用户名: 密码: 验证码:
水泥稳定碎石振动试验方法研究及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
重型击实试验方法和静压成型试件法是基于90年代压实机械和施工水平提出的,也适应了当时交通的特点。近年来,随着现代交通(交通量大、轴载重等特点)的发展以及施工技术水平的提高,重型击实试验方法和静压成型试件法已逐渐显现出其不适应性,表现为试验结果不能反映材料实际性能,也无法有效地优化材料组成设计和指导现场施工,从而影响基层使用性能和使用寿命。鉴于此,本文开展水泥稳定碎石振动试验方法研究与应用,具有实际意义。
     论文首先分析了振动压路机工作特点,仿照定向振动压路机提出了表面垂直振动压实试验仪VVTM以及描述VVTM工作性能的基本振动参数,通过VVTM的动态响应和压实效果影响规律试验研究,基于VVTM工作性能最有为原则提出基本振动参数标准配置(工作频率30Hz、名义振幅1.2mm和下车系统质量180kg),为振动压实仪选型提供标准;基于振动击实功与现场碾压功等效为原则,模拟实际施工过程将试样一次性装入试模,采用VVTM在振动参数标准配置下振动击实90-120s,并根据振动击实后试件唧泥情况初步判断最佳含水量范围,以拌和含水量为依据,提出确定水泥稳定碎石最大干密度和最佳含水量的振动击实方法(VCT),解决了重型击实试验方法在击实方式、击实功和含水量确定方法和试验操作过程等方面存在的不足,具有结果可靠、重现性好等特点;根据振动击实法确定的最大干密度和最佳含水量准备试样,将试样一次性装入试模,采用VVTM在振动参数标准配置下振动击实70-80s,提出试件的振动成型试验方法(VPSM),解决了静压法试件制备过程中含水量损失、粗集料压碎及压实机理与实际振动碾压成型机理不符而导致制备的试件不能代表实际水泥稳定碎石组成结构,测试的物理力学性质不能真实反映水泥稳定碎石实际性能的问题;基于振动试验法、逐级填充原理和Ⅰ法的水泥稳定碎石提出具有“三多一少”多级嵌挤骨架密实级配,基于极限强度等效为原则,提出合理水泥剂量;基于振动试验方法,研究水泥稳定碎石力学特性和耐久性能,揭示各因素对水泥稳定碎石力学特性和耐久性能影响规律,为材料优化设计和施工控制提供理论依据,建立了基于振动法成型圆柱体试件的水泥稳定碎石劈裂疲劳方程和抗拉强度结构系数Ks=0.70Ne0.043,可供沥青路面设计时应用,并提出水泥稳定碎石抗抗冲刷能评价指标——冲刷系数冲刷系数Cs与路面荷载作用大小和作用轴次建立起联系,符合路面实际冲刷机理,并可用于预估基层冲刷发展规律。
     实体工程应用表明:基于振动法设计施工的水泥稳定碎石具有优良路用性能,尤其是很强的抗裂性能,极大地缓解甚至解决了水泥稳定碎石收缩裂缝问题,具有明显经济社会和环境效益。
Heavy compaction test method (HCM) and static pressure producing specimen method (SPSM) were put forward on the basis of 1990's compaction machine and construction level to adapt to traffic features at that time. Along with development of modern traffic (large traffic capacity, heavy axle load and other features) and upgrade of construction technique level in recent years, Heavy compaction test method and static pressure producing specimen method have gradually shown their inadaptability, which appears that test result cannot not only reflect actual performance of material, but also cannot effectively optimize material composition design and guide on-site construction, thereby affecting usability and service life of base course. Whereas this, it is of actual significance for this paper to carry out study and application for the vibrating test method on cement stabilization of crushed aggregate (CSCA).
     This paper firstly analyzes work characteristics of the vibrating roller, puts forward the vertical vibrating compaction testing machine of surface VVTM and fundamental vibrating parameters describing VVTM working performance by imitating the directional vibrating roller. On the basis of the most promising principle of VVTM working performance, through experimental study for influence orderliness on dynamic response and compacting effect of VVTM, this paper puts forward standard collocation of fundamental vibrating parameters (operating frequency 30Hz, nominal amplitude 1.2mm and debarkation system quality 180kg) and provides a standard for lectotype of the VVTM. On the basis of the principle of the vibrating compaction work equivalent to onsite rolling work, specimen is loaded into the specimen mould at one time by simulating actual construction process. Under the vibrating parameter standard collocation of VVTM, vibrating compaction is performed for 90s-120s. After vibrating compaction, the optimum water content scope is initially judged according to the mud-pumping situation of the specimen. The vibrating compaction test method (VCT) is put forward to determine the maximum dry density and optimum water content of CSCA. It solves existent defects on compaction mode, compaction work and water content ascertainment method and test operation process and other aspects, and is characterized by reliable result, good reproducibility and other features. The specimen is prepared according to the maximum dry density and optimum water content ascertained by the vibrating compaction test method. The sample of CSCA mixture is filled into the specimen mould at one time, then, the vibrating compaction is performed for 70s-80s under vibrating parameter standard collocation of VVTM. In this way, this paper put forward the vibrating producing specimen method (VPSM) to shape specimens. It solves some actual problems. For instance, the specimens shaped by SPSM cannot represent actual composition structure of CSCA, and physical mechanic property of test cannot truly reflect actual performance of CSCA because water content loses in specimens producing process by the SPSM, and coarse aggregate crush and compaction mechanism do not conform with actual vibrorolling forming mechanism. On the basis of the vibrating test method, gradual filling theory, multilevel dense built-in gradation is put forward. Reasonable cement dosage is put forward on the basis of the principle of equivalent ultimate strength; Mechanical behavior and endurance properties of CSCA are studied on the basis of the vibrating test method to reveal influence law of various factors on mechanical behavior and endurance properties of CSCA, and to provide theoretic basis for material optimization design and construction control. It establishes a splitting fatigue equation and tensile strength structural coefficient Ks=0.70Ne0.043 on the basis of the cylinder specimens of CSCA shaped by the vibrating producing specimen method, which are available for asphalt pavement design. It also puts forward anti-scouring performance of CSCA assessment index—scouring coefficient establishes relations between scouring coefficient Cs and roadway load action magnitude as well as action axis degree, which conforms to actual scouring mechanism on roadway and available for pre-estimating development scouring law of base course.
     Actual engineering applications indicate that CSCA designed by the vibrating method has excellent road performance, especially very strong crack resistance, which greatly appeases, even solves the shrinkage crack problem of CSCA and has evident economy, society and environment benefits.
引文
[1]Lin, Kuo-Ting; Nanni, Antonio; Chang, Wen F. COMPRESSIVE STRENGTH OF COMPACTED PORTLAND CEMENT-BASED MIXTURES USING PHOSPHOGYPSUM [C]. Publication SP-American Concrete Institute, p 57-76,1987.
    [2]Mymrin, Vsevolod; Ferreira, Ronaldo Belinovski; Paredes, Ramon Cortez; Ponte, Haroldo Araujo. Ironmaking slag-natural soils interaction during road base construction [C].ANNALS-3rd International Meeting on Ironmaking and 2nd International Symposium on Iron Ore, p 747-755,2008.
    [3]Hjelmar, Ole; Holm, Jesper; Crillesen, Kim. Utilisation of MSWI bottom ash as sub-base in road construction:First results from a large-scale test site [J]. Journal of Hazardous Materials, v 139, n 3, p 471-480, January 31,2007.
    [4]Pasynkov, B.P.; Skorobogatov, S.M. Some problems of designing structures using recycled tyres for concrete columns, road base and spot footings[C]. Proceedings of the International Conference on Sustainable Waste Management and Recycling: Used/Post-Consumer Tyres, p 113-118,2004.
    [5]Vischer, William. Low-Volume Road Flexible Pavement Design with Geogrid-Reinforced Base [C]. Transportation Research Record, v I, n 1819, p 247-254, 2003.
    [6]Khan, R.A.; Shalaby, A. Performance of a road base constructed with shredded rubber tires [C]. Proceedings, Annual Conference-Canadian Society for Civil Engineering, v 2002, p 2513-2522,2002.
    [7]Pasetto, Marco; Baldo, Nicola. The use of construction and demolition aggregate in bituminous concrete for road base layers [C]. RE WAS'04-Global Symposium on Recycling, Waste Treatment and Clean Technology, p 193-202,2005.
    [8]Boutemeur, R.; Haddi, A; Bali, A; Boutemeur, N. Use of petroleum waste as sub-base material for road construction [C]. Recycling and Reuse of Waste Materials, Proceedings of the International Symposium, p 409-416,2003.
    [9]Muntohar, A.S. Engineering behaviour rice husk ash blended soil and it's potential as road base construction [C]. Proceedings-Conference of the Australian Road Research Board, v 21, p 1295-1301,2003.
    [10]Tutumluer, Erol; Thompson, Marshall R. Granular base moduli for mechanistic pavement design [C]. Proceedings of the Airfield Pavement Conference, p 33-47, 1997, Aircraft/Pavement Technology:In the Midst of Change.
    [11]Sheinin, A.M; Ekkel, S.V. Some peculiarities of constructing the road base from roller compacted concrete (RCC) [C]. Proceedings First International Conference on Concrete and Development C and D 1, p 515-520,2001.
    [12]Heaton, B.S.; Bullen, F.PROPERTIES OF AIR-COOLED SLAG ROAD BASE FOR RATIONAL PAVEMENT DESIGN [C]. Proceedings-Conference of the Australian Road Research Board, v 10, n Pt 3, p 198-204,1981.
    [13]Nanni, A.; Lin, K. T.; Chang, W. F. Laboratory consolidation of portland cement-based mortars containing phosphogypsum [M]. FIPR Publication (01-031-046):225-239 1986.
    [14]Lin, K. T.; Nanni, A.; Chang, W. F. Engineering properties of dihydrate phosphogypsum, portland cenment and fine aggregate mixtures [M]. FIPR Publication (01-031-046):161-183 1986.
    [15]Lin, K. T.; Chang, W. F. A comparative study on strength properties of cement mortars using phosphogypsum:hemihydrates vs dihydrate [M]. FIPR Publication (01-031-046):211-223 1986
    [16]Kane, PT; Schwandt, G CONSTRUCTION OF PERMEABLE BASES FOR AIRFIELD PAVEMENTS [M]. American Society of Civil Engineers,345 East 47th Street, New York, NY,10017-2398, Pag:p 287-301 Publication Date:19970000.
    [17]Sander, Rolfl. eBlock pavments constructed with cement-bound base courses-Design, construction and examples from practice (Block pavements constructed with cement-bound base courses-Design, construction and examples from practice) [M] Betonwerk und Fertigteil-Technik/Concrete Plant and Precast Technology, v 73, n 2, p 32-33,2007.
    [18]Meininger, Richard C. Pavement design basis is in the bases[M].Rock Products, v 107, n 12, p 12, December 2004
    [19]Mymrin, Vsevolod A; Ponte, Haroldo A. Oil-shale fly ash utilization as independent binder of natural clayey soils for road and airfield base construction [J]. Particulate Science and Technology, v 23, n 1, p 99-107, January/March 2005.
    [20]Sobhan, Khaled; Mashnad, Mehedy. Fatigue damage in roller-compacted pavement foundation with recycled aggregate and waste plastic strips [J]. Transportation Research Record, n 1798, p 8-16,2002.
    [21]Brabston, William N.; Rollings, Raymond S. COE design of cement stabilized base courses for airfield pavements [M]. Concrete International, v 13, n 12, p 19-23, Dec 1991.
    [22]GHAFOORI, NADER. PHOSPHOGYPSUM-BASED CONCRETE:ENGINEERING CHARACTERISTICS AND ROAD CONSTRUCTION APPLICATION [D] UNIVERSITY OF MIAMI (0125),1986.
    [23]Kim, Woosung; Labuz, Joseph F; Dai, Shongtao. Resilient Modulus of Base Course Containing Recycled Asphalt Pavement [R]. Report Number:07-3328, Pag:23p,2007
    [24]ymkowicz, S; DeVries, S. IOWA DEVELOPMENT OF RUBBLIZED CONCRETE PAVEMENT BASE-MILLS COUNTY. FINAL REPORT [R]. Report Number: HR-315, Pag:66p,1995,1
    [25]JTG D50-2004.公路沥青路面设计规范[S].
    [26]李美江.道路材料振动压实特性研究[D].西安:长安大学,2002.
    [27]周卫峰,赵可等.水泥稳定碎石混合料配合比的优化[J].长安大学学报(自然科学版),2006(1):24-28.
    [28]田文.振动法设计的水泥碎石在青银高速公路上的应用[J].中外公路,2006(5):146-150.
    [29]胡力群,沙爱民等.骨架孔隙结构水泥稳定碎石配比设计及路用性能[J].公路交通科技,2006(6):22-26.
    [30]孟庆营,周卫峰等.水泥稳定碎石混合料静压法与振动法成型工艺的比较研究[J].公路交通科技,2007(1):21-25.
    [31]王春明,徐世法等.水泥稳定碎石级配优化设计及试件成型方法对试验结果的影响[J].北京建筑工程学院学报,2007(3):15-17.
    [32]许海云,周卫峰等.振动法设计水泥稳定碎石在申嘉湖高速公路的应用[J].上海公路,2007(4):21-24.
    [33]胡力群,沙爱民.骨架密实结构水泥稳定碎石粗集料抗破碎性能研究[J].公路,2005(6):153-157.
    [34]郑南翔,张登良等.半刚性材料抗裂性能研究之二[R].西安:西安公路学院,1988.6.
    [35]沙爱民.半刚性路面材料结构与性能[M].北京:人民交通出版社,1998.4.
    [36]章建龙.水泥稳定碎石振动成型试验研究[D].西安:长安大学,2008.
    [37]尹继瑶.振动压路机的振动参数及其取值[J].建设机械技术与管理,2007(2):55-58.
    [38]冯忠绪,朱伟敏,姚运仕等.振动压路机名义振幅的探讨[J].压实机械与施工技术,2005(10):49-51.
    [39]李冰,焦生杰.振动压路机与振动压实技术[M].北京:人民交通出版社,2001.
    [40]JTJ057-94.公路工程无机结合料稳定材料试验规程[S].
    [41]蒋应军.水泥稳定碎石基层收缩裂缝防治研究[D].西安:长安大学,2001.
    [42]刘红瑛.骨架密实型二灰稳定碎石基层配合比设计方法及路用性能研究[D].西安:长安大学,2001.
    [43]蒋新明.二灰稳定碎石抗裂性的研究[J].中国公路学报,2002(3).
    [44]滕旭秋.二灰稳定碎石基层混合料组成设计及路用性能研究[D].西安:长安大学,2002.
    [45]岳伟民.水泥粉煤灰稳定碎石基层配合比设计方法及路用性能研究[D].西安:长安大学,2005.
    [46]周新锋.水泥稳定碎石混合料配合比设计及路用性能研究[D].西安:长安大学,2005.
    [47]胡力群.半刚性基层材料结构类型与组成设计研究[D].西安:长安大学,2004.
    [48]刘建永,周卫峰等.振动法与静压法优化水泥稳定碎石混合料配合比对比研究及应用[C].天津:天津市市政(公路)工程研究院院庆五十五周年论文选集(1950-2005)下册,2005.
    [49]郭留红,徐江萍等.河南省二灰稳定碎石(砂砾)和水泥稳定碎石(砂砾)基层施工技术规范(地方行业标准)[S].河南:河南省交通厅公路管理局.
    [50]彭取.浅谈振动法在半刚性路面基层中的应用[J].科技信息,2008(14):110-111.
    [51]金凯,应军志等.振动法与静压法在优化水泥稳定碎石混合料配合比中的应用[J].黑龙江工程学院学报,2008,22(1):41-45.
    [52]李向前,周和庆.抗裂型水泥稳定碎石基层性能与施工研究[J].山西建筑,2008,34(2):295-296.
    [53]周绍峰.用配合比试验控制水泥稳定基层裂缝[J].黑龙江交通科技,2007,30(6):28-29.
    [54]胡力群,沙爱民等.骨架孔隙结构水泥稳定碎石配比设计及路用性能[J].公路交通科技,2006,23(6):22-26.
    [55]张锦茹.关于水泥稳定碎石基层施工新技术的探研[J].企业科技与发展:下半月, 2009(4):76-79.
    [56]李小重.水泥稳定碎石基层的级配优化[J].中外公路,2005,25(4):64-67.
    [57]王长松.水泥稳定碎石标准击实的若干情况探讨[J].现代交通技术,2005,2(3):17-21.
    [58]蒋应军,张毅等.基于振动法设计的水泥稳定碎石施工质量控制[J].筑路机械与施工机械化,2008,25(10):47-50.
    [59]JTJ 034-2000.公路路面基层施工技术规范.
    [60]JTJ014-97,公路沥青路面设计规范[S].北京:人民交通出版社.1997.
    [61]王艳,倪富健,李再新.水泥稳定碎石混合料疲劳性能[J].交通运输工程学报,2009,9(4):10-14.
    [62]沙爱民,贾侃,李小刚.半刚性基层材料的疲劳特性[J].交通运输工程学报,2009,9(3):29-33.
    [63]蒋应军,王富玉,刘斌.水泥稳定碎石强度特性的试验研究[J].武汉理工大学学报,2009,31(15):52-57.
    [64]蒋应军.基于振动试验法设计的抗裂型水泥稳定碎石基层应用研究[J],公路,2008(12):36-41.
    [65]JTG 034-2000,公路路面基层施工技术规范[S].北京:人民交通出版社.2000.
    [66]高镇同,熊峻江.疲劳可靠性[M].北京:北京航空航天大学出版社.2000.
    [67]郑木莲,孙家伟,王秉纲.贫混凝土疲劳方程的建立及其应用[J],西安建筑科技大学学报,2007,39(1):92-97.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700