用户名: 密码: 验证码:
合成桥面桁梁悬索桥静动力分析理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对合成桥面桁梁建立等效的连续模型,开展了一系列的理论研究和参数分析,主要包括合成桥面桁梁的约束扭转和剪力滞效应,以及合成桥面桁梁悬索桥的静力效应和自振特性。主要研究工作如下:
     (1)对已修建悬索桥中的桁架加劲梁的型式和结构参数作了归纳和统计分析,分析了主桁、横联和水平联等桁片各自可选型式的特点,给出了桁梁高度等设计参数的经验取用规则。阐述了合成桥面桁梁的结构特点和构造型式,并以澧水大桥为工程背景,对照原设计的常规桁梁及混凝土桥面方案,设计了采用合成桥面桁梁作加劲梁的方案,对比分析了混凝土桥面和合成型钢桥面的技术经济特点。
     (2)合成桥面桁梁是正交异性钢桥面和空间桁梁的组合结构。桁梁连续化方法的基本思想是将腹杆系转化成等效的剪切薄壁。本文将这一方法扩展到合成桥面桁梁中,提出了钢桥面的等效正向厚度和等效剪切厚度的概念,以体现其抵抗纵向变形和切向变形能力的差异,而桁架腹杆系的等效正向厚度取为零。由此桁梁、合成桥面桁梁形成参数形式上统一的比拟薄壁梁,再根据乌氏第二理论的基本原理分析它们的约束扭转问题,获得它们的扭转特征。在此基础上进一步分析了主桁、平联和桥面参数对合成桥面桁梁扭转性能的影响,并从扭转应变能的角度揭示薄壁梁扭转属性,提出了以翘曲应变能与总的扭转应变能的比率作为衡量标准,当其小于0.05时结构扭转行为趋于自由扭转,还给出了该比率与控制性的无量纲参数——截面翘曲系数ν和杆件扭转系数的关系,揭示了悬索桥中常规桁梁、合成桥面桁梁、扁平钢箱梁的截面翘曲特点和扭转属性。
     (3)合成桥面桁梁中钢桥面作为整个桁梁的翼缘参与整体受力,在竖向横力弯曲时会出现剪力滞问题。同样地将合成桥面桁梁转化成等效的薄壁梁,利用能量变分方法分析它的剪滞效应。针对合成桥面桁梁的结构特点,分析时引入梁的挠度、截面转角和翼缘最大纵向位移差三个独立的广义位移,同时引入一个全截面上均匀纵向位移以满足截面正应力平衡的条件,总势能计算时考虑主桁的比拟腹板的剪切应变能,也考虑了钢桥面作为加劲翼缘与平板翼缘的差异。按照最小势能原理建立了关于三个广义位移的基本微分方程。进一步分析了剪滞翘曲函数阶次的合理选取,以及桥面跨宽比、桥面板厚度、加劲肋板厚、加劲肋型式等结构参数影响有效宽度系数的变化规律。比较分析了多个外国规范中对加劲板翼缘有效宽度系数的具体规定,给出了推荐的方法。提出了节间剪滞效应的概念来分析主桁节点处桥面的应力集中问题。
     (4)基于线性挠度理论,运用直接迭代解法分析悬索桥的竖向静力行为,获得了加劲梁在设计活载下的弯矩、剪力分布,再结合剪力滞理论解析地揭示了合成桥面桁架加劲梁在典型控制内力工况下的剪力滞特点,在集中荷载的直接作用截面,桥面应力的不均匀分布仍然可观。合成桥面桁架加劲梁的各个截面在最大弯矩工况下的桥面有效宽度系数很相近,这是有别于无缆索支承的单纯梁结构的特征。对于悬索桥的横向静力行为,运用三角级数解法求解横向膜理论,分析比较了合成桥面桁梁悬索桥与常规钢桁梁、钢箱梁悬索桥的横风荷载效应差异。
     (5)推演了包含主缆和加劲梁完备位移的空间耦合振动方程,揭示了悬索桥面内振动和空间振动时的位移耦联关系。建立面内竖向—纵向耦合振动的实用分析模型,其中计入了主缆纵向位移因素,获得了低阶反对称竖向振动和纵向振动的耦合振动频率的估算公式,分析了缆、梁结构参数对耦合效应的影响,在实际的缆、梁结构参数范围限定下,这种耦合振动对于加劲梁纵向无约束的悬索桥是普遍存在的。针对设置中央扣的悬索桥,建立了考虑跨中位移的分段的主缆相容方程,以及跨中断面主缆纵向位移与中央扣、加劲梁变形的协调条件。从附加缆力发生变化的角度阐明了中央扣对各类振型的影响效果,在反对称扭转振动时,主缆在中央扣前后会产生反对称的附加缆力,从而提高该振型的频率。推演出设置中央扣的悬索桥的扭转振动方程,求得振动频率方程和振型表达式,提取了决定自振特征的无量纲参数,诸如主缆弹性刚度与主缆重力刚度及加劲梁刚度之和的比率等,并作了参数分析,得到了缆、梁结构参数和中央扣结构参数对扭转振型和频率的影响效果,还用里兹法得到包含中央扣影响的扭转频率估算公式。最后利用振动性状结果对背景工程澧水大桥的合成桥面桁梁方案作了风致稳定性评估。
In terms of the steel truss with integral steel deck (ISDT), an equivalent continuummodel is established, and theoretical investigation together with parametric analyses arestudied in the dissertation, primaryly focusing on warping torsion and shear lag effectsof ISDT, static behavior and free vibration characteristics of suspension bridge stiffenedby ISDT. The main contribution in the dissertation is as follows:
     (1) The structural types and parameters of stiffening trusses of those in-servicesuspension bridges are summarized and statistically analyzed. The structural features ofthe types of different components are investigated, including the main truss, transversebracing, and lateral bracing. Based on statistic data, a criterion is proposed to determinethe key design parameters, such as the stiffening truss height. In addtition, the structuralcharacteristics and details of ISTD are described. Taken the Lishui Suspension Bridge asexample, an alternative scheme design using ISDT as stiffening girders is presentedcomparing with the original design using conventional stiffening truss with detachedreinforced concrete deck, and comparisons in terms of technology&economy are madebetween the reinforced concrete deck and the integral steel deck.
     (2) the ISDT bridge is a composite structure consisting of orthotropic steel deckand spatial truss. The basic idea of continuum model method in analyzing struss bridgeis to transform the web member systems into equivalently continuous distributed shearthin-walls. By extending this method to the application of ISDT, concept of theequivalent normal and shear thickness are proposed for the orthotropic steel deck,reflecting its different abilities in resisting the normal strains and the shear strains; whilethe equivalent normal thickness of web member systems is taken as zero. Consequently,both conventional truss and ISDT are converted into the analogy thin-walled girders inthe form of identical parameters. According to the basic principles of Umansky’s secondtheory, warping restrainted torsion of the analogy girder is theoretically studied, and itstorsional characteristics are explicitly derived.
     In addition, the influence of the variations in the geometrical dimensions of maintruss, lateral bracing and intergal steel deck on the torsional behavior of ISDT issubjected to parametric analysis. From the perspective of the torsional strain energy, thetorsional properties of thin-walled girder are revealed. The ratio of warping strainenergy to total strain energy is set as an estimate criteria. When this ratio is less than 0.05, the restrainted torsional behavior of the structure can be regarded as pure torsion.The correlations between this energy ratio with both the warping coefficient ofcross-section and the torsion coefficient of thin-walled girder are developed. Warpingcharacteristics and torsional properties of conventional truss, ISDT and flat box girderadopted in the suspension bridge, are revealed.
     (3) The integral steel deck, acting as a flange, participates in overall mechanicalbehavior of ISDT bridge. Therefore, when the ISDT is under the vertical load, shear lagphenomenon will appear on the deck, similar as a common thin-walled girder with wideflange. By transfoming the ISDT into equivalent thin-walled girder, the shear lag effectof ISDT is studied with energy variation method. Considering the structuralcharacteristics of ISDT girder, three independent generalized displacement functions areemployed in the analysis, including the deflection, rotation angle of the girder and themaximum difference of warp displacement on flange. In addtion, an uniform warpingdisplacement on the whole cross section is chosen to meet the axial self-equilibriumcondition for normal stresses on section. When calculating general potential energy,shear strain energy of the analogy web of main trusses is taken into consideration, thefeature of the steel deck as stiffened flange distinguished from flat flange is alsoconsidered. The fundamental equations concerning the three generalized displacementare derived by the principle of minimum potential energy.
     Furthmore, the reasonable order of shear lag warping function on flange isdiscussed. The correlations between the effective width coefficient and differentstructural parameters are developed, including deck span-width ratio, deck platethickness, stiffener thickness and the stiffener type. Based on the comparison of theeffective width coefficients of the stiffened flange among different specifications, therecommended method is presened.The concept of shear lag in panel truss is proposed for analyzing the stressconcentration on the integral deck near the main truss nodes.
     (4) Based on the linear deflection theory, vertical static analysis of suspensionbridge is studied using direct iteration solution, obtaining the distribution patters ofbending moments and shear forces of stiffening girders. Combined with the shear lagtheory, the characteristics of shear lag in the stiffening ISDT girder are presented undertypical disadvantageous load cases. Non-uniform stress distribution on the deck is stillconsiderable at the position where concentrated load acts on. The effective widthcoefficients of the stiffening ISDT girder is similar along longitudinal axis, which isdifferent from a single girder without cables supporting. In addition, the lateral membrane theory in analysising the lateral static behaveor ofsuspension bridge, is solved with the application of trigonometric series method, theanalysis and comparison of loading effect caused by lateral wind forces are madebetween the suspension bridges stiffened by ISDT, and those bridge stiffened byConventional steel truss or steel box girder.
     (5) The coupled vibration equations of the suspension bridge are deduced,involving the complete spacial displacements of the two cables and the stiffening girder,which reveals the multi-degree displacements coupling relationship on the cases ofin-plane vibration and spacial vibration of suspension bridge as a result.The practical simplified model is established for the in-plane vibration coupedlongitudinal and vertical motions, in which the effect of the cable’s longitudinal motionis considered. The frequency estimation formula to the lower-order antisymmetricvertical and longitudinal coupling mode is developed. The influence of the cables’ andthe stiffening girder’s geometric parameters on coupling effect is investigated. As tosuspension bridges without longitudinal constraint to stiffening girder, this kind ofcoupling vibration is generally common considering the practically-adopted parametersof cables and stiffeding girder of these existing bridges.
     For the suspension bridge with center ties, the cables are respectively employed foreach half bridge, to establish the compatibility equations considering the longitudinaldisplacement of the cable at mid-span. In addition, the compatibility condition betweenthe longitudinal displacements of cables and the deformation of both center ties andstiffening girder at mid-span is established. Based on the variation of additional cabletension caused by center ties, the effects of center tie to various mode cases are clarified.For the antisymmetric torsional vibration, the center tie’s restriction on the cable’slongitudinal movement causes an antisymmetric additional cable tensions at mid-span,which will enhance its natural frequency as a result. The torsional vibration differentialequation of the suspension bridge with center ties is derived theoretically, and thegeneral expressions of mode shapes and the implicit equations of frequencies arepresented. The dimensionless parameters controlling the vibration characteristics, suchas the ratio of cables’ elastic stiffness to the sum of cables’ gravity stiffness togetherwith girder’s stiffness, are defined and discussed, to reveal the effectes of themechanical parameters of cables, stiffening girder and center ties on the torsional modesand frequencies. The approximate estimates for torsional symmetric and antisymmetricfundamental frequencies are obtained by the Ritz approach.
     Finally, as to Lishui Suspension Bridge, the wind-induced stability assessment is evaluated for the proposed design scheme of the bridge stiffened by ISDT, based on thefree vibration analyse mentioned.
引文
[1]钱冬生,陈仁福.大跨悬索桥的设计与施工(修订本).成都:西南交通大学出版社,1999,66-208
    [2]吉姆辛.缆索支承桥梁——概念与设计.金增洪.北京:人民交通出版社,2002,1-316
    [3]小西一郎.钢桥(第五分册).戴振藩.北京:人民铁道出版社,1981,1-259
    [4]严国敏.现代悬索桥.北京:人民交通出版社,2002,1-246
    [5]周孟波.悬索桥手册.北京:人民交通出版社,2003,1-32
    [6]伊藤学,川田忠树.超长大桥梁建设的序幕——技术者的新挑战.刘建新,和丕壮.北京:人民交通出版社,2002,19-82
    [7] Harazaki L, Suzuki S, Okukawa A. Suspension Bridge. In: Bridge EngineeringHandbook. Boca Raton: CRC Press,2000
    [8] Serzan K, Spoth T, Khazem D. Advances in suspension bridge design-the NewCarquinez bridge. In: IABSE Symposium Report. Seoul: IABSE,2001,81-88
    [9] Spoth T, Serzan K, Condell S H. The New Tacoma Narrows Suspension Bridge-Design of the suspended superstructure. In: Proceedings of the2005StructuresCongress. New York: ASCE,2005,23-30
    [10] Spoth T, Viola J M, Condell S H. The New Tacoma Narrows Suspension Bridge: acontinuous mile of suspended steel. In: Proceedings of the2005StructuresCongress. New York: ASCE,2005,54-63
    [11]胡兆同,刘健新.明石海峡大桥的施工特点.国外公路.1997,17(6):20-23
    [12]项海帆,陈艾荣.《公路桥梁抗风设计规范》概要及大跨桥梁的抗风对策.见:第十四届全国桥梁学术会议论文集.上海:同济大学出版社,2000,40-46
    [13] Viola J M, Syed S. The New Tacoma Narrows Suspension Bridge, ConstructionSupport and Engineering. In: Proceedings of the2005Structures Congress. NewYork: ASCE,2005:1-12
    [14]陈开御.大鸣门桥加劲梁架设工程.国外桥梁,1994,22(3):161-169
    [15] Chavanon Viaduct2005. http://en.structurae.de/structures/data/index.cfm?id=s0000878,2009-10-10
    [16]湖南路桥建设集团公司.矮寨特大悬索桥轨索移梁及安梁主梁架设方案的分析与计算.2008,3-167
    [17]李爱群,王浩.大跨悬索桥地震响应控制的阻尼器最优布置方法.东南大学学报(自然科学版),2009,39(2):315-319
    [18]梁鹏,吴向男,李万恒,等.三塔悬索桥纵向约束体系优化.中国公路学报,2011,24(1):59-67
    [19] Manabu Ito. Cable-supported Steel Bridges: Design Problems and Solutions.Journal of Constructional Steel Research,1996,39(1):69-84
    [20] Bruschi M G. Eminent structural engineer: David B. Steinman (1886–1960).Structural Engineering International,2008,18(1):95-97
    [21] Plaut R H. Snap loads and torsional oscillations of the original Tacoma NarrowsBridge. Journal of Sound and Vibration,2008,309(3):613-636.
    [22]徐恭义.在悬索桥中再度研究设计应用板式加劲梁:[西南交通大学博士学位论文].成都:西南交通大学,2005,68-89
    [23]小西一郎.钢桥(第一分册).朱立冬,应达之,许克宾.北京:人民铁道出版社,1980,18-20
    [24]小西一郎.钢桥(第三分册).朱立冬,应达之,许克宾.北京:人民铁道出版社,1980,95-105
    [25]田村周平,周胜利.吊桥的加劲桁梁和钢桥面板起共同作用的结构(二).国外桥梁,1978,8(2):33-45
    [26]刘正光.香港大型悬吊体系桥梁的发展.土木工程学报,2005,38(6):59-68
    [27] Matson D, Queen D, Taylor P, et al. Lions' Gate Suspension Bridge suspendedstructure replacement. In: IABSE Symposium Report. Seoul: IABSE,2001:57-63
    [28] Buckland P G. Increasing the load capacity of suspension bridges. ASCE Journalof Bridge Engineering,2003,8(5):288-296
    [29]徐伟.武汉天兴洲公铁两用长江大桥主桥钢梁设计.桥梁建设,2008,38(1):4-7
    [30]杨进.斜拉桥技术在我国高铁大桥设计中的应用与发展.桥梁,2012,8(1):42-46
    [31]彭俊,邓玮琳,周良,等.闵浦二桥主跨斜拉桥钢板桁组合梁方案设计.见:第19届全国桥梁学术会议.上海:人民交通出版社,2010,42-47
    [32]刘国祥,郭兆棋.重庆菜园坝长江大桥钢桁梁设计.北京交通大学学报(自然科学版),2006,30(增刊):194-198
    [33]李国豪.桁梁扭转理论--桁梁桥的扭转、稳定和振动.北京:人民交通出版社,1975,1-146
    [34]李国豪.桁梁桥空间内力、稳定、振动分析.中国科学A辑,1978,9(6):48-59
    [35]李国豪.桁梁桥侧倾稳定分析.土木工程学报,1980,13(1):2-10
    [36]黄东洲,李国豪,项海帆.桁梁桥的弹塑性侧倾稳定分析.土木工程学报,1991,24(3):27-37
    [37]李国豪.桁梁桥挠曲扭转理论.见:桥梁与结构理论研究.上海:上海科学技术文献出版社,1983,139-147
    [38]小松定夫,西村宣男.横荷重を受けゐ吊橋の変形と応力について.土木学会論文報告集,1976,29(4):55-67
    [39]铁摩辛柯,盖莱.弹性稳定理论.张福范.北京:科学出版社,1965,144-147
    [40] Abdel-ghaffar A M. Free torsional vibrations of suspension bridges. ASCE Journalof the Structural Division,1979,105(4):767-788
    [41] Kim M Y, Kwon S D, Kim N I. Analytical and numerical study on free verticalvibration of shear-flexible suspension bridges. Journal of Sound and Vibration,2000,238(7):65-84
    [42] Kim N I, Kwonz S D, Kyung K H, et al. Free torsional vibration of suspensionbridges considering warping-torsional shear effects. International Journal of SteelStructures.2005,5(2):119-132
    [43] Li Guohao. Analysis of box girder and truss bridges. Berlin: Springer-Verlag,1987,81-89
    [44]李富文,伏魁先,徐文焕,等.板桁组合钢桥的空间计算.西南交通大学学报,1981,13(3):101-113
    [45]李富文.双向加肋的正交异性钢桥面板单元的刚度矩阵.桥梁建设,1980,10(1):39-53
    [46]伏魁先,陈坚,董春灵.竖向偏载下板桁组合钢桥的空间计算分析.土木工程学报,1984,17(3):61-68
    [47]伏魁先,李忠全.板桁组合钢桥动力性能分析.铁道学报,1987,9(2):68-74
    [48]保坂铁矢.下弦材と鋼床版组を一体化した低床式トヲス.橋梁と基礎.1993,27(8):135-138
    [49]王荣辉,曾庆元,王海龙.板桁组合钢梁的非线性有限元分析.土木工程学报,2000,33(2):56-62
    [50]蔡金标,凌道盛,徐兴.大跨度悬索桥振动分析的组合单元法.中国公路学报,2003,16(4):59-62
    [51] Law S S, Chan T H T, Wu D. Super-element with semi-rigid joints in modelupdating. Journal of Sound and Vibration,2001,239(1):19-39
    [52]吴新元,马如进,陈艾荣,等.加劲桁架悬索桥的主梁挠曲扭转刚度分析.上海公路,2005,(4):27-30
    [53]邵旭东,程翔云,李立峰.桥梁设计与计算.北京:人民交通出版社,2008,729-734
    [54] Xu Y L, Ko J M, Zhang W S. Vibration studies of Tsing Ma Suspension Bridge.Journal of Bridge Engineering, ASCE,1997,2(4):149-156
    [55]捷列斯维克.薄壁杆件理论.何福照,裴勇坚.北京:人民交通出版社,1987,1-3
    [56] Sennah K M, Kennedy J B. Literature review in analysis of box-girder bridges.ASCE Journal o f Bridge Engineering,2002,7(2):134-143
    [57]郭金琼,房贞政,邓振.箱形梁设计理论(第二版).北京:人民交通出版社,2008,1-112
    [58] Murray N W. Introduction to the theory of thin-walled structures. London: OxfordUniversity Press,1984:1-54
    [59]詹涅里杰,巴诺夫柯.弹性薄壁杆件的静力学.胡海昌.北京:科学出版社,1955,100-104
    [60]杜国华,毛昌时,司徒妙龄.桥梁结构分析.上海:同济大学出版社,1994:62-71
    [61]符拉索夫.薄壁空间体系的建筑力学.藤智明.北京:中国工业出版社,1962,159-168
    [62]罗旗帜,吴幼明.薄壁箱梁剪力滞理论的评述和展望.佛山科学技术学院学报(自然科学版),2001,19(3):29-35
    [63]张士铎,邓小华,王文洲.箱形薄壁梁剪力滞效应.北京:人民交通出版社,1998,1-11
    [64]罗旗帜.基于能量原理的薄壁箱梁剪力滞理论与试验研究.[湖南大学博士学位论文].长沙:湖南大学,2005,17-24
    [65]福田武雄.フラソヅの有効幅について——道路橋設計示方書の規定の解說として.土木技術,1962,17(3),5-14
    [66] Kristek V, Evans H R, Ahmad M K H. A shear lag analysis for composite boxgirders. Journal of Constructional Steel Research.1990,16(1):1-12
    [67] Evans H R, Ahmad M K H, Kristek V. Shear lag in composite box girders ofcomplex cross section. Journal of Constructional Steel Research.1993,24(3):183-204
    [68] Kristek V, Studenicka J. Negative shaer lag in flanges of plated structures. ASCEJournal of Structural Engineering,1991,117(12):3553-3569
    [69] Tahan N, Pavlovic M N, Kotsovos M D. Shear lag revisited: the use of singlefourier series for determining the effective breadth in plated structure. Computersand Structures.1997,63(4):759-767
    [70] Abdel-sayed G. Effective width of steel deck plate in bridge. ASCE Journal ofthe Structural Division,1969,95(7):1459-1474
    [71] Malcolm D J, Redwood R G. Shear lag in stiffened box girders. ASCE Journal ofthe Structural Division,1970,96(7):1403-1419
    [72]浦田昭典,山村信道.補剛トラス桁と鋼床板床組を合成した橋梁の実用計算法—有効幅と応力解析について.土木技術,1972,27(6):24-32
    [73]山村信道,吉塚純治,宮下泰.補剛トラス桁と鋼床板合成した橋梁の応力解析に関する二,三の検討—有限要素法による解析と模型実験の結果について.土木技術,1972,27(7):39-52
    [74]佚名.关于正交异性钢桥面作为桥梁中加劲桁梁翼缘的计算.国外桥梁,1977,7(3):22-26
    [75]田村周平,周胜利.吊桥的加劲桁梁和钢桥面板起共同作用的结构(一).国外桥梁,1978,8(1):1-28
    [76]田村周平,周胜利.吊桥的加劲桁梁和钢桥面板起共同作用的结构(三).国外桥梁,1978,8(2):45-53
    [77]林国雄.正交异性板与桁梁结合式桥梁第一系统应力及有效宽度计算.桥梁建设,1978,8(4):51-64
    [78] Kuzmanovic B, Graham H G. Shear lag in box girders. ASCE Journal of theStructural Division,1981,107(9):1701-1712
    [79]近藤和夫,小松定夫,中井博.鋼床板桁橋の有效巾に関すゐ研究.土木学会論文集,1962,86号:1-17
    [80]郭金琼,房贞政,罗孝登.箱形梁桥剪滞效应分析.土木工程学报,1983,16(1):1-13
    [81] Chang S T, Yun D. Shear lag effect in box girder with varying depth. ASCEJournal of Structural Engineering,1988,114(10):2280-2292
    [82]甘亚南,周广春.薄壁箱梁纵向剪滞翘曲函数精度选择的研究.工程力学,2008,25(6):100-106
    [83]钱演泉,倪元增.单室箱桥的剪力滞分析.中国公路学报,1989,2(2):28-38
    [84]钱演泉,倪元增.弹性薄壁梁桥分析.北京:人民交通出版社,2000,77-98
    [85]倪元增.槽型宽梁的剪力滞问题.土木工程学报,1986,19(4):32-40
    [86]谢旭,黄剑源.薄壁箱梁剪力滞效应分析的刚度法.工程力学,1995,12(2):95-102
    [87]刘世忠,吴亚平,朱元林等.薄壁箱梁剪力滞剪切变形双重效应分析的矩阵方法.工程力学,2001,18(4):140-144
    [88] Wu Y P, Liu S Z, Zhu Y L. Matrix analysis of shear lag and shear deformation inthin-walled box beams. Journal of Engineering Mechanics, ASCE,2003,129(8):944-950
    [89]吴幼明,罗旗帜,岳珠峰.薄壁箱梁剪滞效应的能量变分法.工程力学.2003,20(4):161-165
    [90]韦成龙,曾庆元,刘小燕.薄壁箱梁剪力滞分析的多参数翘曲位移函数及其有限元法.铁道学报,2000,22(5):60-64
    [91]张元海.桥梁结构理论分析.北京:科学出版社,2005,4-22
    [92]张元海,李乔.宽翼缘T梁剪滞效应分析的改进方法.兰州交通大学学报(自然科学版),2004,23(3):94-97
    [93] Foutch D A, Chang P C. A shear lag anomaly. Journal of the Structural Division,ASCE,1982,108(7):1653-1658
    [94] Sushkewich K W. Negative shear lag explained. Journal of Structural Engineering,1991, ASCE,117(11):3543-3545
    [95] Chang S T, Zheng F Z. Negative shear lag in cantilever box girders with constantdepth. Journal Structural Engineering, ASCE,1987,113(1):20-35
    [96] Luo Q Z, Tang J, Li Q S. Negative shear lag in box girders with varying depth.Journal of Structural Engineering.2001,127(10):1236-1239
    [97] Moffatt K R, Dowling P J. Shear lag in steel box girder bridges. The StructuralEngineer,1975,53(10):439-448
    [98] Moffatt K R, Dowling P J. Discussion on “Shear lag in steel box girder bridges”.The Structural Engineer,1976,54(8):285-298
    [99] Wolchuk R. Steel-plate-deck bridges and steel box girder. In: StructuralEngineering Handbook. New York:bMcGraw-Hill,1996,19.1-19.28
    [100] Tenchev R T. Shear lag in orthotropic beam flanges and plates with stiffeners.International Journal of Solids and Structures,1996,33(9):1317-1334
    [101] Buonopane S G, Billington D P. Theory and history of suspension bridge designfrom1823to1940. ASCE Journal of Structural Engineering,1993,119(3):954-977
    [102] Walter P. Cable-suspended bridges. In: Structural steel designer's handbook. NewYork: McGraw-Hill Inc,1999:15.60-15.70
    [103] Timoshenko S P, Young D H. Theory of structures.2nd ed. Auckland:McGraw-Hill Inc,1965:523-546
    [104] Ulstrup C C. Rating and preliminary analysis of suspension bridges. Journal ofStructural Engineering, ASCE,1993,119(9):2653-2679
    [105]陈仁福.大跨悬索桥理论.成都:西南交通大学出版社,1994,1-102
    [106] Peery D J. An influence-line analysis for suspension bridge. Translating of ASCE,1955,121:463-510
    [107]李国豪.悬索桥按二阶理论的实用计算.见:桥梁与结构理论研究.上海:上海科学技术文献出版社,1983,1-12
    [108]李国豪.关于大跨悬索桥的分析.见:第十一届全国桥梁学术会议论文集.汕头:人民交通出版社,1994,13-17
    [109] Cobo Del Arco D, Aparicio A C. Preliminary static analysis of suspension bridges.Engineering Structure,2001,23(9):1096-1103
    [110] Wollmann G P. Preliminary analysis of suspension bridges. Journal of BridgeEngineering, ASCE,2001,6(4):227-233
    [111] Clemente P, Nicolosi G, Raithel A. Preliminary design of very long-spansuspension bridges. Engineering Structures,2000,22(12):1699-1706
    [112]戴正宏,徐君兰.悬索桥横向内力计算新方法.见:第十一届全国桥梁学术会议论文集.汕头:人民交通出版社,1994,353-358
    [113] Sih N S. Torsion analysis for suspension bridges. Journal of Structural Division,ASCE,1957,83(6):1-8
    [114] Irvine H M. Torsion analysis of boxgider suspension bridges. Journal of StructuralDivision, ASCE,1974,100(4):789-812
    [115] Takeo F. Multispan suspension bridges under torsion loading. Proceding of JSCE.1975,(242):91-103
    [116] Irvine H M. Cable structures. Cambridge: MIT Press,1981,68-71
    [117] Bleich F, Mccullough C B, Rosecrans R, et al. The mathematical theory ofvibration in suspension bridges. Washington: US Government Printing Office,1950,1-240
    [118] Hayashikawa T, Watanabe N. Vertical vibration of Timoshenko beam suspensionbridges. Journal of Engineering Mechanics Division, ASCE,1984,110(3)341-356
    [119]Luco J E, Turmo J. Linear vertical vibrations of suspension bridges: A review ofcontinuum models and some new results. Soil Dynamics and EarthquakeEngineering.2010,30(9):769-781
    [120] TurmoJosé, Luco J E. Effect of hanger flexibility on dynamic response ofsuspension bridges. Journal of Engineering Mechanics, ASCE,2010,136(12):1444-1459
    [121] Selberg A. Discussion of "The lateral rigidity of suspension bridges", by I.K.Silverman. Proceeding of ASCE,1958,84(1):29-31
    [122] Abdel-ghaffar A M. Free lateral vibrations of suspension bridges. Journal of theStructural Division, ASCE,1978,104(3):503-525
    [123] Castellani1A, Felotti P. Lateral vibration of suspension bridges. Journal ofStructural Engineering, ASCE,1986,112(9):2169-2173
    [124] Irvine M. Torsional vibrations in boxgirder suspension bridges. EarthquakeEngineering&Structural Dynamics,1974,3(2):203-213
    [125] Abdel-ghaffar A M. Suspension Bridge Vibration: Continuum Formulation.Journal of the Structural Division, ASCE,1982,108(6):1215-1232
    [126] Maclamore V R, Hart G C, Stubbs I R. Ambient vibration response of twosuspension bridges. Journal of the Structural Division, ASCE,1971,97(10):2567-2583
    [127] Abdel-ghaffar A M. Ambient Vibration Tests of Suspension Bridge. Journal of theEngineering Mechanics Division, ASCE,1978,104(5):983-999
    [128] Buckland P G, Hooley R, Morgenstern, et al. Suspension bridge vibrations:computed and measured. Journal of the Structural Division, ASCE,1979,105(5):859-874
    [129] Abdel-ghaffar A M, Scanlan R H. Ambient vibration studies of Golden GateBridge: I. suspended structure. Journal of Engineering Mechanics, ASCE,1985,111(4):463-482
    [130] Abdel-ghaffar A M, Scanlan R H. Ambient vibration studies of Golden GateBridge: II. pier-tower structure. Journal of Engineering Mechanics, ASCE,1985,111(4):483-499
    [131] Itani R, Al-assaf A. Frequency Analysis of the Existing Tacoma Narrows Bridge.Pullman: Washington State Transportation Center,2006:1-36
    [132] Brownjohn J, Dumanoglu A, Severn R, et al. Ambient vibration measurements ofthe Humber Suspension Bridge and comparison with calculated characteristics.Proc. Instn Civ. Engrs.1987,83(Sept.):561-600
    [133] Brownjohn J, Dumanoglu A, Severn R, et al. Ambient vibration survey of thebosporus suspension bridge. Earthquake Engineering&Structural Dynamics.1989,18(2):263-283
    [134] Brownjohn J, Dumanoglu A, Severn R. Ambient vibration survey of the fatihSultan Mehmet (second Bosporus) suspension bridge. Earthquake Engineering&Structural Dynamics.1992,21(10):907-924
    [135] Brownjohn J, Dumanoglu A, Severn R. Seismic analysis of the fatih SultanMehmet (second Bosporus) suspension bridge. Earthquake Engineering&Structural Dynamics.1992,21(10):881-906
    [136] Brownjohn J, Magalhaes F, Caetano E, et al. Ambient vibration re-testing andoperational modal analysis of the Humber Bridge. Engineering Structures.2010,32(8):2003-2018
    [137]章关永,朱乐东.虎门大桥主桥自振特性测定.同济大学学报,1999,27(2):194-197
    [138]徐良,江见鲸,过静.广州虎门悬索桥的模态分析.土木工程学报,2002,35(1):25-27
    [139]李枝军,李爱群,韩晓林.润扬大桥悬索桥动力特性分析与实测变异性研究.土木工程学报,2010,43(4):92-98
    [140]唐茂林.大跨度悬索桥空间几何非线性分析与软件开发:[西南交通大学博士学位论文].成都:西南交通大学,2003:160-165
    [141]秋山晴树.耐风設計基準の变遷.橋梁と基礎,1998,32(8):61-73
    [142]刘扬.青马大桥的空气动力稳定性.国外桥梁,1998,18(5):29-34
    [143] Milton B, Herbert R, Michael F, et al. Verrazano-narrows bridge: design ofsuperstructure. Journanl of the Construction Division, ASCE,1966,92(2):23-70
    [144]帅士章,吴战平,刘清.坝陵河大桥桥区风参数初步分析与设计风速的确定.贵州气象,2005,29(2):12-15
    [145]艾国柱,夏华晞.悬索桥的加劲桁架——明石海峡大桥加劲桁架和加劲箱梁的比选.国外桥梁,2000,28(4)
    [146]中华人民共和国行业标准.公路桥梁抗风设计规范(JTG/T D60-01—2004).北京:人民交通出版社,2004,15-22
    [147]邹小洁,杨诛昕,葛耀君.大跨度悬索桥钢箱加劲梁中央开槽的颤振控制机理.力学季刊,2007,28(2):187-194
    [148] Tanakal H, Davenport A G. Wind-indeced response of Golden Gate Bridge.Journal of Engineering Mechanics, ASCE,1980,109(1):296-312
    [149]王国周,瞿履谦.钢结构原理与设计.北京:清华大学出版社,1993,71-74
    [150] Hedefine A, Mandel H M. Design and construction of Newport Bridge. Journal ofthe Structural Division, ASCE,1971,97(11):2635-2652
    [151] Hedefine A, Silano L G. Newport Bridge superstructur. Journal of the StructuralDivision, ASCE,1971,97(11):2653-2678
    [152]韩道均,陈仕周.钢桥面铺装技术的研究、实施与总结.公路,2001,30(1):76-78
    [153]黄卫,张晓春,胡光伟.大跨径钢桥面铺装理论与设计的研究进展.东南大学学报(自然科学版),2002,32(3):480-487
    [154]李国豪.桥梁结构稳定与振动(修订版),北京:中国铁道出版社,2003,62-66
    [155]黄剑源.薄壁结构的扭转分析.北京:中国铁道出版社,1983,66-69
    [156]赵欣欣,刘晓光,张玉玲.正交异性桥面板设计参数和构造细节的疲劳研究进展.钢结构,2010,25(8):1-7
    [157]小西一郎.钢桥(第二分册).宋慕兰,董其震.北京:人民铁道出版社,1980,168-180
    [158]王荣辉.板桁组合钢梁非线性分析:[长沙铁道学院博士学位论文].长沙:长沙铁道学院,1997,9-16
    [159]包世华,周坚.薄壁杆件结构力学.北京:中国建筑工业出版社,2006,91-161
    [160]李明昭,周竞欧.薄壁杆结构计算.北京:高等教育出版社,1992,124-169
    [161]胡海昌.弹性力学的变分原理及其应用.北京:科学出版社,1981,1-200
    [162]龙驭球,刘光栋.能量原理新论.北京:中国建筑工业出版社,2007,26-90
    [163]杨啟彬.钢管桁架加劲梁悬索桥简介.公路.2001,46(5):2-5
    [164]黄福伟,晓锋,唐光武,等.忠县长江大桥主桥结构动力特性比较分析.公路交通技术.2001,17(1):16-19
    [165]黄福伟.忠县长江公路大桥动力特性及地震响应分析:[东南大学硕士学位论文].南京:东南大学,2001,22-32
    [166]钟建国,冯江,秦小平.钢管桁架加劲梁悬索桥施工控制方法研究.公路交通技术,2005,20(增刊):77-82
    [167]项海帆.高等桥梁结构理论.北京:人民交通出版社,2000,15-72
    [168]郭金琼,房贞政,邓振.箱形梁设计理论(第二版),北京:人民交通出版社,2008,12-50
    [169]周坚,涂令康.再论槽型宽梁的剪力滞.工程力学,1994,11(2):65-75
    [170]程翔云.梁桥理论与计算.北京:人民交通出版社,1990,235-242
    [171] AASHTO LRFD Bridge Design Specifications. Section4: Structural analysis andevaluation. Washington, DC: AASHTO Publication,2004,50-52
    [172] BS5400. Part3: Code of practice for design of steel bridges. London: BritishStandards Institution,2000,15-16
    [173] Eurocode3. Design of steel structures Part1.5: Plated structural elements.Brussels: European Committee for Standardisation,2004,9
    [174] Johanssona B, Maquoib R, Sedlacek G. New design rules for plated structures inEurocode3. Journal of Constructional Steel Research,2001,57(3):279-311
    [175]日本基準.道路橋示方書同解説.東京:日本道路協会,2002,289-290
    [176]铁摩辛柯.材料力学(高等理论及问题).汪一麟.北京:科学出版社,1979,24-41
    [177]雷俊卿,郑明珠,徐恭义.悬索桥设计.北京:人民交通出版社,2001,92-96
    [178]湖南大学风工程试验研究中心.澧水大桥风洞试验研究报告之一:节段模型风洞试验研究报告.长沙:湖南大学风工程试验研究中心,2009
    [179]程翔云.关于三跨简支悬索桥振动频率方程的讨论.重庆交通学院学报,2001,20(2):22-24
    [180]盛善定,袁万城,范立础.悬索桥振动基频的实用估算公式.东北公路,1996,19(1):71-76
    [181]鞠小华,廖海黎,沈锐利.对悬索桥对称竖弯基频近似公式的修正.土木工程学报,2002,35(1):44-49
    [182]徐勋,强士中,贺拴海.中央扣对大跨悬索桥动力特性和汽车车列激励响应的影响.中国公路学报,2008,21(6):57-62
    [183]王浩,李爱群,杨玉冬,等.中央扣对大跨悬索桥动力特性的影响.中国公路学报,2006,19(6):49-53
    [184]彭益华,邵旭东,彭旺虎.大跨悬索桥中央扣及梁端弹性连接动力特性分析.湖南大学学报(自然科学版),2007,34(6):88-91
    [185]范立础.桥梁抗震.上海:同济大学出版社,1997,165-166
    [186]马如进,陈艾荣.辅助结构对悬索桥的颤振稳定性的影响.结构工程师,2001,(3):25-30
    [187]项海帆,葛耀君.悬索桥跨径的空气动力极限.土木工程学报,2005,38(1):60-70
    [188] Hayashikawa T. Torsional vibration analysis of suspension bridges withgravitational stiffness. Journal of Sound and Vibration,1997,204(1):117-129
    [189] Hayashi Y, Masanobu M. Torsional oscillation analysis of suspension bridges by adisplacement method. Translating of JSCE.1977(258):133-144
    [190]徐勋,强士中.中央扣对大跨悬索桥动力特性和地震响应的影响研究.铁道学报,2010,32(4):84-91
    [191]高剑,刘高,曾宇.贵州坝陵河钢桁架悬索桥中央扣设计.见:中国公路学会桥梁和结构工程分会2007年全国桥梁学术会议论文集.广州:人民交通出版社,2007,101-106
    [192]陈政清.桥梁风工程.北京:人民交通出版社,2005,59-62
    [193]葛耀君,项海帆.大跨度桥梁颤振稳定性研究方法.见:第十四届全国桥梁学术会议论文集.南京:人民交通出版社,2000,677-685

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700