用户名: 密码: 验证码:
半刚性基层沥青路面综合抗裂技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
半刚性基层沥青路面的路基、底基层、基层和面层任一结构层发生了开裂,其裂缝均在对应处向其上一结构层和下一结构层反射,所以半刚性基层沥青路面抗裂,要综合考虑影响半刚性基层沥青路面开裂的各种因素,采用多途径、多渠道从整体出发自下而上逐层解决半刚性基层沥青路面的开裂问题。
     路基方面:主要从施工入手,重点解决压实度检测问题和沉降观测问题,减小路基的不均匀沉陷问题。
     底基层方面:提出用低剂量(水泥剂量2.5%~3%)骨架密实水泥稳定碎石底基层结构,代替传统的易开裂的水泥土、石灰土、二灰土等底基层结构。
     基层方面:通过成型方式的变革(振动成型)和级配的优化(骨架密实结构)解决基层裂缝问题。
     1.提出了振动成型骨架密实水泥稳定碎石基层的优化级配和不同设计强度下的水泥剂量;
     2.通过对不同的悬浮结构级配和骨架密实结构级配在不同成型方式下的干燥收缩试验和断裂韧度试验,分析了成型方式、级配、0.075mm以下粉料的含量、施工季节、施工的均匀性、含水量、水泥剂量等因素对静压成型悬浮结构和振动成型骨架密实结构水泥稳定碎石基层裂缝的影响;
     3.用损伤力学和断裂力学理论分析、通过有限元计算和试验验证三条途径论证了骨架密实水泥稳定碎石基层的抗裂机理。
     4.运用损伤力学和断裂力学理论、数理分析、线性回归方法,归纳了振动成型骨架密实水泥稳定碎石基层开裂预估的经验公式。
     5.应用ANSYS有限元软件计算了裂纹的疲劳寿命和应力强度因子。为解决在利用有限元分析水泥稳定碎石基层的断裂与损伤时,无法反映级配结构对疲劳寿命和应力强度因子的影响问题,提出用裂纹扩展权(Rmin)来表征悬浮结构和骨架密实结构。
     6.提出了与振动成型方式和骨架密实结构级配配套的施工技术。
     沥青面层方面:通过上面的综合措施,解决面层以下的开裂问题,基本消灭反射裂缝。
     1.通过GTM成型方式、骨架密实结构级配优化和组合式碾压技术的使用,从材料、设计和施工入手解决沥青路面开裂问题。
     2.用损伤力学和断裂力学理论分析、采用有限元计算和试验验证三条途径论证了用GTM设计的骨架密实沥青混合料的抗裂机理。
     3.通过采用GTM的AC-13型沥青混合料级配优化研究和低温弯曲试验、低温疲劳试验和开裂温度试验,提出了基于抗裂性能的沥青混合料骨架密实结构级配设计方法。
     4.提出了与GTM成型方式配套的路面施工技术。
     施工及检测技术
     1.利用瑞雷波检测压实度精度高、无损、速度快的优点解决传统的压实度检测费时、费力、易造假等问题;
     2.建立了组合式碾压的力学模型,并进行了组合式碾压提高路面抗裂水平的机理分析。
     试验路:试验路研究表明半刚性基层沥青路面综合抗裂技术,理论上先进,技术上可行,工程应用效果好。
The any structure layer of the subgrade , the subbase , the base and the pavement of semi- rigid base asphalt pavement took place to split, the cracks will reflect to its up and next structure layer at corresponding place. So in order to resist cracking ,we must synthetically consider various sorts of elements of influencing semi- rigid base asphalt pavement cracking, and from whole set out,adopt many path, many outlet ,from next to up gradually the layer solve the cracking problem of semi- rigid base asphalt pavement.
     Subgrade
     From construcking, point solve the problem of compactness detecting and subgrade settlement observation, solve the subgrade settlement bad-distributed problem.
     Subbase
     Put forward using low dosage(cement dose 2.5%~3%) framework dense gradation cement stabilized macadam subbase structure, replace traditional and easy cracking cement soil, lime soil, lime-fly ash etc. subbase structure.
     Base
     Solving the base cracking problem through the change of forming method and gradation optimization.
     1. Put forward to the optimization gradation of vibration forming framework dense gradation cement stabilized macadam base, and cement dose of different design strength.
     2. Passing to the dry shrinking experiment and fracture toughness experiment of different gradation of suspended and framework dense in different forming method, analysising the influence of forming method, gradation, powder content less than 0.075 mm, construction season, construction well-distributed, moisture capacity, cement dose etc.to static forming method suspended gradation and vibration forming method framework dense gradation cement stabilized macadam base cracking.
     3. Using the analysising of damage and fracture mechanics theories , limited dollar calculating and testing proving there approach to discuss anti-cracking mechanism of framework dense gradation cement stabilized macadam base.
     4. Using the damage mechanics and fracture mechanics theories, the methods of mathematic statistic and linear regression to estimate the cracking distance of framework dense gradation cement stabilized macadam base.
     5. Application ANSYS limited dollar software to calculate fatigue life used and crack stress intensity factor . For solve at make use of a limited dollar to analysis damaging and fracturing of cement stabilized macadam base, can't reflection the problem of gradation influence fatigue life used and crack stress intensity factor, put forward using crack expanding weighting (Rmin) to indicate suspended gradation and framework dense gradation.
     6. Put forward to the construction technique complete set of vibration forming method and framework dense gradation.
     Pavement
     Passing the synthetically measure before, to solve all the cracking problem under the pavement, essentially dispel the reflection.
     1. This text is main to solve the bad-distributed problem causing of asphalt road cracking through GTM forming method, framework dense gradation optimization , using aggregate rolling technique, design and construction.
     2. Using the analysising of damage and fracture mechanics theories , limited dollar calculating and testing proving there approach to discuss anti-cracking mechanism of framework dense gradation bituminous mixtures designed with GTM.
     3. Passing optimization study of AC-13 asphalt mixtures designed with GTM, low temperature bend experiment, low temperature fatigue test and cracking temperature experiment, put forward a framework dense gradation bituminous mixtures design method according to the anti- cracking function.
     4. Put forward to the construction technique complete set of GTM forming method and framework dense gradation.
     Construcking and Detecting Technique
     1. Using Rayleigh wave to detect compactness possesses the excellence of high precision, no damaging and speed quick, we can use it to solve the problems of costing a lot of time and work, and easy taking disguise etc. when we detect compactness use traditional method.
     2. Establishment a mechanics model of aggregate rolling method, and analysising the mechanism that can improve pavement anti-cracking level.
     Test road
     Test road research enunciate that the comprehensive anti- cracking technique of semi- rigid base asphalt pavement is advanced in theories, the technique is practicable, engineering application is effective.
引文
[1]本人,李小重,候建军.水泥稳定碎石基层施工新技术[M].北京:中国科学技术出版社,2007 :31-62
    [2]沈金安.国外沥青路面设计方法总汇[M].北京:人民交通出版社,2004 :6-7
    [3]蒋应军.水泥稳定碎石收缩裂缝防治研究[D].西安:长安大学,2001.
    [4]张嘎吱.考虑抗裂性能的水泥稳定类材料配合比设计方法研究[D].西安:长安大学,2001.
    [5]本人.水泥稳定碎石抗裂机理及评价方法[D].西安:长安大学,2002.
    [6]梅传江牛朋.水泥稳定碎石基层路用性能研究[J].公路交通科技,2002,V19(2):23-26
    [7]李美江.道路材料振动压实特性研究[D].西安:长安大学,2002
    [8] K.P. George.Pavement Thickness Design Using Low Strength Base and Subbase Materials.TTR1043,1985:213-216
    [9] J.F.Hill. Predicting the Fracture of Asphalt Mixes by Thermal Stresses, Inst[J].Petroleum, 1974, V74(14):32-36
    [10] C.L.Monismith, G.A.Secor, K.E.secor. Temperature-Induced Stressed and Deformations in asphalt[J]. Concrete Proceedings of AAPT, 1965,V34 (6): 248-285
    [11] R.Haas. A Method for Designing Asphalt Pavements to Minimize Low-Temperature Shrinkage Cracking[J]. Asphalt Institute, 1973,V 73(1):65-68
    [12] R.Haas, W.Phang. Relationships Between Mix Characteristics and Low-Temperature Pavemant Cracking[J]. Proceedings of AAPT, 1988,V57(5):378-415
    [13] S.H.Carpenter. Thermal Cracking in Asphalt Pavements,An Examination of Models and Parameters[R].USA CRREL,1983:78-83
    [14] J.T.Christison. The Response of Asphalt Concrete Pavements to Low Temperature climatic Enviroments, Proceedings of 3rd Int.Conf[J]. Structural Design of Asphalt Pavements, 1972,Vl1(1):136-179
    [15] H.S.Chang, R.L.Lyton, S.H. Carpenter.Numerical Analysis of Thermal Propagation in Pavement Overlays[R]. Washington DC:Numerical Methods in Geomechanics, 1976:526-539
    [16] D.Hiltunen, R.Roque. A Mechanics-Based Prediction Model for Thermal Cracking of Asphalt Concrete Pavement[J]. Proceedings of AAPT, 1994, V63(8):81-113
    [17] R.L.Lytton,J.Uzan, E.G.Fernando, et al. Devolopment and Validation of Performance Prediction Model and Specifications for Asphalt Binders And Passing Mixes[R]. Washington DC: Report SHAP-A-357, 1993
    [18] B.E.Ruth, L.A.K.Bloy, A.A.Avital. Prediction of Pavement Cracking at Low Temperature[J]. Proceedings of AAPT, 1982, V51(1):53-103
    [19] R.R.Roque, D.H.Hiltunen, W.G.Buttlar, et al. Developments of the SHAP superpave Mixture Specification Test Method to Control Thermal Cracking Performance of Pavements, In Engineering Properties of Asphlt Mixtures and the Relationship to their Performance[R]. Washington DC: Special Technical Publication , 1995:55-73.
    [20] A.Epps. A Comparison of Measured and Predicted Low-Temperature Cracking Conditions[J]. Proceedings of AAPT, 1998,V67(4):077-310.
    [21] D.W.Christansen. Analysis of Creep Data from Indirect Tension Test on Asphalt Concrete[J]. Proceedings of AAPT, 1998,V67(12):458-929
    [22] H.J.Fromm, W.A.Phang. A Study of Transverse Cracking of Bituminous Pavements[J]. Proceeding of AAPT, 1972,V41(5):383-423
    [23] H.L.Von Quintus,J.B.Rauhut,T.W.Kennedy. Comparisons of Asphalt Concrete Stiffness as Measured by Various Testing Techniques[J].Proceedings of AAPT, 1982,V51(12):35
    [24] R.Roque,B.E.Ruth. Materials Characterization and Response of Flexible Pavements at Low Temperatures[J].Proceedings of AAPT, 1987,V56(9):130
    [25] D.H.Jung, T.S.Vison, Low-Temperature Cracking Resistance of Asphalt Concrete Mixtures[J]. Proceeding of AAPT ,1993, V62(7):54
    [26] D.H.Jung, T.S.Vison. Low-Temperature Cracking:Test Selection, SHRP-A-400,June , 1994.
    [27] D.H.Hung, T.S.Vison. Low-Temperature Cracking : Binder Validation, SHRP-A-399,April, 1994.
    [28] H.K.Kanerva, T.S.Vision, H.Y.Zeng. Low-Temperature Cracking: Field Validation of the Thermal Stress Restrained Specimen Test, SHAP-A-401 June, 1994.
    [29] T.Sugawara, H.Kubo, A.Morigoshi. Low Temperature Cracking of Asphalt Pavements,Proceedings, Canada-Japan Paving in Cold Areas Mini-workshop, 1982:1-42
    [30] L.J.Deme, F.D.Young, Ste.Anne. Test Road Revisited Twenty Years Later, Shell International Petroleum Company Limited, 1989.
    [31] A.F.Stock, W.Arand , Low Temperature Cracking in Polymer Modified Binder[J]. Proceedings of AAPT, 1993, V62(2):23-53
    [32] K.O.Anderson, D.W.Cristensenm, B.Q.Bai, et al. Temperature and Thermal Contraction Measurements as Related to the Development of Low Temperature Cracking on the Lamont Test Road, Proceedings, the Forty-Third Annual Conf[J]. Canadian Technical Asphalt Association, 1998,V43(1):16-47
    [33] W.Heukelom, Observations on the Rheology and Fracture of Bitumen and Asphalt Mixes[J]. Proceedings of AAPT, 1966,V35(2): 54-59
    [34] R.Dongre. Development of Direct Tension Test Method to Characterize Failure Properties of Asphalt Cements, Ph.D.Thesis, the Pennsylvania State Univ., 1994
    [35] D.A.Anderson, D.W.Christensen, H.U.Bahia, et al. Binder Characterization and Evaluation, SHAP-A-369, 1994
    [36] B.E.Ruth. Prediction of Low-Temperature Creep and Thermal Strain in Asphalt Concrete Pavements, ASTM.STP628,C.R.Mack, Ed, American Society for Testing Material, 1977:63-68
    [37] D.N.Little, B.L.Richey. A Mixture Design Procedure Based on the Failure Envelop Concrete[J]. Proceedings of AAPT, 1983,V52(9):378-415
    [38] W.Brostow, R.D.Corneliussen. Failure of Plastics [M].New York :H Munich-Vienna anser Publishers, 1986:236-257
    [39] J.D.Ferry. Viscoelastic Properties of Polymers[M]. New York :Wiley, 1980:351-365
    [40] T.L.Smith. Stress-Strain-Time Relationships for Polymers, American Society for Testing Materials[M] .S Washington DC:pecial Technical Publication, 1962:65-69
    [41] R.Roque, D.R.Hiltunent, W.G.Buttlar. Thermal Cracking Performance and Design of Mixtures Using Superpave[J]. Proceedings of AAPT, 1995,V64(6):718~735
    [42] T.Vinson, V.Janoo, R.Hass. Summary Report on Low Temperature and Thermal Fatigue Cracking, SHAP-/IR-90-001, 1989
    [43] M.Shahin, B.F.McCullough. Damage Model for Pedicting Temperature Cracking inFlexible Pavements, Transportation Research Record 521, 1974:30~46
    [44] R.Lytton, U.Shanmugham. Analysis and Design of Pavements to Resist Thermal Cracking Using Fracture Mechanics, Proceedings of the 5th Int. Conf[J]. Structural Design of Asphalt Pavements, 1982,V66(l1):818~839
    [45] A.L.Epps. An Approach to Examine Thermal Fatigue in Asphalt Concrete[J]. Proceedings AAPT, 1999, V68(11):319~345
    [46] K.Anderson, J.Epps. Asphalt Concrete Factors Related to Pavement Cracking in West Texas[J]. Proceedings of AAPT, 1983, V52(3):151~197
    [47] F.Finn, C.Saraf, R.Kulkarni, et al. The Use of Distress Prediction Subsystems for the Design of Pavement Structures, Proceedings of the 4th Int. Conf[J]. Structural Design of Asphalt Pavement, 1977,V1(11):3~38
    [48] T.Eugawara, A.Morigoshi. Thermal Fracture of Bituminous Mixtures, Proceedings of Paving in Cold Areas Mini-Workshop, 1984:291~320
    [49] M.Shahin, B.F.McCullough. Prediction of Low-Temperature and Thermal Fatigue Cracking in Flexible Pavements[R]. Texas, center for Highway Research, 1972
    [50] V.Janoo, J.Bayer, M.Walsh. Thermal Stress Measurements in Asphalt Concrete[R]. U.S. Army corps of Engineers, Cold Regions Research and Engineering Laboratory, 1993
    [51] N.M.Jackson, T.Vinson, Analysis of Thermal Fatigue Distress of Asphalt Concrete Pavements[R]. Transportation Research Record 1545, 1996:43~49
    [52] D.Little,K.Mabboub. Engineering Properties of First Generation Plasticized Sulfur Binder and LowTemperature Fracture Evaluation of Plasticized Sulfur Paving Mixtures[R]. Transportation Research Record , 1985:103~111
    [53] K.Majidzadeh, C.B.Buranrom, M.Karakomzian. Applications of Fracture Mechanics for Improved Design of Bituminous Concrete[R]. Washington, D.C.: Federal Highway administration, 1976
    [54] R.Lytton,U.Shanmuham, B.Garrett, Design of Asphalt Pavements for Thermal Fatigue Cracking[R]. Texas :Transportation Institute, 1983
    [55] P.Paris, F.Erdogan. A Critical Analysis of Crack Propagation Laws[J]. Transactions of the American Association of Mechanical Engineers Journal of Basic Engineering Series , 1963,V85(4):528~534
    [56] P.Benson. Low Temperature Transverse Cracking of Asphalt Concrete Pavements in Central and Wear Texas[R]. Texas Transportation Institute, 1976
    [57] A.Abdulshafi, K.Majidzadeh. J-integral and Cyclic Plasticity Approach to Fatigue and Fracture of Asphalt Mixtures[R]. Transportation Research Record, 1985:112-123
    [58] A.Abdelshafi, K.Kaloush. Modifiers for Asphalt Concrete, ESL-TR-88-29[R]. Air Force Engineering and Services Center, 1988
    [59] D.Hiltunen, R.Roque. The Use of Time-Temperature Superposition to Fundamentally Characterize Asphaltic Concrete Mixtures at Low Temperature, ASTMSTP265, Philadelphia: American Society for Testing and Materials, 1994.
    [60] W.Buttlar, R.Roque. Development and Evaluation of the Strategic Research Program Measurement and Analysis System for Indirect Tensile Testing at Low Temperature[R]. Transportation Research Record 1454, 1994:163~171
    [61] C.L.Monismith, N.F.Coetzee. Reflection Cracking: Analysis, Laboratory State and design Considerations[J]. Proceedings of AAPT, 1980, V49(8):268~313
    [62] R.Haas, P.Joseph. Design Oriented Evaluation of Alternatives for Reflection Cracking though Pavement Overlays Proceedings of Int[R]. RILEM Conf: Reflective Cracking in Pavements, 1989:23~49
    [63] J.S.Humphreys, C.T.Martin, Determination of Transient Thermal Stresses in a slab with Temperature-Dependent Viscoelastic properties[J]. Transaction of the Society of Rheology, 1963,V8(3):155~170
    [64] J.H.Vecoven. Methode d’etude de Systems Limitant la Remontee de Fissures dans les Chanussées, Proceedings of the 1st Int. Conf. of RILEM on Reflective Cracking Pavements 1989:57~62
    [65] N.K.Lee, G.R.Morrison, S.A.M.Hesp. Low Temperature Fracture of Polythylene-Modified Asphalt Binder and Asphalt Concrete Mixes[J]. Proceedings of AAPT, 1995,V64(12):534~574.
    [66]胡雅琴.断裂力学理论在路面反射裂缝分析中主应用[J].西安公路学院学报,1990, V10(2): 15-20
    [67]张起森,郑健龙,刘益河.半刚性基层沥青路面开裂机理[J].土木工程学报,1992, V25(2): 13-22
    [68]郑健龙,关宏信.温缩型反射裂缝的热粘弹性有限元分析[J].中国公路学报, 2001, V14(7): 1-5
    [69]郑健龙,应荣华,张起森.沥青混合料热粘弹性断裂参数研究[J].中国公路学报, 1996, V01(3): 20-28
    [70]岳福青、杨春风.半刚性基层沥青路面温缩裂缝的有限元分析[J].桂林工学院学报, 2004, V24(1): 52-54
    [71]赵永翔、杨冰、张卫华.随机疲劳长裂缝扩展率的新概率模型[J].交通运输工程学报, 2005, V5(4): 6-9
    [72]李春雷、李春香、陈光营等.半刚性基层沥青路面温度应力断裂力学分析[J].公路交通科技,2006,V23(10):33-36
    [73]王宏畅、李国芬、侯曙光等.高等级沥青路面基层底裂缝扩展规[J].南京林业大学学报,2007,V31(2):22-27
    [74]黄志义、王金昌、朱向荣等.含裂缝沥青混凝土路面的粘弹性断裂分析[J].中国公路学报, 2006, V19(2): 18-23
    [75]吴赣昌,凌天清.半刚性基层温缩型裂缝的扩展机理分析[J].中国公路学报,1998,V11(1):21-28
    [76]罗荣芳.混凝土损伤本构理论研究及其应用[J].长沙铁道学院学报,1998,V16(4):57-60
    [77]李杰.混凝土随机损伤本构关系研究新进展[J].东南大学学报,2002,V32(5):1-6
    [78]张庆华.混凝土本构模型及损伤力学研究[D].上海:上海交通大学,2002
    [79]葛析圣,黄晓明.运用损伤力学理论预测沥青混合料的疲劳性能[J].交通运输工程学报, 2003, V3(1): 40-42
    [80]邱欣,凌建明,蒋鑫.含基层缺陷沥青路面不同面层材料抗疲劳特性机理分析[J].沈阳建筑大学学报,2007,V23(4):538-541
    [81]王金昌,赵颖,孙雅珍.沥青混凝土路面裂缝的疲劳变温损伤分析[J].中国公路学报,2001,V14(2):6-8
    [82]陆新征,江见鲸.考虑不同破坏模式的二维混凝土本构模型[J].土木工程学报,2003, V36(11): 70-74
    [83]周卫峰.半刚性基层抗裂技术研究[M].天津:天津市市政工程研究院,2003
    [84]本人,戴经梁,李小重.智能冲击压路机路基压实度自动检测方法[J].交通运输工程学报, 2007, V7(5): 63-67
    [85]本人,候建军.PVC管剖面沉降仪在高速公路路基沉降观测中的应用[J].公路, 2007, V53(8): 184-186
    [86]本人,李小重,候建军.平原区高速公路新技术应用与管理实践[M].北京:人民交通出版社,2006 :198-209
    [87]郑健龙.沥青路面温度收缩开裂的热粘弹特性研究[D].西安:长安大学,2001
    [88]沈金安.沥青及沥青混合料路用性能[M].北京:人民交通出版社, 2002:138-179
    [89]杨成林,时福荣,李从信等.应用瑞雷波等方法对公路质量进行无损检测[J].物探与化探,1996,20(2):104-115
    [90] Kachnov. Time of the rupture process under creep conditions, TVZ Akad. Nauk. S.S.R,Otd,Tech.Nauk, 1958,8
    [91]郑传超,王秉刚.道路结构力学计算[M].北京:人民交通出版社, 2003:155-178
    [92]徐峰,许晨光,崔常伟.混凝土弯曲损伤模型研究[J].矿业研究与开发,2007,V27(3):28-29
    [93] Sidoroff. Description of anisotropic damage application to elasticity[Z]. Physical nonlinearities in structural analysis,1981:237-244
    [94] M.Basista, D.Gross. The sliding crack model of brittle deformation[J]. Int J Solids Structures, 1998,V35(3):487-505
    [95]郑健龙,周志刚,张起森.沥青路面抗裂设计理论与方法[M].北京:人民交通出版社, 2003:15-32
    [96] Bazant, P.J.Cabot. Nonlocal continuum damage, localization instability and convergence[J]. ASME J ,1988, V55(3):287-293
    [97] E.C.Aifantis. Update on a class of gradient theories. Mech Mater, 2003,V35(1):259-280
    [98] R.Borst, J.P.Geers. On coupled gradient-dependent plasticity and damage theories with a view to localization analysis. Eur. J. Mech, 1999,V18(3):939-962
    [99]沈新普,鲍文博,沈国晓.混凝土断裂与损伤.北京:冶金工业出版社, 2004:49-59
    [100]张行.断裂与损伤力学[M].北京:北京航空航天大学出版社,2006:235-285,523-535
    [101] J.Mazars,J.Lemaitre. Application of continous damage mechanics to strain and fracture behavior of concrete. in Application of fracture mechanics to cementitiouscomposites. 1985:507-520
    [102] D.Broek. Elementary engineering fracture mechanics[M]. Noordhoff International Publishing, 1974:417-458
    [103] P. C. Paris. The fracture mechanics approach to fatigue[M]. New York:Syracuse University Press,1964:32-57
    [104]杨宏辉,唐娴.半刚性基层材料抗裂性评价方法[J].长安大学学报,2002, V22(4):45-49
    [105]王宏畅,黄晓明,傅智.半刚性基层表面裂缝影响因素[J].交通运输工程学报, 2005.V5(2): 38-41
    [106] R.G.Elber. Numerical analysis of crack propagation in cyclic-loaded structure[J]. Journal of Basic Engineering,1967, V89(9):459-464
    [107] J. W.Simo. Strain and stress-based continuum damage models[J]. Inter.J.Salids Structures, 1987, V23(7):821-840
    [108]杨继运,张行.裂纹扩展阻力曲线与剩余强度关系的理论研究[J].机械强度学报, 2003, V25(3):334-339
    [109]周卫峰.基于GTM的沥青混合料配合比设计方法研究[D].西安:长安大学,2006
    [110]本人,李小重.集料有效密度及混合料合理体积参数计算方法研究[J].郑州大学学报,2006,V27(4):53-57
    [111]郝培文.应用贝雷法进行级配组成设计的关键技术[J].长安大学学报, 2004,V24(6):34-38
    [112]顾汉明,宋先海,刘江平等.用瞬态瑞雷波反演横波速度评价高速公路压碾效果[J].地质科技情报,2001,20(2):100-102
    [113] J.Xia, R. D. Miller, C. B. Park. Multichannel analysis of surface waves to map bedrock[J]. The Leading Edge, 1999,18(12):1392-1396
    [114]张建清.浅层地震多波勘探新技术研究[J].工程勘察,2001,29(6):65-68
    [115] Liu Jiang-ping, Xia Jiang-hai. Extracting transient Rayleigh wave and its application in detecting quality of highway roadbed [C]//Progress in Environmental and Engineering Geophysics. Washington DC:Science press ,2004 :122-130.
    [116] A.C.Cangellaris. Numerical stability and numerical dispersion of a compact2-D/FDTD method used for the dispersion analysis of waveguids[J]. IEEE.Microwave and Guided Wave Letters, 1993, V3(1): 3-5
    [117] Yee. A finite-element solution for the transient electromagnetic response of an arbitrary two-dimension resistivity distribution[J]. Geophysics, 1986, V51(9):1450-1461
    [118]刘江平、陈超、许顺芳等.垂直裂缝的波场特征及实例[J] .工程地球物理学报,2004,V1(1): 55-58
    [119] A.Taflove. Review of FD-FD numrical modeling of electromagnetic waves scattering and radar cross section[J]. IEEE, 1989, V77(5): 682-693;
    [120] E. T. Seling, T.S.Yoo. Dynamics of viboratory roller compaction[J]. Journal of the Geotechnical Engineering division, 1979, V105(12):1114-1118
    [121] J.M. Machet, G.Morel. Viboratory compaction of bituminous mixes in france[A]. Pavement and Field Contral[C]. 1977:326-331
    [122]何建和,严世榕.振动压路机的一种新模型及其动力学特性研究[J].福建电脑,2004, V11(1):29-30

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700