soc,1993,453-456.
    129.孙本良,翟玉春,田彦文.NaCl-KCl(1:1)-ScCl3体系电导率及初晶温度的测定[J].稀土,1999,20(4):26-28.
    130.Li Q Y. Laboratory Test and Industrial Application of an Ambient Temperature Cured TiB2 Cathode Coating for Aluminium Electrolysis Cells[C]. Light Metals,2004:327-331.
    131.Li B. Preparation of TiB2 Coated Cathode of Al Electrolysis[J]. J Mater Sci Technol, 2001,17:171-173.
    132.Qiu Z X, Grjotheim K. TiB2-coating on cathode carbon blocks in aluminium cells[J]. Light Metals,1992:431-437.
    133.Welch B. Future Materials Requirements for the High-energy Intensity Production of Aluminium[J]. J of Metals,2001,53(2):13.
    134.Ibrahiem M O, Foosn(?)s T,(?)ye H A. Stabality of TiB2-C Composite Coatings[C]. Light Metals,2006:691-696.
    135.Broszeit E, Matthes B, Herr W et al. Surf Coat Technol[J].1993,58:29.
    136.Lohmann R, Osterschulze E, Thoma K et al. Mater Sci Eng[J].1991, A139:259.
    137.Knotek O, Loffler F. J Hard Mater[J],1992,3(1):29.
    138.Treglio J R, Trujillo S, Perry A J. Surf Coat Technol[J].1993,61:315.
    139.Rivier J P, Ph Guesdom, Delafond P, Denanot M F. Thin Solid Films[J].1991,204:151.
    140.Ananthapadamanabhan P V, Sreekumar K P, Ravindran P V etal. Jornal of Materials Science[J],1993,28:655.
    141.Schlain D, Mc Cawley F X, Wyche Ch. J Electrochem Soc[J].1969,116:1227.
    142.Li B, Zhou F, Qiu Z X. Journal of Material Science & Technology [J].2001,17:171-173.
    143.廖贤安,韦涵光.铝电解槽炭素内衬材料的性能要求和发展趋势[J],轻金属,2001,6:51-53.
    144.Watson K.D, Toguri J.M. The wetting of carbon/TiB2 composite materials by aluminum in cryolite melts[J], Metall,1991,22(3):617-621
    145.Brown C W. The wettability of TiB2-based cathodes in low-temperature sturry-electrolyte reduction cells[J], JOM,1998,50(5):33-38.
    146.廖贤安,刘业翔.TiB2-C复合阴极材料的研制与应用[J],材料导报,1995,2:17-19.
    147.李庆余.铝电解用惰性可润湿性TiB2复合阴极涂层的研制与工业应用[D],中南大学,2003.
    148.王宝龙,赵俊国,王文武.TiB2材料的特性及其在铝工业中的应用[J],轻金属,2004,5:23-26.
    149.张宏,干益人.铝电解槽用干式防渗保温料的研制和应用[A],中国金属学会第三届国际耐火材料学术会议[C],北京:中国金属学会,1998,180-185.
    150.McMinn C J. A Review of RHM Cathode Developments[C], Light Metals,1992: 419-425.
    151.Wang Z W, Gao B L, Qiu Z X. Study on Resistance Corrosion of Improved TiB2 Cathode[C]. Light Metals,2001,12:35-37.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700