用户名: 密码: 验证码:
气吸振动式精密排种器理论及试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
排种器是实现精密播种技术的核心部件,其工作性能的好坏直接影响着播种精度、均匀性、种子的出苗率等。由于气吸振动式排种器具有对种子尺寸要求不高、不伤种子、通用性好、适应性强的优点,且易于提高播种速度,实现自动控制,是一种较为先进的排种装置,已成为当前国内外精密排种器发展的主要方向之一。种子在种盘内的振动以及在吸排种气流场中的受力运动是影响排种器播种精度的主要因素,本文以油菜种子为试验对象,开展了气吸振动式排种器的工作机理研究和性能试验分析,主要工作包括:
     1、实验测量了油菜种子的几何尺寸、形状特征以及密度、接触刚度、摩擦系数等力学参数,建立了三维模型。根据电磁激振器的工作原理,分析了振动种盘的幅频特性。
     2、推导出种子与种盘二自由度碰撞振动系统周期运动的Poincar(?)映射,以振动频率为控制参数,计算得到映射Jacobi矩阵特征值的变化曲线,根据其穿越复平面单位圆的位置,分析了映射不动点的稳定性,获得种子由稳定周期运动通向混沌的过程,通过轨迹相图分析得到混沌运动状态有利于实现种群的离散。
     3、根据油菜种子的机械特性,采用线性弹簧-阻尼-滑动接触力学模型,编写离散元程序,模拟了振动种盘内种群的三维运动规律。为了描述种群空间运动状态,给出了重心波动和体积膨胀系数的计算方法。计算结果表明:碰撞接触时间和最大变形量随接触刚度的增大而减小;最大变形量随碰撞相对速度和恢复系数的增大而线性增加;接触时间随恢复系数的增加而减小,相对速度对其影响不显著。种群重心波动和体积膨胀系数的特征频率出现在种盘振动频率附近。
     种盘作小幅高频振动时,种子几乎在原地作垂直运动,水平位移较小,种群可以有效分离以减小摩擦力;体积平均膨胀系数H_0随着振动强度K_v的增加而增大,随种层厚度的增加而减小,在相同振动强度下,种盘振幅越大,种群离散程度越高;对于薄层种子,随着种子与种盘、种子与种子之间的碰撞恢复系数的增大,体积平均膨胀系数H_0有明显增大的趋势,随着层厚的增加,这一趋势逐渐减弱;在弱振动条件下,种子之间以摩擦接触为主,体积平均膨胀系数H_0随摩擦系数的增加而增大,在强振动时,摩擦系数的影响很小。
     4、运用Gambit软件建立滚筒正负气压腔的三维几何模型,将其划分为结构化四面体网络,在恒压力边界条件下,利用Fluent软件中的标准k—ε湍流模型和壁面函数法对滚筒内部全流道气流场分布进行了数值计算。结果表明:吸种过程中,滚筒负压腔为恒压区域,可以起到稳压稳流作用,在轴向不同位置的吸孔气流速度相对误差小于4%。滚筒与负压轴之间的气流通孔存在压力损失,并且随着气流通孔和孔吸种截面积比γ_s的增加,压力损失率η_p逐渐减小,当γ_s大于500%时,η_p小于5%。排种过程中,轴向不同位置的排种孔气流速度存在明显差异,且正对底板连接座的排种孔气流速度最大,随着γ_s的增大,流速差异逐渐减小,且当γ_s大于300%时,流速差异小于5%,正压差对流速差异影响不明显。
     5、基于气固两相流力学理论,分析了种子在吸种气流场中的受力情况。将种子受力在吸孔轴向和径向进行分解,由Fluent计算了离散空间节点上吸力的大小。运用插值运算法从垂直吸种距离z、径向吸种距离r和有效吸种空间体积V三个方面综合分析排种器的吸种性能,确定不同结构形式吸孔的有效吸种区域和瞬间吸种运动过程,并对吸孔结构参数进行了设计。在此基础上,通过假设种群在振动种盘内呈正四面体空间分布,分析了种群层数n、负压差Δp、间隙系数λ、吸孔直径d_k对种子受力的影响,揭示振动和负压吸种机理。结果表明:吸附运动主要是由压力梯度力所控制;锥孔的吸种能力优于直孔和沉孔;增加吸孔直径d_k比提高负压差Δp更有利于提高排种器吸种能力;随着吸孔直径d_k的增大,z、r随之线性增加,V成3次方增加;增加负压差Δp,z、r和V也随之增加,且在Δp较小时,增加速度较快,Δp较大时,增加速度较为缓慢;对于多层种子,随着间隙系数λ的增加,种子受力呈现增加趋势,且λ小于1.25时,受力增长较为迅速,可以有效提高排种器垂直吸种距离,λ大于1.25时,受力增长比较缓慢。
     6、根据湍动射流力学理论计算了排种过程中种子受力大小,分析正压差、排种角和滚筒转速对排种运动过程的影响,在JPS-12气吸振动式排种器性能试验台上,对排种过程种子运动状态进行了高速图像采集,采用颜色向量建立种子模型,提出用Mean shift算法编程进行目标跟踪,获取种子实际运动轨迹,验证了数值计算的正确性。分析得到:湍动射流产生的瞬间冲击加速度是决定排种过程种子运动状态的主要因素,正压差和排种角的波动是造成落种位置误差的重要原因,计算了不同工作参数下的落种速度和时间。当正压差在1~1.5kPa、排种角在0~-10°范围时,落种精度最高。
     7、在JPS-12气吸振动式排种器性能检测试台进行单因素和正交试验,建立合格指数与负压差、滚筒转速、种盘振动频率和吸种角的数学关系,通过自适应遗传算法对排种器工作参数进行优化。结果表明:锥孔的吸种能力优于直孔和沉孔,孔径对吸种性能影响显著,吸孔与种子的直径比应选定在0.4~0.6。增大孔径和负压差,在提高吸种能力的同时,又会造成重吸率的增加。初始油菜种层厚度约为8~10mm时,吸种精度较高。滚筒转速在15~25r/min范围内,排种器合理负压差和吸种角范围分别为2.8~3.0kPa、25.5~36.5°,合格指数能达到94~97%。落种位置误差随滚筒转速提高而线性增大,正压差在1.5kPa、排种角在-5~-10°范围的播种均匀性最高。试验结果和理论分析结论相互吻合,为气吸振动式精密排种器的理论设计提出了新方法。
As a core component of precision sowing technique,seeder's working performance directly influenced the sowing accuracy,seed spacing uniformity and emergence rate. Vacuum-vibration seeder has become the major development trend of precision seeder because of its advantages including lower requirement of seeds size,lower harmful to seeds,higher universality,widely adaptability,easy to improve the working efficiency and realize automatic control.The working performance of the seeder was majorly determined by the seeds motion states on vibration plate and in the vacuum gas field,so in this paper,taking rape seeds as experimental materials,the theoretical analysis on the working mechanism and the performance tests on the vacuum-vibration precision seeder were carried out,the main results were generalized as follows:
     1.A 3-D rape seed model was established according to the geometry size,shape features and mechanical parameters including density,rigidity and friction coefficient. Based on the working principle of electromagnetic vibration plate,the amplitude-frequency response characteristics were analyzed.
     2.A two degree-of-freedom vibro-impact motion model of seeds on the vibration plate was established and then a 4-dimensional Poincar(?) map of periodic motion was derived.With the increasing of vibration frequency,the variation process of Jacobi matrix eigenvalues was calculated.According to the position of eigenvalues crossing the unit circle in the complex plane,the stability of fixed point of the map was discussed and the route from periodic motion to chaos via bifurcation was received.From the trajectory phase of seeds,we found the chaotic motion state was helpful to seeds separation.
     3.A Matlab program based on the discrete element method was developed to simulate the seeds motion in a 3-dimensional vibration plate.The mechanical interaction forces were modeled by linear springs,dash-pots and friction sliders.In order to describe the states of seeds motion,we defined the fluctuation coefficients of gravity center and the volume expansion.The numerical calculation results showed that the impact time and the maximum deformation both decreased with the increasing of contact rigidity,the maximum deformation linear increased with the increasing of impact relative speed and the recovery coefficient,impact time decreased with the increasing of recovery coefficient and independent of relative speed.Characteristic frequencies of the fluctuation coefficients of gravity center and the volume expansion both appeared near the vibration frequency of plate.
     While the plate vibrating with high frequency and small amplitude,the seeds were almost vertical vibrating in the same place with small horizontal displacement,so the seeds could be separated effectively to reduce the friction forces.The average volume expansion coefficient,H_0,increased with the increasing vibration strength,K_v,and decreased with the seeds initial thickness,h_s.At the same K_v,the larger amplitude would lead to the higher distribution level.To thin-layer seeds,with the increasing of recovery coefficient between seeds and seeds with plate,H_0 increased significantly,but to thick-layer seeds,this increasing tendency was slightly.Under the condition of weak vibration,H_0 increased with the increasing of friction coefficient because the impact forces were mainly delivered through friction,while under the strong vibration,the friction coefficient was slight.
     4.3-D geometry models of air flow channel inside the cylinder cavities were built and then be formed with the tetrahedral grids using Gambit.Take the compressibility and the viscosity of the real gas into account,the N-S equations,standard k-εturbulence model and wall function were applied to calculate the airflow distribution.The results showed that,during the suction process,the negative differential pressure in the cavity keeps constant which is helpful to stabilize the air flow and the relative velocity errors between different axial nozzles were less than 4%.The pressure loss ratio,η_p,decreased continuously with the increasing of sectional area ratio,γ_s,between suction nozzle and through-hole,andη_p was less than 5%withγ_s larger than 500%.During the sowing process,the velocities in the nozzles under different axial position were different obviously,and this difference decreased to 5%continuously with the increasing ofγ_s up to 300%.The positive differential pressure affected slightly to the difference.
     5.The forces acting on seed in gas flow field were analyzed based on the theory of gas-solid two-phase.After decomposed the suction force in axial and radial direction of nozzle,the force values on discrete space nodes were calculated by Fluent.The effective pickup region of different structural nozzles and the seeds pickup trajectories were received utilizing the binary interpolation method.The axial pickup distance,z,the radial pickup distance,r,and the volume of effective pickup region,V,were proposed to comprehensively analyze the nozzles pickup ability.By assuming the seeds in the vibration plate were distributed with regular tetrahedron,the influences of seeds lay thickness,n,negative differential pressure,Δp,seeds gap coefficient,λ,nozzle diameter, d_k,on suction force values were analyzed.The results showed that the seeds motion during the suction process were major determined by the pressure gradient force.Pickup ability of conical nozzle was batter than the straight nozzle and the bore hole.With the increasing of d_k,z and r increased linearly and V increased cubicly.With the increasing ofΔp,z,r and V all increased quicker at first and then become slower and the force value increased quickly at large d_k and slowly at small d_k,so the pickup ability would be improved more effectively through increasing the diameter of nozzle than the negative differential pressure.With the increasing ofλ,the force values first increased rapidly withλ<1.25 and then increased slowly.
     6.Effects of positive differential pressure,sowing angle and rotational speed of cylinder were analyzed according to the turbulent jet mechanical theory.On JPS-12 vacuum-vibration seeder performance test bed,the seeds sowing processes were acquired using high speed camera system and a Mean shift algorithm utilizing the color eigenvector was proposed to track the seed motion.The image trajectory tracking results verified the correctness of theoretical analysis and the results showed that seeds sowing states were mainly determined by the transient acceleration around the nozzle. The fluctuation of positive differential pressure and sowing angel were the key factors which lead to seeds landing position error,while the positive differential pressure and sowing angel in the range of 1~1.5kPa and 0~-10°,the seeds landing position error can reach the smallest value.
     7.The mathematical relationship between the single pickup ratio and negative differential pressure,rotational speed of cylinder,vibration frequency of plate and the suction angle was established though single factor and orthogonal experiments on the JPS-12 vacuum-vibration seeder performance test-bed,and the seeder's working parameters were optimized by adaptive genetic algorithm.The results indicated that the pickup ability of conical nozzle was batter than the straight nozzle and the bore hole. The optimum diameter ratio of nozzle and seed should be selected between 0.4~0.6. Increasing the nozzle diameter and negative differential pressure can improve the pickup ability but also would lead to the increasing of seeds multiple pickup ratio. While the rotational speed of cylinder in the range of 15~25r/min,the optimum negative differential pressure and suction angle are in the range of 2.8~3.0kPa and 25.5~36.5° and the single pickup ratio can reach 94~97%.The landing position error linear increased with the increasing of rotational speed of cylinder and the sowing uniformity reached the maximum value with negative differential pressure of 1.5kPa and suction angle in the range of -5~-10o.
     The accordance of the experimental and theoretical analysis results demonstrates that the method provided in the paper is effective for vacuum-vibration precision seeder design.
引文
[1]孙裕晶,马成林,牛序堂,等.基于离散元的大豆精密排种过程分析与动态模拟[J].农业机械学报,2006,37(11):63-66.
    [2]刘宏新,王福林,杨广林.新型立式复合圆盘大豆精密排种器研究[J].农业工程学报,2007,23(10):112-116.
    [3]娄秀华,穆浩民.育种小麦精密排种器排种性能的试验研究[J].中国农业大学学报,1999,4(2):50-53.
    [4]廖庆喜,黄海东,吴福通.我国玉米精密播种机械化的现状与发展趋势[J].农业装备技术,2006,32(1):4-7.
    [5]梁素钰,封俊,曾爱军,等.新型组合吸孔式小麦精密排种器性能的试验研究[J].农业工程学报,2001,17(2):84-87.
    [6]廖庆喜,高焕文,臧英.玉米水平圆盘精密排种器型孔的研究[J].农业工程学报,2003,19(2):109-113.
    [7]李善军,廖庆喜,张衍林,等.油菜播种机斜窝眼偏心轮式排种器结构设计[J].农机化研究,2008,8,27-29.
    [8]谭赞良,赵进辉,刘诗安,等.窝眼轮式油菜排种器排种性能的研究[J].农机化研究,2006,6:168-170.
    [9]刘彩玲,宋建农,张广智,等.气吸式水稻钵盘精量播种装置的设计与试验研究[J].农业机械学报,2005,36(2):43-46.
    [10]赵立新,郑立允,王玉果,等.振动气吸式穴盘播种机的吸种性能研究[J].农业工程学报,2003,19(4):122-125.
    [11]李耀明,邱白晶,陈进,等.气吸振动式水稻播种试验台的振动分析[J].农业机械学报,1998,29(3):43-47.
    [12]刘彩玲,李耀明.水稻育苗精量播种机振动试验的模糊分析[J].江苏理工大学学报,1998,19(5):13-17.
    [13]陈进,李耀明.气吸振动式播种试验台内种子运动规律的研究[J].农业机械学报,2002,33(1):47-50.
    [14]胡建平,侯俊华,毛罕平.磁吸式穴盘精密播种机的研制及试验[J].农业工程学报,2003,19(6):122-125.
    [15]胡建平,毛罕平.磁吸式精密排种原理分析与试验[J].农业机械学报,2004,35(4):55-58.
    [16]胡建平,李宣秋,左志宇.磁吸滚筒式精密排种器试验及参数优化[J].农业工程学报,2007,23(9):115-117.
    [17]许剑平,谢宇峰,陈宝昌.国外气力式精密播种机技术现状及发展趋势[J].农机化研究, 2008,12:203-206.
    [18]陈丽梅,袁月明,尹海燕,等.水稻芽种气吸式直播排种器充种过程的研究[J].吉林农业大学学报,2005,27(4):464-467.
    [19]陈立东,何堤,马淑英,等.气吸式排种器排种性能影响因素的试验研究[J].沈刚农业大学学报,2005,36(5):634-636.
    [20]贺俊林,裘祖荣.新型气压式精密排种器的试验研究[J].农业工程学报,2001,17(2):80-83.
    [21]庞昌乐,鄂卓茂,苏聪英,等.气吸式双层滚筒水稻播种器设计与试验研究[J].农业工程学报,2000,16(5):52-55.
    [22]陈立东,何堤,谢宁峰,等.新型高速气吸式双条精密排种器设计研究[J].黑龙江八一农垦大学学报,2006,18(4):35-38.
    [23]F.S.Sial,S.P.E.Persson.Vacuum nozzle design for seed metering[J].Transaction of the ASAE,1984,3,688-696.
    [24]P.Guarella,A.PeUerano.Working characteristic of sowing nozzles in vegetable nursery operations.ⅩⅩⅢ International Horticultural congress,Florence 1990.
    [25]P.Guarella,A.Pellerano,S.Pascuzzi.Experimental and theoretical performance of a vacuum seeder nozzle for vegetable seeds[J].Journal of Agricultural Engineering Research,1996,64(1):29-36.
    [26]D.Karayel,Z.B.Barut,A.(O|¨)erzi.Mathematical modelling of vacuum pressure on a precision seoder[J].Biosystems Engineering,2004,87(4):437-444.
    [27]R.L Parish,P.E.Bergeron,R.P.Bracy.Comparison of vacuum and belt seeders for vegetable planting[J].Applied Engineering in Agriculture,1991,7(5):537-540.
    [28]Z.Zulin,S.K.Upadhyaya,S.Shafii,st al.Hydropneumatic seeder for primed seed[J].Transactions of the ASAE,1991,34(1),21-26.
    [29]D.Karayel,A.Ozmerzi.Effect of forward speed and seed spacing on seeding uniformity of a precision vaccum metering unit for melon and cucumber seeds[J].Journal of the Faculty of Agriculture,2001,14(2):63-67.
    [30]R.C.Singh,G.Singh,D.C.Saraswat.Optimization of Design and Operational Parameters of a Pneumatic Seed Metering Device for Planting Cottonseeds[J].Biosystems Engineering,2005,92(4):429-438.
    [31]D.Karayel,A.(O|¨)zmerzi.Effect of forward speed on hill dropping uniformity of a precision vacuum seeder[J].Hort Technology,2004,14(3):364-367.
    [32]A.Yazgi,A.Degirmencioglu.Optimization of the seed spacing uniformity performance of a vacuum-type precision seeder using response surface methodology[J].Biosystems Engineering,2007,97(3):347-356.
    [33]B.B.Gaikwad,N.P.S.Sirohi.Design of a low-cost pneumatic seeder for nursery plug trays[J].Biosystems Engineering,2008,99(3):322-329.
    [34]J.M(u|¨)ller,G.Rodriguez,K.K(o|¨)ller.Optoelectronic measurement system for evaluation of seed spacing[J].Ⅻ CIGR word congress and AgEng'94 conference on agricultural engineering,Milano,Report No.94-D-053.
    [35]S.D.Kaehman,J.A.Smith.Alternative measures of accuracy in plant spacing for planters using single seed metering[J].Transactions of the ASAE,1995,38(2):379-387.
    [36]M.F.Kocher,Y.Lan,C.Chen,et al.Opto-electronic sensor system ofr rapid evaluation of planter seed spacing uniformity.Transactions of the ASAE,1997,41(1):237-245.
    [37]H.Buitenwerf,W.B.Hoogmoed,P.Lerink,et al.Assessment of behaviour of potatoes in a cup-belt planter[J].Biosystems Engineering,2006,95(1):35-41.
    [38]M.F.Kocher,Y.Lan,C.Chen,et al.Opto-electronic sensor systems for rapid evaluation of planter seed spacing uniformity[J].Transactions of the ASAE,1998,41(1) 237-245.
    [39]Y.Lan,M.F.Kocher,A.Smith.Opto-electronic sensor system for laboratory measurement of planter seed spacing with small seeds[J].Journal of Agrieultural Engineer Research,1999,72,119-127.
    [40]D.Karayel,M.Wiesehoff,A.(O|¨)zmerzi,et al.Laboratory measurement of seed drill seed spacing and velocity of fall of seeds using high-speed camera system[J].Computers and Electronics in Agriculture,2006,50:89-96.
    [41]J.W.Panning,M.F.Kocher,J.A.Smith,et al.Laboratory and field testing of seed spacing uniformity for sugarbeet planters[J].Transactions of the ASAE,2000,16(1),7-13.
    [42]R.L.Parish,R.P.Bracy,Metering non-uniform vegetable seed[J].Hort Technology.1998,8(1),69-71.
    [43]张晓慧,宋建农.针状气吸式水稻精密播种机的设计与试验[J].农机化研究,2008,8:87-90.
    [44]刘彩玲,宋建农.种盘振动对气吸振动式精量播种装置工作性能的影响[J].中国农业大学学报,2004,9(2):12-14.
    [45]陈进,李耀明,王希强,等.气吸式排种器吸种孔气流场的有限元分析[J].农业机械学报,2007,38(9):59-62.
    [46]何东健,李增武.组合吸孔气吸式排种器种子运动及参数研究[J].两北农业大学学报,1995,23(6):33-37.
    [47]袁月明,马旭,朱艳华,等.基于高速摄像技术的气吸式排种器投种过程的分析[J].吉林农业大学学报,2008,30(4):617-620.
    [48]夏红梅,李志伟,牛菊菊,等.气力滚筒式蔬菜穴盘播种机吸排种动力学模型的研究[J].农业工程学报,2008,24(1):141-146.
    [49]陈立东,何堤,马淑英,等.气吸式排种器排种性能影响因素的试验研究[J].沈刚农业大学学报,2005,36(5):634-636.
    [50]马旭,王剑平,胡少兴,等.用图像处理技术检测精密排种器性能[J].农业机械学报,2001,32(7):34-37.
    [51]刘洪强,马旭,袁月明,等.基于光电传感器的精密排种器性能检测[J].吉林农业大学学报,2007,29(3):347-349.
    [52]夏俊芳,周勇,张平华.基于虚拟仪器技术的排种器漏播检测技术[J].华中农业大学学报,2008,27(4):540-544.
    [53]胡少兴,马成林,张爱武.排种器性能检测中种子位置智能检测方法[J].农业机械学报,2001,32(3):36-39.
    [54]马成林,胡少兴,张爱武,等.排种器性能检测中摄像机系统的标定方法[J].光学技术,2001,27(2):162-164.
    [55]廖庆喜,邓在京,黄海尔.高速摄影在精密排种器性能检测中的应用[J].华中农业大学学报,2004,23(5):570-573.
    [56]王玉顺,郭俊旺,赵晓霞,等.基于机器视觉的条播排种器性能检测及分析[J].农业机械学报,2005,36(11):50-54.
    [57]许福永,赵克玉.电磁场与电磁波[M].北京:科学出版社,2005.
    [58]张准,汪凤泉.振动分析[M].南京:东南大学出版社,1991.
    [59]郭烈锦.两相与多相流动力学[M].西安:西安交通大学出版社,2002.
    [60]黄文虎,陈滨,王照林.一般力学(动力学、振动与控制)最新进展[M].北京:科学出版社,1994.
    [6l]胡海岩.分段光滑机械系统动力学的进展[J].振动工程学报,1995,8(4):331-341.
    [62]G.W.Luo,J.H.Xie.Bifurcations and chaos in a system with impacts[J].Physica D,2001,148:183-200.
    [63]P.Feanti(?)ek,K.Tadashi,S.(?)ipera.Explanation of appearance and characteristics of intermittency chaos of the impact oscillator[J].Chaos,Solitons and Fractals,2004,19:1251-1259.
    [64]丁旺才,谢建华.碰撞振动系统分岔与混沌的研究进展[J].力学进展,2005,35(4):513-524.
    [65]G.W.Luo,X.H.Lv,L.Ma.Dynamics of an impact-progressive system[J].Nonlincar Analysis:Real World Applications,2009,10(2):665-679.
    [66]K.D.Murphy,T.M.Morrison.Grazing instabilities and post-bifurcation behavior in an impacting string[J].Journal of the Acoustical Society of America,2002,111(2):884-892.
    [67]C.N.Bapat.The general motion of an inclined impact damper with friction[J].Journal of Sound and Vibration,1995,184(3):417-427.
    [68]S.LT.Souza,I.L.Caldas,R.L.Viana.Damping control law for a chaotic impact oscillator[J].Chaos,Solitons and Fractals,2007,32,745-750.
    [69]S.W.Shaw,P.J.Holmes.A periodically forced piecewise linear oscillator[J].Journal of Sound and Vibration,1983,90(1):129-155.
    [70]A.B.Nordmark.Universal limit mapping in grazing bifurcations[J].Physical Review,1997,55(1):266-270.
    [71]A.B.Nordmark.Effects due to low velocity impact in mechanical oscillators[J].Internarional Journal of Bifurcation and Chaos in Applied Sciences and Engineering,1992,2(3):597-605.
    [72]S.Salapaka,M.V.Salapaka,M.Dalaleh,et al.Complex dynamics in repeated impact oscillations[J].Proceedings of the 37th IEEE conference on Decision & control,Florida,1998:2053-2058.
    [73]E.Rigaud,J.Perret-Liaudet.Experimental response of a preloaded vibro-impacting hertzian contact[J].Proeeedings of ASME 2001 Design Engineering Technical Conference,Pernsylvania,2001.
    [74]罗冠炜,张艳龙,张建刚,等.冲击振动成型机周期运动的Hopf-flip余维二分岔与混沌[J].工程力学,2007,24(9):140-147.
    [75]罗冠炜,俞建宁,尧辉明,等.含间隙振动系统的周期运动和分岔[J].机械工程学报,2006,42(2):87-95.
    [76]罗冠炜,郑小武.惯性式冲击振动落砂机周期运动的Hopf分义[J].振动工程学报,1999,12,(3):297-303.
    [77]郑小武,谢建华.一类碰撞振动系统的倍周期分岔研究[J].四川大学学报(工程科学版),2006,38(2):30-33.
    [78]罗冠炜,谢建华.碰撞振动系统的周期运动和分岔[M].北京:科学出版社,2004.
    [79]P.A.Cundall,O.D.LSreack.A discrete numerical model for granular assemblies.Geotechnique,29,47-65.
    [80]Y.Tatemoto,Y.Mawatari,T.Yasukawa,et al.Numerical simulation of particle motion in vibrated fluidized bed[J].Chemical Engineering Science,2004,59(2):437-447.
    [81]J.Theuerkauf,P.Witt,D.Schwesig.Analysis of particle porosity distribution in fixed beds using the discrete element method[J].Powder Technology,2006,165:92-99.
    [82]B.P.B.Hoomans,J.A.M.Kuipers,V.Swaaij.Granular dynamics of segregation phenomena in bubbling gas-fluidised beds[J].Powder Technology,2000,109(1-3):41-48.
    [83]徐泳,孙其诚,张凌,等.颗粒离散元法研究进展[J].力学进展,2003,33(2):251-260.
    [84]刘凯欣,高凌天.离散元法研究的评述p].力学进展,2003,33(4):483-490.
    [85]K.Manoj,S.Wolfgang,T.Jurgen.Discrete clement method simulation of bed comminution[J].Minerals Engineering,2007,20(2):179-187.
    [86]J.Theuerkauf,P.Witt,D.schwesig.Analysis of particle porosity distribution in fixed beds using the discrete element method[J].Powder Technology,206,165(2):92-99.
    [87]S.C.Yang,S.S.Hsiau.The simulation of powders with liquid bridges in a 2D vibrated bed[J].Chemical Engineering Science,2001,56:6837-6849.
    [88]E.Tijskens,H.Ramon,J.D.Baerdemaeker.Discrete element modelling for process simulation in agriculture[J].Journal of Sound and Vibration,2003,266:493-514.
    [89]J.Li,C.Webb,S.S.Pandiella,et al.Discrete particle motion on sieves-a numerical study using the DEM sirnulation[J].Powder Technology,2003,133:190-202.
    [90]B.K.Mishra.A review of computer simulation of tumbling mills by the discrete element method:Part Ⅰ-contact mechanics[J].International Journal of Mineral Processing,2003,71:73-93.
    [91]T.J.Goda,F,Ebert.Three-dimensional discrete element simulations in hoppers and silos[J].Powder Technology,2005,158,58-68.
    [92]徐泳,李艳洁,李红艳.离散元法在农业机械化中应用评述[J].农机化研究,2004,5,26-30.
    [93]于建群,付宏,李红,等.离散元法及其在农业机械工作部件研究与设计中的应用[J].农业工程学报,2005,21(5):1-6.
    [94]张锐,李建桥,周长海,等.推土板表面形态对土壤动态行为影响的离散元模拟[J].农业工程学报,2007,23(9):13-19.
    [95]V.Zeebroeck,G.Lombaert,E.Dintwa,et al.The simulation of the impact damage to fruit during the passage of a truck over a speed bump by means of the discrete element method[J].Biosystems Engineering,2008,101(1):58-68.
    [96]S.Masson,J.Martinez.Effect of mechanical properties on silo flow and sress from distinct element simulation[J].Power Technology,2000,109(1-3):164-178.
    [97]E.Sakaguchi,M.Suzuki.Mumerical simulation of the shaking separation of paddy and brown rice using the discrete element method[J].Journal of Agriculture Engineer Research,2001,79(3):307-315.
    [98]S.Ycshiyuki,P.A.Cundall.Three dimensional DEM simulation of bulk handling by screw conveyors[J].Journal of Engineering Mechanics[J]2001,127(9):864-872.
    [99]孙裕晶,马成林,牛序堂,等.基于离散元的大豆精密排种过程分析与动态模拟[J].农业机械学报,2006,37(11):45-48.
    [100]于建群,申燕芳,牛序堂,等.组合内窝孔精密排种器清种过程的离散元法仿真分析[J].农业工程学报,2008,24(5):105-109.
    [101]X.Lin,T.T.Ng.A three dimensional discrete element method model using arrays of ellipsoids.Geotechnique,1997,47(2):319-329.
    [102]K.Udaya Bhaskar,Y.Rama Murthy,M.Ravi Raju,et al.CFD simulation and experimental validation studies on hydrocyclone[J].Minerals Engineering,2007,20(3):60-71.
    [103]杨敏官,顾海飞,刘栋,等.离心泵叶轮内部湍流流动的数值计算及试验[J].机械工程学报,2006,42(12):180-185.
    [104]B.Sonia,M.Hatem,L.P.Georges,et al.Numerical and experimental study of two turbulent opposed plane jets[J].Heat and Mass Transfer,2003(39):657-686.
    [105]P.Umberto,D.Onofrio,M.Carmina.Three-dimensional CFD simulation of two-phase flow inside the abrasive water jet cutting head[J].International Journal of Computational Methods in Engineering Science and Mechanics,2008,9(5):300-319.
    [106]J.T.Comelissen,F.Taghipour,R.Escudi(?),et al.CFD modelling of a liquid-solid fluidized bed[J].Chemical Engineering Science,2007,62:6334-6348.
    [107]K.U.Bhaskar,Y.R.Murthy,M.R.Raju,et aI.CFD simulation and experimental validation studies on hydrocyclone[J].Minerals Engineering,2007,20,60-71.
    [108]C.Ford,C.R.Bennington,F.Taghipour.Modelling a pilot-scale pulp mixing chest using CFD[J].Journal of Pulp and Paper Science,2007,33(3):115-120.
    [109]M.Yataghene,J.Pruvost,F.Fayolle,et al.CFD analysis of the flow pattern and local shear rate in a scraped surface heat exchanger[J].Chemical Engineering and Processing,2008,47:1550-1561.
    [110]G.Thomas,L.Christian,C.Claudio,et al.Computational fluid dynamics(CFD) software tools for microfluidic applications-A case study[J].Computers and Fluids,2008,37(3):218-235.
    [111]张兆顺,崔桂香.流体力学[M].北京:清华大学出版社,2006.
    [112]T.Bartzanas,C.Kittas,A.A.Sapounas,et al.Analysis of airflow through experimental rural buildings:Sensitivity to turbulence models[J].Biosystems Engineering,2007,97(2):229-239.
    [113]P.Ranganathan,S.Sivaraman,S.Gerald,et al.CFD modeling of gas-liquid-solid mechanically agitated contactor[J].Chemical Engineering Research and Design,2008,86(12):1331-1344.
    [114]F.Bahadori,R.Rahimi.Simulations of gas distributors in the design of shallow bubble column reactors[J].Chemical Engineering and Technology,2007,30(4):443-447.
    [115]曲延鹏,陈颂英,王小鹏,等.不同湍流模型对圆射流数值模拟的讨论[J].工程热物理学报,2008,29(6):957-959.
    [116]L.Q.Zhou,W.Z.Wang.Numerical simulation of cavitation around a hydrofoil and evaluation of a RNG κ—ε model[J].Transactions of the ASME,2008,130(1):0113021-0113027.
    [117]I.Yoshihiro,N.Yasutaka.RNG modeling of turbulent heat flux and its application to wall shear flows[J].JSME International Journal,Series B,1998,41(3):657-665.
    [118]A.E.Sakya,N.Yoshiaki,Y.Michiru.Evaluation of an RNG-based algebraic turbulence model[J].Computers & Fluids,1993,22(2):207-214.
    [119]S.Semion,G.Bods,S.Ilya.Cross-term and ε-expansion in RNG theory of turbulence[J].Fluid Dynamics Research,2003,33(4):319-331.
    [120]Y.S.Zhang,O.A.Steven.Two-equation RNG transport modeling of high reynolds number pipe flow[J].Journal of Scientific Computing,1998,13(4):471-483.
    [121]蒋恩臣,王立军,刘坤,等.联合收获机惯性分离室内气同两相流数值模拟[J].江苏大学学报(自然科学版),2006,27(3):193-196.
    [122]袁月明,马旭,金汉学,等.气吸式水稻芽种排种器气室流场研究[J].农业机械学报,2005,36(6):42-45.
    [123]林建忠.流体力学[M].北京:清华大学出版社,2005.
    [124]张政,谢灼利.流体—固体两相流的数值模拟[J].化工学报,2001,52(1):1-12.
    [125]林建忠.流—固两相流拟序涡流及稳定性[M].北京:清华大学出版社,2003.
    [126]G.A.Bokkers,J.A.Laverman,M.S.Annaland,et al.Modelling of large-scale dense gas-solid bubbling fluidised beds using a novel discrete bubble model[J].Particle and Particle Systems Characterization,2004,21(3):219-227.
    [127]J.J.Derksen.Simulation of mass-loading effects in gas-solid cyclone separators[J].Powder Technology,2006,163(1-2):59-68.
    [128]董志勇.射流力学[M].北京:科学出版社,2005.
    [129]J.Senter,C.Solliec.Flow field analysis of a turbulent slot air jet impinging on a moving flat surface[J].International Journal of Heat and Fluid Flow,2007,28(4):708-719.
    [130]E.Mikael,T.Anders,J.Lage,et al.A mathematical model of an impinging air jet on a water sufface[J].ISIJ International,2008,48(4):377-384.
    [131]A.D.Bircha,R.P.Cleavera,M.Fairweatherb,et al.Velocity and concentration field measurements in a turbulent,impinging flammable jet[J].Chemical Engineering Science,2005,60(1):219-230.
    [132]余常昭.紊动射流[MI.北京:高等教育出版社,1993.
    [133]V.J.F.Kumar,C.D.Durairaj,D.M.Jesudas.Influence of distributor head on the seed trajectory within the feeder plenum of an air drill[J].International Agricultural Engineering Journal,2001,10(3-4):255-267.
    [134]衣淑娟,汪春,毛欣,等.轴流滚筒脱粒后自由籽粒空间运动规律的观察与分析[J].农业工程学报,2008,24(5):136-139.
    [135]周福君,张巍.高速摄像技术在两相流场籽粒运动测量中的应用[J].2008,39(4):22-24.
    [136]俞高红,赵凤芹,武传宁,等.正齿行星轮分插机构的运动特性分析[J].农业机械学报,2004,35(6):55-57.
    [137]P.Franz.Tracking of multiple targets using online learning for reference model adaptation[J].IEEE Transactions on Systems,Man,and Cybernetics,Part B:Cybernetics,2008,38(6):1465-1475.
    [138]R.T.Collins,Y.X.Liu,L.Marius.Online selection of discriminative tracking features[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2005,27(10):1631-1643.
    [139]C.Stauffer,W.E.Grimson.Learning patterns of activity using real-time tracking,IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,22(8):747-757.
    [140]赵坤,孔祥维.小目标红外图像背景噪声的抑制及方法讨论[J].光学与光电技术,2004,2(2):9-12.
    [141]成兰,王志杰,姬绣荔.基于图像局部特征的红外小目标检测与跟踪算法[J].红外技术,2008,30,(6):324-326.
    [142]B.K.Ray,K.S.Ray.Comer Detection Using Iterative Gaussian Smoothing with Constant Window Size[J].Pattern Recognition,1995,28(11):1765-1781.
    [143]F.Mokhtarian,R.Suomela.Robust Image Comer Detection Through Curvature Scale Space[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1998.20(12):1376-1381.
    [144]I.Silve,J.M.Mooney,C.E.Cafer.Temporal filters for tracking weak slow point targets in evolving cloud clutter[J].Infrared Physics and Technology,1996,37(6):695-710.
    [145]K.Fukunaga,L.D.Hostetler.The estimation of the gradient of a density function,with applications in pattern recognition[J].IEEE Transaction of Information Theory,1975,21:32-40.
    [146]Y.Cheng.Mean shift,mode seeking,and clustering.IEEE Transactions on Pattern Analysis and Machine Intelligence,1995,17(8),790-799.
    [147]王长军,朱善安.基于Mean Shift的目标平移与旋转跟踪[J].中国国象图形学报,2007,12(8):1367-1371.
    [148]朱胜利,朱善安,李旭超.快速运动目标的Mean shift跟踪算法[J].光电工程,2006,33(5):66-70.
    [149]Liu Tangwei,Zhou Huiyu,Lin Faquan,et al.Improving image segmentation by gradient vector flow and mean shift[J].Pattern Recognition Letters,2008,29(1):90-95.
    [150]D.Comaniciu,P.Meer.Kernel-Based Object Tracking[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2003,25(5):564-577.
    [151]A.Elgammal,R.Duraiswami,L.S.Davis.Efficient kernel density estimation using the fast gauss transform with applications to color modeling and tracking.IEEE Transactions on Pattern Analysis and Machine Intelligence,2003,25(11):1499-1504.
    [152]N.S.Peng,J.Yang,Z.Liu.Mean shift blob tracking with kernel histogram filtering and hypothesis testing[J].Pattern Recognition Letters,2005,26(5):605-614.
    [153]K.Nickels,S.Hutchinson.Estimating uncertainty in SSD-based feature tracking.Image and Vision Computing,2002,20(1),47-58.
    [154]唐启义,冯明光.实用统计分析及其DPS数据处理系统[M].北京:科学出版社,2002.
    [155]M.Patricia,G.Felma,M.Gabriela.Pattern recognition using modular neural networks and genetic algorithms[J].Proceedings of the International Conference on Artificial Intelligence,IC-AI'04,2004:77-83.
    [156]宋乃慧,任朝晖,闻邦椿.递阶遗传算法优化的模糊神经网络的故障诊断应用[J].农业机械学报,2007,38(12):129-132.
    [157]A.Surapong.Pattern recognition using Genetic Algorithm[J].Proceedings of the IEEE Conference on Evolutionary Computation,ICEC,2000,1:822-828.
    [158]李敏强.遗传算法的基本理论与应用[M].北京:科学出版社,2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700