用户名: 密码: 验证码:
整体钢框架中梁柱抗火性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钢结构不耐火成为人们的共识,大量钢结构火灾案例表明整体结构中构件在火灾中会产生很大的变形甚至局部破坏,但整体结构没有丧失承载能力。这种现象与目前钢构件抗火性能的研究结果不相符,目前国内还未见有对整体钢结构中的构件进行抗火性能的研究报道。本文在国家重点基础研究发展规划项目“空间火灾蔓延对钢框架结构的影响”(批准号:2001CB40960310)和国家自然科学基金项目“结构构件火灾时声发射和振动特性的试验研究”(批准号:50878069)的资助下,搭建了3×3跨3层足尺整体钢框架楼,框架楼一层层高3500mm,二、三层层高3000mm,柱距4500mm,现浇混凝土楼板厚120mm。在整体结构中对不同位置的钢梁、钢柱进行恒载下的抗火性能试验研究和有限元模拟分析,并对局部火灾下梁板的声发射特性和振动特性进行了分析。主要研究内容如下:
     (1)钢框架楼中钢梁试验研究对钢框架楼中单跨边梁、中跨梁、两跨连续梁、三跨连续梁分别进行恒载作用下的抗火性能试验研究。试验全过程测量了火场空气温度、钢梁和楼板不同位置截面温度场分布规律、钢梁和楼板的挠曲变形等内容,考察了钢梁和楼板的破坏形态。试验结果表明:钢梁上翼缘与火场温度存在明显温差,同一截面钢梁温度与楼板混凝土温度存在较大温差;试验开始楼板表面首先产生许多裂缝;钢梁先产生向下竖向变形,在升温过程中向下的变形开始减小,恢复到试验前初始位置后产生向上变形;钢梁上下翼缘焊缝在降温阶段开裂;在火灾全过程中,钢梁与现浇混凝土楼板没有脱开,共同受力和变形。在各种工况下钢梁经历900℃以上温度,升温时间120min左右,钢梁没有发生扭转变形而丧失承载能力,呈现出良好的抗火性能。
     (2)钢框架楼中钢柱试验研究对钢框架楼中单面受火边柱、三面受火边柱、中柱、角柱分别进行恒载作用下的抗火性能试验研究。试验中测量了火场空气温度、钢柱不同截面温度场分布、钢柱不同截面侧向变形、钢柱轴向变形,钢柱顶楼板混凝土温度等,考察了相临钢梁的变形情况、钢柱的破坏形态。试验结果表明:四面受火、梁柱节点受火的中柱在升温76min内未产生明显轴向膨胀变形,之后轴向变形产生突变。其它各工况试验轴向变形首先产生膨胀,在升温阶段膨胀变形减小,最后产生压缩变形,角柱在降温阶段膨胀变形开始减小;钢柱侧向变形在火灾中产生反向;四面受火钢柱产生扭转破坏;单面受火边柱和角柱钢柱没有产生明显破坏;各种工况下,不论钢柱在火灾过程中是否发生破坏,结构未发生倒塌现象。
     (3)钢框架楼中梁、柱非线性有限元模拟分析试验研究无法全方位跟踪测试整体结构中构件在火灾中的行为,有限元模拟分析可以弥补这个不足。本文考虑材料非线性和几何非线性,采用增量方法建立了应力增量和应变增量的关系,运用ANSYS有限元软件建立了考虑楼板作用和整体效应的钢梁、钢柱抗火性能分析的模型,结果表明:有限元分析的构件截面温度场、钢梁挠曲变形、钢柱轴向变形以及侧向变形与试验结果吻合,表明建立的有限元分析模型是合理可行的,能够对其它工况的梁柱进行模拟分析。
     (4)钢框架楼中火灾时梁板声发射特性研究利用声发射仪器对火灾作用下梁板的声发射现象进行了监测。监测了火灾过程中声发射事件率、能量率和b值的变化情况,分析了各参数变化与楼板裂缝、钢梁变形等现象的关系。结果表明:事件率、能量率的变化与宏观裂缝的发生和发展密切相关,b值可以较准确的反映框架楼中钢梁受火时声发射信号的强烈程度,判断梁、板在火灾作用下所处的状态;钢梁变形在增长过程中会产生大量的声发射信号,在变形恢复过程中信号数有所减弱;声发射事件中小于80db的事件占全部事件的90%以上,能量只在50%左右,对能量释放起主要作用的是那些只占10%的事件数。
     (5)钢框架楼中火灾时梁板振动特性研究利用振动设备对火灾作用下梁板的加速度进行了全程监测。并利用Fourier变换对加速度进行了分析,结合数值计算,对整体结构中梁板的振动进行了分析。结果表明:整体结构中单跨钢梁频率绕20Hz波动,两跨连续梁振动频率低于20Hz,随试验的进行,整体结构的刚度减小,振动频率出现波动式减小,振动特性的研究可以为结构的倒塌预警提供一定的理论依据。
Steel structure is not refractory, which is widely accepted by the people; a largenumber of fire hazards due to steel structure show that the members in the overallstructure will be seriously deformed and even damaged; however, the overall structuredoes not lose its carrying capacity. This phenomenon is not consistent with the currentfindings of the fire resistance of steel members, and presently, China has not witnessedany study on the fire resistance of the members in the overall steel structure.Sponsored by the National Key Basic Research Development Program "Impact onstructure steel frame structure from the spreading space fire"(ID:2001CB40960310)and the National Natural Science Foundation's project titled "Testing study on theacoustic emission and vibration characteristics of structural members in fire"(ID:50878069), a3×3full scale structural steel frame building with3floors is built, wherethe floor height of the1st floor is3,500mm, those of the2nd and3rd floors are both3,000mm, the column spacing is4,500mm, and the cast-in-place concrete slab thicknessis120mm. It is the first time for China to conduct the testing study and finite elementsimulation analysis on the fire resistance of steel beams and steel columns at differentpositions under the dead load, steel columns, and the analysis on acoustic emissioncharacteristics and vibration characteristics of the beams and slabs in fire. The maincontents are as follows:
     (1) Testing study on steel beam in the steel frame. Testing study on fire resistanceof single span skirt beam, mid-span beam, two-span continuous girder, and three-spancontinuous beam in the steel frame building under the dead load. The test coversmeasurement of air temperature at the scene of fire, sectional temperature fielddistribution law of steel beam and slab at different positions, deflection and deformationof steel beam and floor slab, etc., and investigation on failure forms of steel beam andfloor slab.The testing results show that: there exists significant temperature differencebetween the upper flange of steel beam and the temperature at the scene of fire, andthere also exists large temperature difference between the steel beam and the floor slabconcrete on the same section; shortly after the test, many cracks appeared on the floorslab surface, the steel beam was vertically deformed downward at first, and then beganthe decrease in downward deformation degree in the heating process, and was finally deformed upward after recovery to its initial position before such test; the welds on theupper and lower flanges of the steel beam were cracked during the cooling stage; in thewhole process of the fire, steel beam was not disengaged with the cast-in-place concretefloor slab, and they withstood the force and were deformed together. Under alloperating conditions, the steel beam experiences the temperatures above900degrees,which was deflected and deformed after being heated for around120minutes, but didnot lose its carrying capacity, showing a good fire resistance.
     (2) Testing study on steel column in the steel frame. Testing study on fire resistanceof side column with one side exposed to the fire, side column with three sides exposedto the fire,2middle columns and corner column in the steel frame building under thedead load. The test covers measurement of air temperature at the scene of fire,temperature field distribution of steel column on different sections, lateral deformationof steel column on different sections, axial deformation of steel column, temperature ofconcrete on the top floor slab of steel column, etc., and investigation on deformation ofthe adjacent steel beams and failure forms of steel column. The testing results show that:the beam column with four sides exposed to the fire and the middle column with itsjoint exposed to the fire suffered no obvious axial expansion and deformation during thetemperature rise for76minutes, but sudden axial deformation afterwards.for axialdeformation under other conditions, expansion occurs at first and then decreases indegree in the temperature rise, and at last, compressive deformation occurs; theexpansion deformation of corner column decreases in degree in the cooling stage;inverse lateral deformation of steel column happens during the test; torsion failurehappens to the steel column with four sizes exposed to the fire; side column with oneside exposed to the fire and corner column suffers no significant damage; under alloperating conditions, the structure does not collapse regardless of damage to the steelcolumn.
     (3) Nonlinear finite element simulation analysis on beam and column in the steelframe.The testing study research cannot cover all behaviors of the members in theoverall structure in fire, but finite element simulation analysis can make up for thisdeficiency. This paper gives consideration to material nonlinearity and geometricnonlinear, uses incremental method to establish the relationship between stressincrement and strain increment, uses ANSYS finite element software to establish themodel for analysis on the fire resistance of steel beam and steel column taking intoaccount the function and overall effect of the floor slab; the results show that: the temperature field of the member on the section, deflection and deformation of steelbeam, lateral deformation and axial deformation of steel beam in the finite elementanalysis are consistent with the testing results, indicating that the establishment of thefinite element analysis model is reasonable and feasible, and is able to carry outsimulation analysis on the members for beams and columns under other conditions.
     (4) Study on acoustic emission characteristics of beam and slab in the steel framein fire. Use acoustic emission instrument to monitor the acoustic emission of beam andslab in the fire. Monitor the acoustic emission event rate, energy rate and b valuechanges in the fire, and analyze the relationships between the parametric variations andfloor slab crack, steel beam deformation and other phenomena. The results show that:the changes in event rate and energy rate are closely related to the occurrence anddevelopment of macro-cracks, and b value can better reflect the intensity of acousticemission signal of steel beam in the frame building in the fire and determine theconditions of the beam and slab in the fire; in the process of worsening, the steel beamin deformation will generate a lot of acoustic emission signals that will be weakened inthe deformation recovery process; among the acoustic emission events, those less than80db account for more than90%of the total; energy only accounts for around50%; theevents requiring the main function of energy release only account for10%of the total.
     (5) Study on vibrate characteristics in the steel frame in fire. Use vibrationequipment for monitoring the whole process of acceleration of lower beam and slab infire. And use Fourier transformation for analysis of the acceleration, and combine thenumerical calculation for analysis of vibration of beam and slab in the overall structure.The results show that: The single-span steel beam frequency in the overall structurefluctuates around20Hz; the two-span continuous beam's vibration frequency is below20Hz; as the test goes on, the stiffness of the overall structure is reduced, smallfluctuation happens to the vibration frequency; the study on vibration characteristics canprovide a theoretical basis for early warning of structure collapse.
引文
[1] Faris Ali, David O’Connor. Structural performance of rotationally restrained steelcolumns in fire [J]. Fire Safety Journal,2001,(36):679-691.
    [2] Wang Y.C, Davies J.M. Fire tests of non-sway loaded and rotationally restrainedsteel column assemblies [J]. Journal of Constructional Steel Research,2003,(59)359-383.
    [3] SCIF.Investigation of Broadgate Phase8Fire, Report of Fire EngineeringConsultant Ltd[R], SCIF Fire Engineering Group,U.K,1991.
    [4] LIU T.C.H, FAHADMK, DAVIES J.M. Experimental investigation of behaviourof axially restrained steel beams in fire[J].Journal of Constructional SteelResearch,2002,58:1211-230.
    [5] Gillie M, Usmani A.S, Rotter J.M.A structural analysis of the cardingtonbritish steel corner test[J]. Journal of Constructional Steel Research,2002,58(4):427-442.
    [6] Lennon T, Moore D.The natural fire safety concepe-full-scale tests at cardington[J].Fire Safety Journal,2003,38(7):623-643.
    [7] Baant Z.P, ZhouY.Why did the world trade center collapse?-simple analysis [J].Journal of Engineering Mechanics,2002,128(1):2-6.
    [8] Bailey C.G. Computer modelling of the corner compartment fire test on the large-scale cardington test frame[J].Journal of Constructional Steel Research,1998,48(1):27-45.
    [9] Bailey C.G. Development of computer software to simulate the structuralbehaviour of steel-framed buildings in fire [J]. Computers&Structures,1998,67(6):421-438.
    [10] Bailey C.G. The behaviour of asymmetric slim floor steel beams in fire[J].Journal of Constructional Steel Research,1999,50(3):235-257.
    [11] Bailey C.G. The influence of the thermal expansion of beams on the structuralbehaviour of columns in steel-framed structures during a fire[J].EngineeringStructures,2000,22(7):755-768.
    [12] Bailey C.G. Fire engineering design of steel structures[J].Advances in StructuralEngineering,2005,8(3):185-202.
    [13] Bailey C.G.Advances in fire engineering design of steel structures[J]. Proceedingsof the Institution of Civil Engineers-Structures and Buildings,2006,159(1):21-35.
    [14] Bailey C.G, Burgess I.W, Plank R J.Analyses of the effects of cooling and firespread on steel-framed buildings[J]. Fire Safety Journal,1996,26(4):273-293.
    [15] Bailey C.G,Moore D.B,Lennon T.The structural behaviour of steel columnsduring a compartment fire in a multi-storey braced steel-frame[J].Journal ofConstructional Steel Research,1999,52(2):137-157.
    [16] Bailey C.G, Plank R J. The behaviour of steel framed structures subjected to localfire conditions[C].In Nordic Steel Construction Conference’95, volume2:693-700, MALMO,SWEDEN,1995.
    [17] Zhao J.C,Shen Z.Y.Experimental studies of the behaviour of unprotected steelframes in Fire [J]. Journal of Constructional Steel Research,1999,50(2):137-150.
    [18] Huang Z, Burgess I.W, Plank R J. Three-dimensional modelling of two full-scalefire tests on a composite building[J]. Proceedings of the Institution of CivilEngineers-Structures and Buildings,1999,134(3):243-255.
    [19] Huang Z.H,Burgess I.W, Plank R.J. Three-dimensional analysis of compositesteel-framed buildings in fire[J].Journal of Structural Engineering-ASCE,2000,126(3):389-397.
    [20] Huang Z, Burgess I.W,Plank R J. Modelling of six full-scale fire tests on acomposite building[J]. Structural Engineer,2002,80(19):30-37.
    [21] Wang Y.C. An analysis of the global structural behaviour of the cardington steel-framed building during the two bre fire tests[J]. Engineering Structures,2000,22(5):401-412.
    [22] Ali F A,O’Connor D J.Calculation of axial forces generated in restrained pinended steel columns subjected to high temperatures [J].Journal of Applied FireScience,1997,6(4):383-394.
    [23] Ali F.A, Shepherd P, Randall M, et al. Effect of axial restraint on the fireresistance of steel columns[J]. Journal of Constructional Steel Research,1998,46(1-3):305-306.
    [24] Ali F, Nadjai A, Silcock G, et al. Calculation of forces generated in restrainedconcrete columns subjected to fire[J].Journal of Applied Fire Science,2003,12(2):125-135.
    [25] Rodrigues J.P.C, Neves I.C, Valente J C. Experimental research on the criticaltemperature of compressed steel elements with restrained thermal elongation[J].Fire Safety Journal,2000,35(2):77-98.
    [26] Wang Y.C, Davies J.M.An experimental study of non-sway loaded androtationally restrained steel column assemblies under fire conditions: Analysis oftest results and design calculations[J].Journal of Constructional Steel Research,2003,59(3):291-313.
    [27] Wang Y.C, Davies J.M. An experimental study of the fire performance of non-sway loaded concrete-filled steel tubular columnassemblieswith extendedendplate connections [J].Journal of Constructional Steel Research,2003,59(7):819-838.
    [28] Wang Y.C, Davies J.M. Fire tests of non-sway loaded and rotationally restrainedsteel column assemblies[J]. Journal of Constructional Steel Research,2003,59(3):359-383.
    [29] Tan K.H, Toh W.S, Huang Z.F, etal. Structural responses of restrained steelcolumns at elevated temperatures.part1:Experiments[J]. Engineering Structures,2007,29(8):1641-1652.
    [30] Huang Z.F, Tan K.H.Structural response of restrained steel columns at elevatedtemperatures.part2:simulation with focus on experimental secondary effects[J].EngineeringStructures,2007,29(9):2036-2047.
    [31] Dwaikat M.M.S, Kodur V.K.R, Quiel.M.E.M.Experimental behavior of steelbeam-columns subjected to fire-induced thermal gradients Garlock[J]. Journal ofConstructional Steel Research,2011,67(1);30–38.
    [32] Choe L,Varma A, Agarwal A, and Surovek A. Fundamental Behavior of SteelBeam-Columns and Columns under Fire Loading: Experimental Evaluation.[J].Journal of Structural Engineering.2011, SPECIAL ISSUE: Commemorating10Years of Research since9/11,954–966.
    [33] Gillie M, Usmani A S,Rotter J M. A structural analysis of the first cardingtontest[J]. Journal of Constructional Steel Research,2001,57(6):581-601.
    [34] Takagi J.Collapse performance assessment of steel-framed buildings under Fires
    [D]. Phd thesis, Stanford University,2007.
    [35] Franssen J.M. Failure temperature of a system comprising a restrained columnsubmitted to fire [J]. Fire Safety Journal,2000,34(2):191-207.
    [36] Wang Y.C. Postbuckling behavior of axially restrained and axially loaded steelcolumns under fire conditions[J].Journal of Structural Engineering,2004,130(3):371-380.
    [37] Ali F,O’Connor D. Structural performance of rotationally restrained steelcolumns in fire[J]. Fire Safety Journal,2001,36(7):679-691.
    [38] Ali F, Nadjai A,Talamona D.Effect of rotational restraint on performance of steelcolumns in fire [J]. Journal of Applied Fire Science,2004,13(1):21-34.
    [39] Valente J.C,Neves I C.Fire resistance of steel columns with elastically restrainedaxial elongation and bending [J].Journal of Constructional Steel Research,1999,52(3):319-331.
    [40] Wang Y.C. The effects of frame continuity on the behaviour of steel columnsunder fire conditions and fire resistant design proposals[J].Journal ofConstructional Steel Research,1997,41(1):93-111.
    [41] Wang Y.C. The effects of structural continuity on the fire resistance of concretefilled columns in non-sway frames[J].Journal of Constructional Steel Research,1999,50(2):177-197.
    [42] Hozjan T, Planinc I,Saje M, et al.Buckling of restrained steel columns due to fireconditions[J].Steel&Composite Structures,2008,8(2):159-178.
    [43] Gomes F.C.T, Costa P.M,P,Rodrigues J.P.C,et al.Buckling length of a steelcolumn for fire design[J]. Engineering Structures,2007,29(10):2497-2502.
    [44] Khalifa S. Al-Jabri, J. Buick Davison, Ian W. Burgess. Performance of beam-to-column joints in fire-A review[J].Fire Safety Journal,2008,43(1):50–62.
    [45] Lien K.H, Chiou Y.J, Wang R.Z, Hsiao P.A. Vector Form Intrinsic Finite Elementanalysis of nonlinear behavior of steel structures exposed to fire [J].EngineeringStructures,2010,32(1): J80–92.
    [46] Dai X.H, Wang Y.C, Bailey C.G. Effects of partial fire protection on temperaturedevelopments in steel joints protected by intumescent coating [J].Fire SafetyJournal,2009,44,(3):376–386.
    [47] Lamont S, Gillie M, Usmani A.S. Composite steel-framed structures in fire withprotected and unprotected edge beams[J].Journal of Constructional SteelResearch.2007,63(8):1138–1150.
    [48] Shepherd P.G. Burgess I.W. On the buckling of axially restrained steel columns infire[J].Engineering Structures,2011,33(10):2832–2838.
    [49] Kodur V, Dwaikat M and Fike R. High-Temperature Properties of Steel for FireResistance Modeling of Structures[J].Journal of Materials in CivilEngineering,2010,22(5):423–434.
    [50] Ruirui Sun, Zhaohui Huang, Ian W Burgess. Progressive collapse analysis ofsteel structures under fire conditions[J].Engineering Structures,2012,34(12):400–413.
    [51] Zhan-Fei Huang, Kang-Hai Tan, Guan-Hwee Phng. Axial restraint effects on thefire resistance of composite columns encasing I-section steel[J].Journal ofConstructional Steel Research,2007,63(4):437–447.
    [52] Kodur V, Dwaikat M, Fike R. Hihg-Temperature Properties of Steel for FireResistance Modeling of Structures[J].Journal Of Materials In CicilEngineering,2010,22(5):423-434.
    [53] Simms W.I,O’Connor D J,Ali F,et al.An experimental investigation on thestructural performance of steel columns subjected to elevatedtemperatures[J].Journal of Applied Fire Science,1996,5(4):269-284.
    [54] Simms W I. An experimental investigation of axially restrained steel columns infire[D].PhD thesis,University of Ulster,1997.
    [55] Randall M J.he effect of axial restraint on the behavior of steel columns in fire
    [D]. PhD thesis, University of Ulster,1998.
    [56] Huang Z.F,Tan K H,Ting S K.Heating rate and boundary restraint effects on fireresistance of steel columns with creep[J].Engineering Structures,2006,28(6):805-817.
    [57] Spencer E. Quiel.Maria E.M. Garlock. A closed-form analysis of perimetermember behavior in a steel building frame subject to fire[J].EngineeringStructures,2008,30(11):3276–3284.
    [58] Jianguo Cai, Jian Feng.Thermal buckling of rotationally restrained steelcolumns[J]. Journal of Constructional Steel Research,2010,66(6):835–841.
    [59]赵金城,沈祖炎.钢框架结构抗火性能的试验研究[J].土木工程学报,1997,30(2):49-55.
    [60]赵金城,沈祖炎.局部火灾下钢框架结构整体性能的非线性分析[J].建筑结构学报,1997,18(4):30-36.
    [61]赵金城,沈为平.高温下钢框架结构非线性有限元分析[J].上海交通大学学报,1996,30(8):55-59.
    [62]李国强,蒋首超,林桂祥.钢结构抗火计算与设计[M].中国建筑工业出版社,1999.
    [63]王陪军.约束钢柱抗火性能试验与理论研究[D].博士学位论文,同济大学,2008.
    [64]李国强,贺军利,蒋首超.约束钢梁的抗火试验与验算[J].土木工程学报,2000,33(4):23-26.
    [65]李国强,蒋首超.非均布高温钢结构梁单元切线刚度方程[J].同济大学学报,1997,27(1):1-5.
    [66]李国强,周宏宇.钢-混凝土组合梁抗火性能试验研究[J].土木工程学报,2007,40(10):19-26.
    [67]李国强,赵欣.部分共同作用框架组合梁有限元分析模型[J].力学季刊,2006,27(3):454-462.
    [68]李国强,周宏宇.钢-混凝土组合梁抗火性能试验研究[J].土木工程学报,2007,40(10):19-25.
    [69]王培军,李国强.轴向约束钢框架柱火灾升温下屈曲后性能研究[J].同济大学学报,2008,36(4):438-443.
    [70]王培军,李国强,Wang Yong-Chang.火灾下轴心受压H型截面约束钢柱整体稳定设计[J].土木建筑与环境工程,2009,31(4):31-36.
    [71]王陪军,李国强.弹性轴向约束平面钢梁火灾下非线性分析的弧线坐标法[J],2008,25(1):137-144.
    [72] Guo-Qiang Li, Wei-Yong Wang, Su-Wen Chen. A simple approach for modelingfire-resistance of steelcolumns with locally damaged fire protection.[J].Engineering Structures,2009,31(3):617–622.
    [73] Wei-Yong Wang, Guo-Qiang Li. Behavior of steel columns in a fire with partialdamage to fire protection [J].Journal of Constructional Steel Research,2009,65(6):1392–1400.
    [74]丛书平.H型钢梁火灾行为的试验研究[D].青岛:硕士学位论文,2004.
    [75]吕俊利.H型钢柱火灾行为的试验研究[D].青岛:硕士学位论文,2004.
    [76]李晓东.H型截面钢框架抗火性能的试验研究及线性有限元分析[D].西安:西安建筑科技大学,2006.
    [77]董毓利,王德军.框架组合梁抗火性能试验[J].哈尔滨工业大学学报,2008,40(2):178-181.
    [78] YuliDong, K.Prasad. Experimental study on the behavior of full-scale compositesteel frames under furnace loading, Journal of Structural Engineering,2009,135(10):1278-1289.
    [79]董毓利.两种组合钢框架火灾变形性能的试验研究[J].工程力学,2008,25(2):197-203.
    [80]陈洋.声发射技术在混凝土结构检测中的应用[J].中国水运(学术版),2007,7(8):74-75.
    [81] Rush A.H. Physical Problems in the Testing of concrete[J].Cement and ConcreteAssociation,1959,12(1):83-91.
    [82]董毓利,谢和平,李玉寿.砼受压全过程声发射特性及其损伤本构模型[J].力学与实践,1995,17(4):25-28.
    [83]李庶林,尹贤刚,王泳嘉等.单轴受压岩石破坏全过程声发射特性研究[J].岩石力学与工程学报,2004,23(15):2499-2503.
    [84]张茹,谢和平,刘建锋等.单轴多级加载岩石破坏声发射特性试验研究[J].岩石力学与-T程学报,2006,25(12):2584-2588.
    [85] Colombo I.S, Main I.G, Forde M.C. Assessing Damage of Reinforced ConcreteBeam Using “b-value” Analysis of Acoustic Emission Signals[J].Journal ofMaterials in Civil Engineering,2003,15(3):280-287.
    [86] Soulioti D, Barkoula N.M, Paipetis A,etal.Acoustic emission behacior of steelfibre reinforced concrete under bending[J].Consturtion and BuildingMaterials,2009.23(12):3532-3536.
    [87] Schechinger B, Vogel T. Acoustic emission for monitoring a reinforced concretebeam subject to four-point-bending[J].Construction and BuildingMaterials,2007,21(3):483-490.
    [88]纪洪广.混凝土材料声发射性能研究与应用[M].北京:煤炭工业出版社,2004:66-70.
    [89] Ziyad. Early Warning Capability for Firefighters. Testing of Collapse PredictionTechniques. NIST Report GCR, February2003,16(3):846~857
    [90] Kodur V.K.R, Phan L. Critical Factors Coverning the Fire Performance of HighStrength Concrete Systems. Fire Safety Journal.2007,42(9):482~488
    [91] Duron Z.H. Early Warning Capability for firefingter:Testing of CollapsePrediction Techniques[M].National Institute of Standards and TechnologyReport,2005:43-60.
    [92]韩金生,董毓利,徐赵东等.简支组合楼板的火灾试验研究[J].特种结构,2007,12(2):70-73.
    [93]韩金生,程文瀼,董毓利等.压型钢板-混凝土组合楼板火灾行为试验分析[J].工业建筑,2006,43(3):87-90.
    [94] GB50017-2003钢结构设计规范[M].北京:中国建筑工业出版社,2003.
    [95]章熙民等.传热学[M].北京:中国建筑工业出版社,2007.
    [96]朱伯龙,陆洲导,胡克旭.高温(火灾)下混凝土与钢筋的本构关系[J].四川建筑科学研究,1990,8(1):37-43.
    [97]时旭东,过镇海.适用于结构高温分析的砼和钢筋应力-应变关系[J].工程力学,1997,14(2):28-35.
    [98]过镇海,李卫.混凝土在不同应力-温度途径下的变形试验和本构关系[J].土木工程学报,1993,40(5):58-69.
    [99]李卫,过镇海.高温下混凝土的强度和变形性能试验研究[J].建筑结构学报,1993,14(1):8-16.
    [100]过镇海,时旭东.钢筋混凝土的高温性能及计算[M].北京:清华大学出版社,2003:24-25.
    [101] Marechal J. C. Variations in the Modulus of Elasticity and Poisson’s Ratio withTemperature[J]. Fire Technology,1972,1(30):40-43.
    [102] Kaplan M.F and Roux F.J. P. Effects of Elevated Temperature on the Properties ofConcrete for the Containment and Shielding of Nuclear Reactors[J].Concrete for Nuclear Reactors,1972,34:437-442.
    [103]钮宏,陆洲导,陈磊.高温下钢筋与混凝土本构关系的试验研究[J].同济大学学报,1990,35(3):287-297.
    [104]南建林,过镇海,时旭东.混凝土的温度-应力耦合本构关系[J].清华大学学报(自然版),1997(6):89-92.
    [105]倪建刚,时旭东.不同升温速率下各种强度等级混凝土的自由膨胀变形[J].工业建筑,2007,37(12):100-103.
    [106]过镇海.常温和高温下混凝土材料和构件[M].北京:清华大学出版社,2006:402-435.
    [107]李卫.高温下混凝土强度与变形的试验研究[D].北京:清华大学硕士学位论文,1996:40-53.
    [108] Lie T.T. A procedure to calculate fire resistance of structural members[J]. Fire andMaterials,1984,8(1):40-48.
    [109]闫继红.高温作用下混凝土材料性能试验研究及框架结构性能分析[D].天津:天津大学博士学位论文.
    [110] Design of Concrete Structures. Eurocode2: Part1-2: General rules-Structural firedesign[M]. The European Standard EN1992-1-2,2004:19-33.
    [111] Eurocode3: Design of Steel Structures,Part1.2: General Rule/Structural FireDesign, DAFT ENV1993-1-2[M]. European Committee for Standardization(CEN),2001:19-20.
    [112] BS5950: Stucture Use of Steel Work in Building. Part8: Code of Practice forFire Resistant Design[M]. British Standard Institution,1990:3-4.
    [113] DAFTENV1993, Euroeode3: Design of steel structures[M].EuroPean Committeefor Standardisation,1995.
    [114] Lie T.T. Fire Resistance of Circular Steel Columns Filled with Bar-ReinforcedConcrete. Structural Engineering,1994,120(5):1489-1509.
    [115] ECCS,European Recommendations for the Fire Safety of Steel Structures,1983.
    [116]孙金香,高伟译.建筑物综合防火设计.天津:天津科技翻译出版公司,1994.
    [117] Lie T.T. A procedure to calculate fire resistance of structural members[J]. Fire andMaterials,1984,8(1):40-48.
    [118] Design of Concrete Structures. Eurocode2: Part1-2: General rules-Structural firedesign[M]. The European Standard EN1992-1-2,2004:19-33.
    [119] Yugue Anderberg,Modelling Steel Behaviour,Fire Safety Journal,13(1988)
    [120]陆洲导.钢筋混凝土梁对火灾反应的研究[D].上海:同济大学博士学位论文,1989.
    [121] M.Ohtsu, M.Uchida, T.Okamoto, etal. Damage Assessment of ReinforcedConcrete Beams Qualified by Acoustic Emission[J].Structural Journal,2002,99(4):411-417.
    [122] A.Carpinteri1, G.Lacidogna1, G.Niccolini.Damage analysis of reinforced concretebuildings by the acoustic emission technique[J].Structural Control and HealthMonitoring,2011,18(6):660-673.
    [123]刘茂军.钢筋混凝土梁受载过程的声发射特性试验研究[D].广西:广西大学硕士学位论文,2008:25-76.
    [124]宗金霞.基于声发射技术的钢筋混凝土梁损伤识别研究及数值分析[D].武汉:武汉理工大学硕士学位论文,2010:36-55.
    [125] Chen B, Yu J. Investigation of effetes of aggregate size on the fracture behaviorof high Performance concrete by acoustic emission[J].Construction and BuildingMaterials,2007,21(5):1696-1170.
    [126]陈兵,姚武.声发射技术在混凝土研究中的应用[J].无损检测,2000,22(9):387-390.
    [127]纪洪广,蔡美峰.混凝土材料声发射与应力-应变参量耦合关系及应用[J].岩石力学与工程学报,2003,22(2):227-231.
    [128] Sagaid A.I, Elizarov S.V. Acoustic emission parameters correlated with fractureand deformation Processes of concrete members[J].Construction and BuildingMaterials,2007,21(3):477-482.
    [129]纪洪广,王基才.混凝土材料声发射过程分形特征及其在断裂分析中的应用[J].岩石力学与工程学报,2001,20(6):801-804.
    [130] K.Ohno,M.Ohtsu. Crack classification in concrete based on acoustic emission[J].Construction and Building Materials,2010,13(12):2339-2346.
    [131] T.shiotani, M.Shigeishi, M.ohtsu. Acoustic emission Characteristics of concrete-Piles[J]. Construction and Building Materials,1999,13(1-2):73-85.
    [132]王彬,顾建祖,骆英,李忠芳.预应力钢筋混凝土梁破坏过程的声发射特性实验研究[J].防灾减灾工程学报,2006,13(4):453-457.
    [133]朱宏平,徐文胜,陈晓强,夏勇.利用声发射信号与速率过程理论对混凝土损伤进行定量评估[J].工程力学,2008,24(1):186-191.
    [134] Shield C.K. Comparison of acoustic of emission activity in reinforced andprestressed concrete beams under bending[J].Construction and Building Materials,1997,11(3):189-194.
    [135] Watanabe T, Nishibata S, Hashimoto C,etal. Compressive failure in concrete ofrecycled aggregate by acoustic emission[J].Construetion and Building Materials,2007,21(3):470-476.
    [136]吴胜兴,张顺祥,沈德建.混凝土轴心受拉声发射Kaiser效应试验研究[J].土木工程学报,2008,54(4):31-39.
    [137]张克强,杨波.混凝土的无损检测方法及其新发展[J].混凝土,2007,28(5):99-101.
    [138]纪洪广,李造鼎.混凝土材料凯塞效应与Felicity效应关系的试验研究[J].应用声学,1997,8(6):30-33.
    [139]袁振明.数字式声发射仪的发展[J].无损探伤,1997,11(2):1-5.
    [140] Shah Z.J.Li,S.P. Localization of Microcracking in concrete under UniaxialTension[J]. Material Journal,1994,91(4):372-381.
    [141]吴胜兴,王岩,李佳,沈德建.混凝土静态轴拉声发射试验相关参数研究[J].振动与冲击,2011,30(5):196-204.
    [142]沈功田,刘时风,戴光.声发射检测[M].中国计量出版社,2004:42-51.
    [143]赵兴东,李元辉,刘建坡等.基于声发射及其定位技术的岩石破裂过程研究[J].岩石力学与工程学报,2008,27(5):990-995.
    [144]尹祥础,李世愚,李红等.从断裂力学观点探讨b值的物理实质[J].地震学报,1987,9(4):364-374.
    [145]董毓利,谢和平,李玉寿.砼受压全过程声发射特性及其损伤本构模型[J].力学与实践,1995,9(4):25-28.
    [146]曹志远.板壳振动理论[M].北京:中国铁道出版社,1989:257-259.
    [147]贾子文,周绪红.冷弯薄壁型钢-混凝土组合楼盖振动性能试验研究[J].土木工程学报,2011,58(4):42-51.
    [148] Baghiee N, Esfahani M.R, Moslem K. Studies on damage and FRPstrengthening of reinforced concrete beams by vibration monitoring[J].Engineering Structures,2009,31(4):875-893.
    [149] Clément A, Laurens S. Vibration-based damage detection in a concrete beamunder temperature variations using AR models and state-space approaches[C].Journal of Physics: Conference Series,2011,305(1):42-48.
    [150] Comite Euro-International Du Beton (CEB). RC elements under cyclicloading[M]. Thomas Telford,1996:24-25.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700