用户名: 密码: 验证码:
几种杂环小分子电子结构和性质的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来核酸嘧啶系列衍生物中的卤素取代尿嘧啶作为潜在的抗肿瘤剂、抗菌和抗病毒试剂而受到了广泛关注,在量子化学层面探索其性质特征将对了解其药学作用机理提供有力参考;咔唑及其衍生物近来亦被广泛研究,基于其良好的空穴传输和发光性质可用于形式各异的光电领域材料.主链为咔唑类的聚合物可以通过改变主体连接方式来达到调整HOMO,LUMO能量和激发态能量.本文采用理论方法研究了如下几种杂环小分子的电子结构和性质,包括三方面内容:
     1.用5种密度泛函方法(DFT)理论研究了5-和6-卤素取代尿嘧啶的结构和电子亲合能.所用基组为DZP++基组.分别用5种密度泛函方法对其中性及阴离子构型进行了全优化,并报道了三种中性-阴离子的电子亲合能EA_((A)),EA_((V))和IP_((V)).研究了卤素取代和未取代尿嘧啶分子的电荷分布差别,并讨论了其卤化后形成氢键的能力.研究结果表明DFT/DZP++方法可作为具有相似结构分子的可靠的理论计算方法.
     2.采用密度泛函方法(DFT)和单激发组态相互作用(CIS)方法,在6-31G(d,p)基组水平下优化了5个吲哚咔唑分子的基态和激发态结构,在此结构的基础上,用含时密度范函(TD-DFT)方法在相同基组水平下计算了模型分子的吸收和发射光谱.这几个吲哚咔唑异构体的发射光谱有明显的差别,如5有较大的振子强度,但是相对于其他异构体,其发射能量最小;4的发射能最大;2的振子强度最小.这主要是由于分子激发态几何变化和轨道能级的不同导致的.此外还考察了这类分子的非线性光学响应:5个分子极化率在同一水平上,但是静态超极化率(β_0)有了明显差别,2的β_0值最大.
     3.利用密度泛函方法(DFT)和单激发组态相互作用(CIS)方法,在6-31G(d,p)基组水平下优化了咔唑分子和14种双咔唑结构异构体的基态和激发态结构,在此结构的基础上,用含时密度范函(TD-DFT)方法在相同基组水平下计算了模型分子的吸收和发射波长及电荷跃迁性质.本文详细讨论了双咔唑构型的变化带来的性质上的变化,与已有的实验值相比得到了精确的计算结果.通过双咔唑的前线轨道能量值、电离能和亲合势、重组能的变化,全面研究了不同构型的应用,为实验上的制备与合成提供了思路.
Nucleic acid is an important kind of biomacromolecules, it has decisive effect on the progress of organic evolution. Base, such as uracil, is the basic unit of nucleic acid composition, its characteristics are the nature of many properties and biological behavior of nucleic acids. For example, the ground-state and excited state proton-transfer tautomerism, as one of the important properties of base molecules, plays an significant role in the genetic process. Studies have shown that the capability of bases and their proton-transfer isomers of paring with other bases will determine the genetic variation progress. So theoretical studies on properties of bases may help people to understand the life progress on the molecular level. Halo derivatives of uracil are paid particular attention among all series of derivatives of nucleic pyrimidine bases on their medical applications. 5-Halouracils have been demonstrated as potential anti-tumor, anti-bacterial and anti-viral agents. The theoretical investigations on structures and characters of uracil have been reported a lot, but there are not so much studies on 5- and 6-halouracils, especially on 6-halouracils. Studies on proton-transfer reactions of ground states of the bases and their derivatives were also reported that many. Studies on proton-transfer reactions of excited states is the ground work for understanding the mechanisms of cancer induced by DNA photodamage and mechanisms of light repair after DNA photodamage. The further theoretical investigations on the properties and characters of halouracils will provide strong reference for pharmacy-mechanism understanding.
     The functional materials have special physical, chemical and biological effects, which have been widely applied in many high-tech fields in the last several decades because of their characteristics and function such as electricity, magnetism, light and heat etc. They are foundation and guide for the national economy and social development. The achievement in designing and developing functional materials not only has greatly promoted the revolution of scientific technology in the last century, but also will act as the foundation of the development of the advanced scientific technology in the future. The research, development and application of the functional materials is paid most attention to by every country, it becomes the heat and key point for investigation and development of the new materials in the world wide. The design of optical materials is one of the most important parts of the design of functional materials; scientists are making efforts in studying on synthesis and basic photoelectric properties of new kind of high functional optical materials. The life-time and monochromaticity of optical materials are closely related with properties of excited states and luminescence mechanism. We can discuss the information of electric structures of excited states on the theoretical level to define the microscopic luminescence mechanism.
     The electronic excited states of molecules have higher energy and unsteady characteristics, which can easily emit the energy to recur the steady ground state in a very short time. So it is difficult for experiment to obtain reliable information about the excited states and transition states of molecules. Theoretical chemists use various electronic structure theories to looking for the method that can be applied in the calculations of relatively large molecules without increasing excess calculation amount and accurately predict excited-state electronic structures. Up to now, the density functional theory (DFT), time-depended density functional theory (TD-DFT) and single excitation configuration interaction (CIS) have been widely used to treat the electronic excited states of large molecular systems.
     As the special rigid structure and molecular features of 3,6,9-bit easily being functional modified, carbazole is a kind of a good hole conduction molecule. The carbazole derivatives are often used for highly stabled hole transport materials in the field of electroluminescence. Such kind of compounds generally have a larger band gap and lower HOMO energy level, and such a large conjugated planar molecular structure is conducive to the transmission of current carrier. They also have a significant advantage of easily to be chemically modified. The environmental stability is very good owing to their lower HOMO energy level. The HOMO, LUMO energies and excited-state energies of carbazole main chain polymers can be adjusted by changing their main body connection pattern. Therefore, based on the previous theoretical and experimental work, we systematically theoretical studied five indolocarbazoles and fourteen bicarbazole isomers, the results are hoped to be theoretical support on materials design and synthesis in the future.
     There are five chapters in this paper. In Chapter 1, we made a brief introduction of the concept of electron affinity, a summary of optical materials, the development of theories and the theoretical and practical meaning of this study. In Chapter 2, an overview of theoretical methods including molecular orbital theory, density functional theory, correlation theories of excited stats and photochemistry, basic methods of structure optimization and solvent effect was given. We carried on the theoretical investigations on the electronic structures and properties of three kinds of heterocyclic molecules in the later three chapters. The main results are as follows:
     1, The molecular structures and electron affinities of 5- and 6-halouracils (XU, X=F, Cl, Br) were determined using five different density functional methods. The basis set used in this work is of double-ζplus polarization quality with additional diffuse s- and p-type functions, denoted DZP++. The geometries are fully optimized with each density functional theory (DFT) method, and discussed. Three different types of the neutral-anion energy separations reported in this work are the adiabatic electron affinity (EA_((A))), the vertical electron affinity (EA_((v))), and the vertical detachment energy (IP_((V))). The differences in charge distribution between uracil and halogenated uracils are indicated, thus the ability to form the hydrogen bonds of halogenated uracils is discussed, too. The results show an excellent agreement between the results and those obtained by other calculations regarding the structural modifications and electron affinities of neutral and anion 5XU. 5-Bromouracil is expected to be used in radiotherapy as better radio-sensitizer owing to the more even charge distribution and the higher electron affinity than 5-fluoromouracil and 5-chlorouracil. This can explain by some means that AEA value of 5BrU is higher than that of 5FU and 5C1U. Although little direct information is available about the one-electron properties, in particular, the electron affinities, of these modified nucleobases, we fill a void in the available data for these systems, especially the 6-halouracils. We hope that our theoretical predictions will provide strong motivation for further experimental studies of these important halogenated nucleobases and their anions.
     2, Density functional theory (DFT) and configuration interaction with single excitations (CIS) method were used to optimize the ground state and excited state structures of five indolocarbazole molecules on the 6-31G(d,p) basis set level, respectively. Based on the geometry structures, the absorption and emission spectra were calculated with the time-dependent DFT (TD-DFT) method on the same basis set level. There are obvious differences in the emission spectra of these isomers. For instance, [3,2-b]indolocarbazole (5) bears larger oscillator strength in the emission spectrum but the lowest level of the transition energies compared with other isomers; the emission peak value of [3,2-a] indolocarbazole (4) is at highest energy level and the oscillator strengths of [2,3-b]indolocarbazole (2) are weakest. This is mainly because that the structures change in the excited state and molecular orbital (MO) energy levels of these molecules are different. We also evaluated the nonlinear optical response of this series of molecules. The calculated polarizabilities are at same level, but the static first hyperpolarizabilities (β_0) are discriminating. Theβ_0 of [2,3-b]indolocarbazole (2) is the biggest. The results provide a theoretical basis for the optical materials which using indolocarbazole as application unit.
     3, Density functional theory (DFT) and configuration interaction with single excitations (CIS) method were used to optimize the ground state and excited state structures of carbazole and 14 bicarbazole isomers on the 6-31G(d,p) basis set level, respectively. Based on the geometry structures, the absorption and emission wavelengths and charge transfer characters were calculated with the time-dependent DFT (TD-DFT) method on the same basis set level. In this paper we discussed the relationship between different molecular structures and properties, detailedly, the calculated data are in agreement with the reported corresponding experimental results. Based on the varied frontier molecular orbital energies, ionization potentials (IP), electron affinities (EA) and reorganization energies for bicarbazoles, the dissimilar applications are studied all round. It was found that the LUMO energy of [3,6']bicarbazole is the highest between the 14. The LUMO energies of [3,5'] bicarbazole, [4,5']bicarbazole and [2,6']bicarbazole are similar with [3,6']bicarbazole, which of the others are relatively low. There is the almost same trend for the HOMO energies but with less change. The studies can provide some help in designing and synthesizing more and greater molecular materials.
引文
[1]HOTOP H,LINEBERGER W C.Binding energies in atomic negative ions[J].J.Phys.Chem.Ref.Data,1975,4(3):539-576.
    [2]HOTOP H,LINEBERGER W C.Binding energies in atomic negative ions:Ⅱ[J].J.Phys.Chem.Ref.Data,1985,14(3):731-750.
    [3]ZOLLWEG R J.Electron affinities of the heavy elements[J].J.Chem.Phys., 1969, 50(10): 4251-4261.
    
    [4] LOWE J P. Qualitative molecular orbital theory of molecular electron affinities [J]. J. Am. Chem. Soc, 1977, 99(17): 5557-5570.
    
    [5] LINEBERGER W C, WOODWARD B W. High resolution photodetachment of S" near threshold [J]. Phys. Rev. Lett., 1970, 25(7): 424-427.
    
    [6] PEKERIS C L. Ground state of two-electron atoms [J]. Phys. Rev., 1958, 112(5): 1649-1658.
    
    [7] PEKERIS C L. 1 ~1S, 2 ~1S, and 2 ~3S states of H" and of He [J]. Phys. Rev, 1962, 126(4): 1470-1476.
    
    [8] SHEEHAN W F. Dissociation energies, electron affinities, and electronegativities of diatomic molecules. An empirical correlation with predictions for XY, XY~+, and XY~_ [J]. J. Am. Chem. Soc, 1978, 100(5): 1348-1352.
    
    [9] DEWAR M J S, RZEPA H S. Calculations of electron affinities using the MNDO semiempirical SCF-MO method [J]. J. Am. Chem. Soc, 1978,100(3): 784-790.
    
    [10] GRIFFING K M, SIMONS J. Theoretical studies of molecular ions. Ionization potentials of CN~- and BO" [J]. J. Chem. Phys, 1976, 64(9): 3610-3614.
    
    [11] NOVOA J J, MOTA F. Accurate electron affinities of several diatomic and triatomic molecules [J]. Chem. Phys. Lett, 1986, 123(5): 399-401.
    
    [12] FRENKING G, KOCH W. A M(?)ller-Plesset study of the electron affinities of the diatomic hydrides XH (X=Li, B, Be, C, N, O) [J]. J. Chem. Phys, 1986, 84(6): 3224-3229.
    
    [13] RIENSTRA J C, SCHAEFER H F. Revision of the experimental electron affinity of BO [J]. J. Chem. Phys, 1997, 106(19): 8278-8279.
    
    [14] WENTHOLD P G, KIM J B, JONAS K L, LINEBERGER W C. An experimental and computational study of the electron affinity of boron oxide [J]. J. Phys. Chem, 1997, 101(24): 4472-4474.
    
    [15] CRAMER C J. 2,3-Didehydro-l,4-benzoquinone. A quantum thermochemical study [J]. J. Chem. Soc, Perkin Trans. 2,1999,11: 2273-2283.
    
    [16] BARDEN C J, SCHAEFER H F III. The singlet-triplet separation in dichlorocarbene: A surprising difference between theory and experiment [J]. J. Chem. Phys.,2000,112:6515-6516.
    [17]RIENSTRA-KIRACOFE J C,ELLISON G B,HOFFMAN B C,SCHAEFER H F Ⅲ.The electron affinities of C_3O and C_4O[J].J.Phys.Chem.A,2000,104(11):2273-2280.
    [18]唐小真,杨宏秀,丁马太.材料化学导论[M].北京:高等教育出版社,1997.
    [19]李文连.有机/无机光电功能材料及其应用[M].北京:科学出版社,2005.
    [20]赵成大.固体量子化学-材料化学的理论基础[M].北京:高等教育出版社,1997.
    [21]CHO K C,CHE C M,CHENG F C,CHOY C L.Photoinduced electron transfer between cytochrome c and ruthenium/osmium bipyridine and phenanthroline complexes[J].J.Am.Chem.Soc.1984,106(22),6843-.
    [22]WOODWARD R B,HOFFMANN R著,王志中,杨忠志译.轨道对称守恒[M].北京:科学出版社,1978
    [23]福井谦一著,李荣森译.化学反应与电子轨道[J].北京:科学出版社,1985
    [24]FLEMING I.Frontier orbitalsand organic chemical reaction[M].Ney York:Wiley,1976
    [25]罗哈吉-慕克吉K K著,丁格非,孙万林,盛六四等译,光化学基础[M].北京:科学出版社,1991.
    [26]RAO C N R,FRS,GOPALAKRISHNAN J著,刘新生译.固体化学的新方--结构、合成、性质、反应性材料设计[M].长春:吉林大学出版社,1990.
    [27]TANG C W,VANSLYKE S A.Organic electroluminescent diodes[J].Appl.Phys.Lett.,1987,51:913-915.
    [28]PETICOLAS W L.Multiphoton spectroscopy[J].Annu.Rev.Phys.Chem.,1967,18:233-260.
    [29]McCLAIN W M.Two-photon molecular spectroscopy[J].Acc.Chem.Res.,1974,7(5):129-135.
    [30]BIRGE R R,PIERCE B M.A theoretical analysis of the two-photon properties of linear polyenes and the visual chromophores[J].J.Chem.Phys.,1979,70(1):165-178.
    [31]BURROUGHES J H,BRADLEY D D C.BROWN A R,MARKS R N,MACKAY K,FRIEND R H,BURN P L,HOLMES AB.Light-emitting diodes based on conjugated polymers[J].Nature,1990,347:539-541.
    [32]FORREST S R.Ultrathin organic films grown by organic molecular beam deposition and related techniques[J].Chem.Rev.,1997,97,1793-1896.
    [33]邵炎,邱勇.有机金属配合物电致发光材料[J],现代显示,1998,2:32-37.
    [34]KALINOWSKI J.Electroluminescence in organics[J].J.Phys.D:Appl.Phys.,1999,32:R179-R250.
    [35]SHEN Z L,BURROWS P E,BULOVIC V,FORREST S R,THOMPSON M E.Three-color,tunable,organic light-emitting devices[J].Science,1999,276:2009-2011.
    [36]李文连.有机EL和LED与无机EL和LED发光机制的异同[J].液晶与显示,2001,16(1):33-37.
    [37]黄剑,曹镛.有机电致发光材料研究进展[J].化工新型材料,2001,29(9):10-15.
    [38]HASKAL E I,B(U|¨)CHEL M,DUINEVELD P C,et al.Passive-matrix polymer light-emitting displays[J].MRS Bulletin,2002,864-869.
    [39]FORREST S R.The road to high efficiency organic light emitting devices[J].Organic Electronics,2003,4:45-48.
    [40]邹应萍,谭松庭,赵斌.有机电致发光材料的研究进展[M].液晶与显示,2004,19(3):191-198.
    [41]DENK W,STRICKLER J H,WEBB W W.Two-photon laser scanning fluorescence microscopy[J].Science,1990,248:73-76.
    [42]PARTHENOPOULOS D A,RENTZEPIS P M.Three-dimensional optical storage memory[J].Science,1989,245:843-845.
    [43]YIP H K,CHE C M,ZHOU Z Y,et al.Photophysical properties and X-ray crystal structure of a luminescent platinum(Ⅱ) dimer[Pt_2(2,2':6',2"-terpyridine)_2(Gua)](CIO_4)_3·H_2O(Gua = guanidine anion)[J].J.Chem.Soc.Chem.Commun.,1992,1369-1370.
    [44]MISKOWSKI V M,HOULDING V H,CHE C M,et al.Electronic spectra and photophysics of platinum(Ⅱ) complexes with.alpha.-diimine ligands.Mixed complexes with halide ligands[J].Inorg.Chem.,1993,32(11):2518-2524.
    [45]LAI S W,CHAN M C W,CHEUNG T C,et al.Probing d~8-d~8 interactions in luminescent mono- and binuclear cyclometalated Platinum(Ⅱ) complexes of 6-phenyl-2,2'-bipyridines[J].Inorg.Chem.,1999,38(18):4046-4055.
    [46]TZENG B C,FU W F,CHE C M,et al.Structures and photoluminescence of dinuclear platinum(Ⅱ) and palladium(Ⅱ) complexes with bridging thiolates and 2,2'-bipyridine or 2,2':6',2"-terpyridine ligands[J].J.Chem.Soc.Dalton Trans.,1999,6:1017-1024.
    [47]ZULETA J A,BURBERRY M S,EISENBERG R.Platinum(Ⅱ) diimine dithiolates.New solution luminescent complexes[J].Coordination Chemistry Reviews,1990,97:47-64.
    [48]MAESTRI M.Spectroscopic properties of Pt(Ⅱ) and Pd(Ⅱ) complexes with aromatic terdendate(C">NC) cyclometallating ligands[J]Coordination Chemistry Reviews,1991,111:117-123.
    [49]CHE C M,CHE L,HE Y,et al.Solid-state emission of dicyanoplatinum(Ⅱ) and -palladium(Ⅱ) complexes of substituted 2,2'-bipyridines and 1,10-phenanthroline and x-ray crystal structures of isomorphous M(bpy)(CN)_2(bpy=2,2'-bipyridine;M=Pt,Pd)[J].Inorg.Chem.,1989,28(15):3081-3083.
    [50]KUNKELY H,VOGLER A.Photoluminescence of platinum complex [PtⅡ(4,7-diphenyl-1,10-phenanthroline)(CN)_2]in solution[J].J.Am.Chem.Soc.,1990,112(14):5625-5627.
    [51]WAN K T,CHE C M,CHO K C.Inorganic excimer.Spectroscopy,photoredox properties and excimeric emission of dicyano(4,4-di-tert-butyl-2,2'-bipyridine)platinum(Ⅱ)[J].J.Chem.Soc.Dalton Trans.,1991,4:1077-1080.
    [52]潘清江.d~8和d~(10)配合物激发态性质与金属间弱相互作用的量子理论研究[D].长春:吉林大学理论化学研究所,2005.
    [53]FORESMAN J B,HEAD-GORDON M,POPLE J A.Toward a systematic molecular orbital theory for excited states[J].J.Phys.Chem.,1992,96:135-149.
    [54](a) BROOKS B R,LAIDIG W D,SAXE P,et al.Analytic gradients from correlated wave functions via the two-particle density matrix and the unitary group approach [J]. J. Chem. Phys., 1980, 72: 4652-4653. (b) RAGHAVACHARI K, POPLE J A. Specificity and molecular mechanism of abortificient action of prostaglandins [J]. Int. J. Quant. Chem., 1981, 20: 167-174.
    
    [55] (a) STOYANOV S R, VILLEGAS J M, RILLEMAD P. Time-dependent density functional theory study of the spectroscopic properties related to aggregation in the platinum(II) biphenyl dicarbonyl complex [J]. Inorg. Chem., 2003, 42: 7852-7860. (b) STOYANOV S R, VILLEGAS J M, CRUZ A J, et al. Computational and spectroscopic studies of Re(I) bipyridyl complexes containing 2,6-dimethylphenyl- isocyanide(CN_x) ligand [J]. J. Chem. Theor. Comput, 2005, 1: 95-106.
    [56] (a) PAN Q J, ZHANG H X. Theoretical studies on metal-metal interaction and σ~*(d)→σ(p) transition in binuclear platinum(II) complex [J]. Chem. Phys. Lett., 2004, 394: 155-160. (b) ZHANG H X, CHE C M. Aurophilic attraction and luminescence of binuclear Gold(I) complexes with bridging phosphine ligands: ab initio study [J]. Chem. Eur. J., 2001, 7: 4887-4893. (c) PAN Q J, ZHANG H X. Ab initio study on luminescent properties and aurophilic attraction of [Au_2(dpm)(i-mnt)] and its related Au(I) complexes (dpm =bis(diphosphino)methane and i-mnt =i-malononitriledithiolate) [J]. Organometallics, 2004, 23: 5198-5209. (d) PAN Q J, ZHANG H X. Ab initio studies on metal-metal interaction and 3[σ~*(d)σ(s)] excited state of the binuclear Au(I) complexes formed by phosphine and/or thioether ligands [J]. J. Phys. Chem. A, 2004,108: 3650-3661.
    
    [57] HALLS M D, SCHLEGEL H B. Molecular orbital study of the first excited state of the OLED material tris(8-hydroxyquinoline)aluminum(III) [J]. Chem. Mater., 2001, 13: 2632-2640.
    
    [58] (a) STATMANN R E, SCUSERIA G E. An efficient implementation of time-dependent density-functional theory for the calculation of excitation energies of large molecules [J]. J. Chem. Phys., 1998, 109: 8218-8224. (b) BAUERNSCHMITT R, AHLRICHS R. Treatment of electronic excitationswithin the adiabatic approximation of time dependent density functional theory [J]. Chem. Phys. Lett., 1996, 256: 454-464.
    [59]WONG M W,FRISCH M J,WIBERG K B.Solvent effects.1.The mediation of electrostatic effects by solvents[J].J.Am.Chem.Soc.,1991,113(13):4776-4782.
    [60]WONG M W,WIBERG K B,FRISCH M J.Solvent effects.2.Medium effect on the structure,energy,charge density,and vibrational frequencies of sulfamic acid[J].J.Am.Chem.Soc.,1992,114(2):523-529.
    [61](a) WONG M W,FRISCH M J,WIBERG K B.Solvent effects.1.The mediation of electrostatic effects by solvents[J].J.Am.Chem.Soc.,1991,113:4776-4782.
    (c)WONG M W,WIBERG K B,FRISCH M J.Solvent effects.3.Tautomeric equilibria of formamide and 2-pyridone in the gas phase and solution:an ab initio SCRF study [J].J.Am.Chem.Soc.,1992,114:1645-1652.
    [62]白福全.过渡金属配合物激发态和光谱性质的量子理论研究:Pt配合物[D].长春:吉林大学理论化学研究所,2009.
    [63]刘艳玲.有机低聚物电致发光材料的理论研究[D].长春:吉林大学理论化学研究所,2008.
    [64]LI B Z.Theoretical studies on tautomers of 5-fluorouracil and 5-chlorouracil[J].Acta Chimica Sinica,2005,63(16):1495-1499.
    [65]KUWABARA Y,OGAWA H,INADA H,NOMA N,SHIROTA Y.[J].Adv.Mater.,1994,677-679.
    [1]BORN M,OPPENHEIMER R.Zur quantentheorie der molekeln Ann.Phsik.(Quantum theory of the molecules Ann.Phys.)[M].1927,84:457.
    [2]唐敖庆,杨忠志,李前树.量子化学[M].北京:科学出版社,1982.
    [3]徐光宪,黎乐民,王德民.量子化学基本原理和从头计算法[M].北京:科学出版社,1985.
    [4]McQUARRIE D A.Quantum chemistry[M].Mill Vally:University Science Books:CA,1983.
    [5]HEHRE W J,RADOM L,SCHLEYER P V R,et al.Ab initio molecular orbital theory[M].New York:John Wiley & Sons,Inc.I986.
    [6]HARTREE D.Calculations of atomic structure[M].New York:Wiley,1957.
    [7](a) FOCK V.N(a|¨)herungsmethoden zur l(o|¨)sung des quantenmechanischen mehrk(o|¨)rperproblems[J].Z.Physik,1930,61:126-148.
    (b) SLATER J C.Note on Hartree's method[J].Phys.Rev.,1930,35:210-211.
    [8]BORN M,HUANG K.Dynamical theory of crystal lattices[M].Oxford:Clarendon Press,1954.
    [9]HARTREE D R.Wave mechanics of an atom with a non-coulomb central field.Part Ⅰ Theory and methods.Part Ⅱ Some results and discussion[J].Cambridge Phill.Soc.,1928,24:89-110.
    [10]ROOTHAAN C C J.New developments in molecular orbital theory[J].Rev.Mod.Phys.,1951,23:69-89.
    [11]L(O|¨)WDIN P O.Correlation problem in many-electron quantum mechanics.I.Review of different approaches and discussion of some current ideas.[J].Adv.Chem.Phys.,1959,2:207-322.
    [12] WILSON S. Electron correlation in molecules [M]. Oxford: Clarendon Press, 1984.
    
    [13] BAUSCHLICHER C W Jr, LANGHOFF S R, TAYLOR P R. Accurate quantum chemical calculations [J]. Adv. Chem. Phys., 1990, 77: 103-161.
    
    [14] SHAVITT I. The method of configuration interaction, In: SCHAEFER H F. Methods of electronic structure theory [M]. New York: Plenum, 1977, 189.
    
    [15] ROOS B O, SIEGBAHN P E M. The direct configuration interaction method from molecular integrals, In: SCHAEFER H F. Methods of electronic structure theory [M]. New York: Plenum, 1977, 277.
    
    [16] SIEGBAHN P E M. Generalizations of the direct CI method based on the graphical unitary group approach. II. Single and double replacements from any set of reference configurations [J]. J. Chem. Phys., 1980, 72(3): 1647-1656.
    
    [17] KNOWLES P J, HANDY N C. A new determinant-based full configuration interaction method [J]. Chem. Phys. Lett., 1984, 111(4-5): 315-321.
    
    [18] POPLE J A, BINKLEY J S, SEEGER R. Theoretical models incorporating electron correlation [J]. Int. J. Quant. Chem. Symp., 1976, 10(S10.): 1-19.
    
    [19] HOHENBERG P, KOHN W. Inhomogeneous electron gas [J]. Phys. Rev. Ser. II, 1964,136: B864-B871.
    
    [20] POPLE J A, KRISHNAN R, SCHEGEL H B, BINKLEY J S. Electron correlation theories and their application to the study of simple reaction potential surfaces [J]. Int. J. Quant. Chem., 1978, 14(5): 545-560.
    
    [21] PURVIS III G. D, BARTLETT R J. A full coupled-cluster singles and doubles model: The inclusion of disconnected triples [J]. J. Chem. Phys., 1982, 76: 1910-1918.
    
    [22] SCUSERIA G. E, SCHAEFER H F III. Is coupled cluster singles and doubles (CCSD) more computationally intensive than quadratic configuration interaction (QCISD)? [J]. J. Chem. Phys., 1989, 90: 3700-3703.
    
    [23] M0LLER C, PLESSET M S. Note on an Approximation treatment for many-electron systems [J]. Phys. Rev. Ser. II, 1934, 46(7): 618-622.
    
    [24] HEAD-GORDON M, POPLE J A, FRISCH M J. MP2 energy evaluation by direct methods[J].Chem.Phys.Lett.,1988,153(6):503-506.
    [25]FRISCH M J,HEAD-GORDON M,POPLE J A.A direct MP2 gradient method [J].Chem.Phys.Lett.,1990,166(3):275-280.
    [26]FRISCH M J,HEAD-GORDON M,POPLE J A.Semi-direct algorithms for the MP2 energy and gradient[J].Chem.Phys.Lett.,1990,166(3):281-289.
    [27]POPLE J A,HEAD-GORDON M,RAGHAVACHARI K.Quadratic configuration interaction.A general technique for determining electron correlation energies[J].J.Chem.Phys.,1987,87(10):5968-5975.
    [28]DUNNING T H,PETERSEN K A.Use of Mφller-Plesset perturbation theory in molecular calculations:Spectroscopic constants of first row diatomic molecules[J].J.Chem.Phys.,1998,108(12):4761-4771.
    [29]KOHN W,SHAM L J.Self-consistent equations including exchange and correlation effects[J].Phys.Rev.,1965,140,A1133-A1138.
    [30]THOMAS L H.The calculation of atomic fields[J].Proc.Camb.Phil.Soc.,1927,23:542-548.
    [31]FERMI E.Un metodo statistice per la determinazione di alcune proprieta dell'atomo[J].Rend.Accad.Lincei,1927,6:602-607.
    [32]CASIDA M E,JAMORSKI C,BOHR F,et al.Theoretical and computational modeling of NLO and electronic materials[M].Washington,D.C.:ACS Press,1996.
    [33]RUNGE E,GROSS E K U.Density-functional theory for time-dependent systems[J].Phys.Rev.Lett.,1984,52(12):997-1000.
    [34]VAN LEEUWEN R.Causality and symmetry in time-dependent densityfunctional theory[J].Phys.Rev.Lett.,1998,80(6):1280-1283.
    [35]GROSS E K U,DREIZLER ED R M.Density functional theory.B[M].New York:Plenum Press,1995.
    [36]LEWIS G N,KASHA M.Phosphorescence and the triplet state[J].J.Am.Chem.Soc.,1944,66:2100-2116.
    [37]ROHATGI-MAKHERJEE K K.著.丁革非,孙万林,盛六四等译.光化学基础[M].北京:科学出版社,1991.
    [38]赫兹堡G.著.王鼎昌译.分子光谱与分子结构-双原子分子光谱[M].北京:科学出版社,1983.
    [39]周公度,段连运.结构化学基础[M].北京:北京大学出版社,1995.
    [40]CONDONE U.Nuclear motions associated with electron transitions in diatomic molecules[J].Phys.Rev.,1928,32:858-872.
    [41]FRANCK J.Elementary processes of photochemical reactions[J].Trans.Faraday Soc.,1925,21:536-542.
    [42]梁映秋,赵文运编.分子振动和振动光谱[M].北京:北京大学出版社,1990.
    [43]白福全.过渡金属配合物激发态和光谱性质的量子理论研究:Pt配合物[D].长春:吉林大学理论化学研究所,2009.
    [44]周欣.d~8配合物激发态性质与金属间弱相互作用的量子理论研究[D].长春:吉林大学理论化学研究所,2007.
    [45]MIERTUS S,SCROCCO E,TOMASI J.A direct utilization of ab initio molecular potentials for the prevision of solvent effects[J].Chem.Phys.,1981,55:117-122.
    [46]PULLMAN B,MIERTUS S,PERAHIA D.Hydration scheme of the purine and pyrimidine bases and base-pairs of the nucleic acids[J].Theor.Chim.Acta,1979,50:317-325.
    [47]MIERTUS S,TOMASI J.Approximate evaluations of the electrostatic free energy and internal energy changes in solution processes[J].Chem.Phys.,1982,65:239-245.
    [48]COSSI M,BARONE V,CAMMI R,OMASI J T.Ab initio study of solvated molecules:a new implementation of the polarizable continuum model[J].Chem.Phys.Lett.,1996,255:327-335.
    [49]COSSI M,BARONE V,MENNUCCI B,TOMASI J.Ab initio study of ionic solutions by a polarizable continuum dielectric model[J].Chem.Phys.Lett.,1998,286:253-260.
    [50]CANCES E,MENNUCCI B,TOMASI J.A new integral equation formalism for the polarizable continuum model:Theoretical background and applications to isotropic and anisotropic dielectrics [J]. J. Chem. Phys., 1997, 107: 3032-3041.
    
    [51] BARONE V, COSSI M, TOMASI J. A new definition of cavities for the computation of solvation free energies by the polarizable continuum model [J]. J. Chem. Phys., 1997,107: 3210-3221.
    
    [52] TUNON I, SILLA E, TOMASI J. Methylamines basicity calculations: in vacuo and in solution comparative analysis [J]. J. Phys. Chem., 1992, 96: 9043-9048.
    
    [53] FORESMAN J B, KEITH T A, WIBERG K B, et al. Solvent effects. 5. Influence of cavity shape, truncation of electrostatics, and electron correlation on ab initio reaction field calculations [J]. J. Phys. Chem., 1996, 100: 16098-16104.
    
    [54] WIBERG K B, KEITH T A, FRISCH M, et al. Solvent effects on 1,2-dihaloethane gauche/trans ratios [J]. J. Phys. Chem., 1995, 99: 9072-9079.
    
    [55] WIBERG K B, RABLEN P R, RUSH D J, et al. Amides. 3. Experimental and theoretical studies of the effect of the medium on the rotational barriers for N,N-dimethylformamide and N,N-dimethylacetamide [J]. J. Am. Chem. Soc, 1995, 117:4261-4270.
    
    [56] HEGARTY D, ROBB M A. Application of unitary group methods toconfiguration interaction calculations [J]. Mol. Phys., 1979, 38: 1795-1812.
    
    [57] EADE R H E, ROBB M A. Direct minimization in mc SCF theory. The quasi-newton method [J]. Chem. Phys. Lett., 1981, 83: 362-368.
    
    [58] FRISCH M J, RAGAZOS I N, ROBB M A, et al. Anevaluation of 3 direct MCSCF procedures [J]. Chem. Phys. Lett., 1992, 189: 524-528.
    
    [59] YAMAMOTO N, VREVEN T, ROBB M A, et al. A direct derivative MC-SCF procedure [J]. Chem. Phys. Lett., 1996,250: 373-378.
    
    [60] PEUKERT V. A new approximation method for electron systems [J]. J. Phys., 1978, C11:4945-4956.
    
    [61] THEOPHILOU A K. The energy density functional formalism for excited states [J]. J. Phys., 1979, C12: 5419-5430.
    
    [62] (a) HADJISAVVAS N, THEOPHILOU A K. Rigorous formulation of the Kohn and Sham theory [J]. Phys. Rev. A, 1984, A30: 2183-2186. (b) HADJISAVVAS N, THEOPHILOU A K. Rigorous formulation of Slater's transition-state theory for excited states [J]. Phys. Rev. A, 1985, A32: 720-724.
    
    [63] THEOPHILOU A K, GIDOPOULOS N I. Density functional theory for excited states [J]. Int. J. Quantum. Chem., 1995, 56: 333-336.
    
    [64] JAMORSKI C, CASIDA M E, SALAHUB D R. Dynamic polarizabilities and excitation spectra from a molecular implementation of time-dependent density-functional response theory: N_2 as a case study [J]. J. Chem. Phys., 1996, 104(13): 5134-5147.
    
    [65] PYYKKO P. Relativistic effects in structural chemistry [J]. Chem. Rev., 1988, 88: 563-594.
    [1]DENIFL S,MATEJCIK S,PTASINSKA S,GSTIR B,PROBST M,SCHEIER P.Electron attachment to chlorouracil:A comparison between 6-CIU and 5-C1U[J].J.Chem.Phys.,2004,120(2):704-709.
    [2]BLACKBURN G M,GAIT M J.Eds.Nucleic acids in chemistry and biology[M].New York:Oxford University Press,1996.
    [3]MORRIS S M.The genetic toxicology of 5-fluoropyrimidines and 5-chlorouracil [J].Mutat.Res.,1993,297:39-51.
    [4]JANG Y H,SOWRES L C,CAGIN T,GODDARD W A Ⅲ.First principles calculation of pKa values for 5-substituted uracils[J].J.Phys.Chem.A,2001,105(1):274-280.
    [5]HEIDELBERGER C.Fluorinated pyrimidines[J].Prog.Nucleic Acid Res.Mol.Biol.,1965,4:1-50.
    [6]WANG Y Q,ZHANG S Q,ZHENG X M.Density functional theory and Raman spectroscopy study of the proton transfer tautomerism of 5-halogenouracils[J].J.Zhejiang Sci.-Tech.U.,2007,24(1):88-93.
    [7]LI B Z.Theoretical studies on tautomers of 5-fluorouracil and 5-chlorouracil[J].Acta Chimica Sinica,2005,63(16):1495-1499.
    [8]ROWE W P,LOWY D R,TEICH N,HARTLY J W.Some implications of the activation of murine leukemia virus by halogenated pyrimidines[J].Proc.Natl.Acad.Sci.U.S.A.,1972,69(4):1033-1035.
    [9]STERNGLANZ H,BUGG C E.Relationship between the mutagenic and base-stacking properties of halogenated uracil derivatives.The crystal structures of 5-chloro- and 5-bromouracil[J].Biochim.Biophys.Acta,1975,378(1):1-11.
    [10]HU X B,LI H R,LIANG W C,etal.Systematic study of the tautomerism of uracil induced by proton transfer. Exploration of water stabilization and mutagenicity [J]. J. Phys. Chem. B, 2005, 109: 5935-5944.
    
    [11] RIENSTRA-KIRACOFE J C, TSCHUMPER G S, SCHAEFER H F, NANDI S, ELLISON G B. Atomic and molecular electron affinities: Photoelectron experiments and theoretical computations [J]. Chem. Rev., 2002, 102(1): 231-282.
    
    [12] WEIMER M, SALA F D, GORLING A. The Kohn-Sham treatment of anions via the localized Hartree-Fock method [J]. Chem. Phys. Lett., 2003, 372(3-4): 538-547.
    
    [13] JENSEN F. Polarization consistent basis sets III. The importance of diffuse functions [J]. J. Chem. Phys., 2002, 117: 9234-9240.
    
    [14] (a) HOHENBERG P, KOHN W. Inhomogeneous electron gas [J]. Phys. Rev. Ser. II, 1964, 136: B864-B871. (b) KOHN W, SHAM L. Self-consistent equations including exchange and correlation effects [J]. Phys. Rev., 1965, 140, A1133-A1138. (c) KOHN W, BECKE A D, PARR R G Density functional theory of electronic structure [J]. J. Phys. Chem., 1996, 100: 12974-12980.
    
    [15] BECKE A D. Density-functional thermochemistry. III. The role of exact exchange [J]. J. Chem. Phys. 1993, 98(7): 5648-5652.
    
    [16] LEE C, YANG W, PARR R G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density [J]. Phys. Rev. B, 1988, 37(2): 785-789.
    
    [17] PERDEW J P, WANG Y. Accurate and simple analytic representation of the electron-gas correlation energy [J]. Phys. Rev. B, 1992,45(23): 13244-13249.
    
    [18] BECKE A D. A new mixing of Hartree-Fock and local density-functional theories [J]. J. Chem. Phys., 1993, 98(2): 1372-1377.
    
    [19] BECKE A D. Density-functional exchange-energy approximation with correct asymptotic behavior [J]. Phys. Rev. A, 1988, 38(6): 3098-3100.
    
    [20] HUZINAGA S. Gaussian-type functions for polyatomic systems. I [J]. J. Chem. Phys, 1965,42(4): 1293-1302.
    
    [21] DUNNING T H Jr. Gaussian basis functions for use in molecular calculations. I. contraction of (9s5p) atomic basis sets for the first-row atoms [J]. J. Chem. Phys., 1970, 53(7): 2823-2833.
    [22] HUZINAGA S. Approximate atomic wavefunctions [D]. Edmonton: Department of Chemistry, University of Alberta, 1971.
    
    [23] DUNNING T H, HAY P J. Modern theoretical chemistry. Ed. by SCHAEFER H F. [M]. New York: Plenum Press, 1977,1-27.
    
    [24] LEE T J, SCHAEFER H F. Systematic study of molecular anions within the self-consistent-field approximation: OH~-, CN~-, C_2H~-, NH_2~-, and CH_3~- [J]. J. Chem. Phys., 1985, 83(4): 1784-1794.
    
    [25] FRISH M J, TRUCKS G W, SCHLEGEL H B, et al. Gaussian 98, Revision A.9 [CP]. Pittsburgh PA: Gaussian Inc, 1998.
    
    [26] TAKIMOTO C H, HOELLER D B, STRONG J M, ANDERSON L, CHU E, ALLEGRA C J. Effects of 5-fluorouracil substitution on the RNA conformation and in vitro translation of thymidylate synthase messenger RNA [J]. J. Biol. Chem., 1993, 268:21438-21442.
    
    [27] GERM J L. In cancer chemotherapy: Principles & practice, 2nd Ed.; CHABNER B A, COLLINS J M, Eds.[M]. Philadelphia PA: Lippincott J. B. Co., 1990, 180.
    
    [28] HENDERSON J P, BYUN J, TAKESHITA J, HEINECKE J W. Phagocytes produce 5-chlorouracil and 5-bromouracil, two mutagenic products of myeloperoxidase, in human inflammatory tissue [J]. J. Biol. Chem., 2003, 278: 23522-23528.
    
    [29] JIANG Q, BLOUNT B C, AMES B N. 5-chlorouracil, a marker of DNA damage from hypochlorous acid during inflammation: A gas chromatography-mass spectrometry assay [J]. J. Biol. Chem., 2003, 278: 32834-32840.
    
    [30] SINGH U P, SINGH B N, GHOSE A K, SINGH R K, SODHI A. Synthesis, characterization, and antitumor activity of 5-iodouracil complexes [J]. J. Inorg. Biochem., 1991,44(4): 277-282.
    
    [31] WETMORE S D, BOYD R J, ERIKSSON L A. A theoretical study of 5-halouracils: electron affinities, ionization potentials and dissociation of the related anions [J]. Chem. Phys. Lett., 2001, 343(1-2): 151-158.
    
    [32] LI X F, SANCHE L, SEVILLA M D. Dehalogenation of 5-halouracils after low energy electron attachment: A density functional theory investigation [J]. J. Phys. Chem. A, 2002, 106: 11248-11253.
    
    [33] SEVILLA M D, BESLER B, COLSON A O. Ab initio molecular orbital calculations of DNA radical ions. 5. Scaling of calculated electron affinities and ionization potentials to experimental values [J]. J. Phys. Chem., 1995, 99(3): 1060-1063.
    
    [34] DESFRANCOIS C, ABDOUL-CARIME H, SCHERMANN J P. Electron attachment to isolated nucleic acid bases [J]. J. Chem. Phys., 1996, 104(19): 7792-7794.
    
    [35] DESFRANCOIS C, PERIQUET V, BOUTEILLER Y, SCHERMANN J P. Valence and dipole binding of electrons to uracil [J]. J. Phys. Chem., 1998, 102(8): 1274-1278.
    
    [36] HENDRICKS J H, LYAPUSTINA S A, de CLERCQ H L, SNODGRASS J T, BOWEN K H. Dipole bound, nucleic acid base anions studied via negative ion photoelectron spectroscopy [J]. J. Chem. Phys., 1996, 104(19): 7788-7791.
    
    [37] SCHIEDT J, WEINKAUF R, NEUMARK D M, SCHLAG E W. Anion spectroscopy of uracil, thymine and the amino-oxo and amino-hydroxy tautomers of cytosine and their water clusters [J]. Chem. Phys., 1998,239(1-3): 511-524.
    [1]赵华平.吲哚[3,2-b]咔唑衍生物的设计合成和半导体性能.[D].济南:山东大学化学学院,2007.
    [2]KUWABARA Y,OGAWA H,INADA H,NOMA N,SHIROTA Y.Thermally stable multilared organic electroluminescent devices using novel starburst molecules,4,4,4-Tri(N-carbazolyl)triphenylamine(TCTA) and 4,4,4-tris(3-methylphenylphenylamino)triphenylamine(m-MTDATA),as hole-transport materials[J].Adv.Mater.,1994,9:677-679.
    [3]HUN X,XIE S,POPOVIC Z,ONG B,HOR A M.Novel high Tg hole-transport molecules based on indolo[3,2-b]carbazoles for organic light-emitting devices[J].Synth.Met.,2000,111-112:421-424.
    [4]LI Y,WU Y,GARDNER S,ONG B S.Novel peripherally substituted indolo[3,2-b]carbazoles for high-mobility organic thin-film transistors[J].Adv.Mater.,2005,127(3):849-853.
    [5]WU Y L LI Y N,GARDNER S,ONG B S.Indolo[3,2-b]carbazole-based thin-film transistors with high mobility and stability[J].J.Am.Chem.Soc.,2005,127(2):614-618.
    [6]HU N X,XIE S,POPOVIC Z,ONG B,HOR A M.5,11-Dihydro-5,11-di-1-naphthylindolo[3,2-b]carbazole:Atropisomerism in a novel hole-transport molecule for organic light-emitting diodes[J].J.Am.Chem.Soc.,1999,121(21):5097-5098.
    [7]THOMAS K R J,LIN J T,TAO Y T,KO C W.Light-emitting carbazole derivatives:Potential electroluminescent materials[J].J.Am.Chem.Soc.,2001,123(38):9404-9411.
    [8]JANOSIK T,WAHLSTR(O|¨)M N,BERGMAN J.Recent progress in the chemistry and applications of indolocarbazoles[J].Tetrahedron.,2008,64(39):9159-9180.
    [9]陈苏婷,尤启冬.吲哚咔唑类化合物及其衍生物的抗肿瘤活性[J].化学进展,2008,Z1:368-374.
    [10]PRUDHOMME M.Indolocarbazoles as anti-cancer agents.[J].Curr.Pharm.Des.,1997,3:265-290.
    [11]PRUDHOMME M.Biological targets of antitumor indolocarbazoles bearing a sugar moiety[J].Curr.Med.Chem.:Anti-Cancer Agents.,2004,4(6):509-521.
    [12]BERGMAN J,JANOSIK T,WAHLSTR(O|¨)M N.Indolocarhazoles[J].Adv.Heterocycl.Chem.,2001,80:1-71.
    [13]SEZAKI M,SASAKI T,NAKAZAWA T,TAKEDA U,IWATA M,WATANABE T,KOYAMA M,KAI F,SHOMURA T,KOJIMA M.A new antibiotic SF-2370produced by Actinomadura[J].J.Antibiot.,1985,38(10):1437-1439.
    [14]YASUZAWA T,IIDA T,YOSHIDA M,HIRAYAMA O,TAKAHASHI M,SHIRAHATA K,SANO H.The structures of the novel protein kinase C inhibitors K-252a,b,c and d[J].J.Antibiot.,1986,39(8):1072-1078.
    [15]RANNUG U,RANNUG A,SJOBERG U,LI H,WESTERHOLM R,BERGMAN J.Structure elucidation of two tryptophan-derived,high affinity Ah receptor ligands[J].Chem.Biol.,1995,2:841-845.
    [16]ZHAO H P,TAO X T,WANG P,et al.Effect of substituents on the properties of indolo[3,2-b]carbazole-based hole-transporting materials[J].Org.Electron.,2007,8(6):673-682.
    [17]OOYAMA Y,KAGAWA Y,HARIMA Y.Synthesis and solid-state fluorescence properties of sructural isomers of novel benzofuro[2,3-c]oxazolocarbazole-type fluorescent dyes[J].Eur.J.Org.Chem.,2007,22:3613-3621.
    [18]LAI W Y,CHEN Q Q,HE Q Y,FAN Q L,HUANG W.Microwave-enhanced multiple Suzuki couplings:Toward highly luminescent starburst monodisperse macromolecules[J].Chem.Commun.,2006,18:1959-1961.
    [19]OOYAMA Y,SHIMADA Y,KAGAWA Y,IMAE I,HARIMA Y.Photovoltaic performance of dye-sensitized solar cells based on donor-acceptor-conjugated benzofuro[2,3-c]oxazolo[4,5-a]carbazole-type fluorescent dyes with a carboxyl group at different positions of the chromophore skeleton[J].Org.Biomol.Chem.,2007,5:2046-2054.
    [20]LEE C,WANG W,PARR R G.Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density[J].Phys.Rev.B,1988,37:785-789.
    [21]FORESMAN J B,HEAD-GORDON M,POPLE J A,FRISCH M J.Toward a systematic molecular orbital theory for excited states[J].J.Phys.Chem.,1992,96:135-149.
    [22]COSSI M,SCALMANI G,REGA N,BARONE V.New developments in the polarizable continuum model for quantum mechanical and classical calculations on molecules in solution[J].J.Phys.Chem.,2002,117:43-54.
    [23]CASIDA M E,JAMORSKI C,CASIDA K C,SALAHUB D.R.Molecular excitation energies to high-lying bound states from time-dependent density-functional response theory:Characterization and correction of the time-dependent local density approximation ionization threshold[J].J.Phys.Chem.,1998,108:4439-4449.
    [24]张建坡,周欣,白福全,张红星.一类[Os~((Ⅱ)))(CO)_3(tfa)(L)](L=O^O,O^N,N^N)配合物的结构和光谱特征[J].Acta Phys.-Chim.Sin.,2008,24(12):2243-2248.
    [25]FRISH M J,TRUCKS G W,SCHLEGEL H B,et al.Gaussian 03,Revision C.2,[CP].Pittsburgh PA:Gaussian Inc.,2003.
    [26]薄冬生,任爱民,封继康,杨丽.3,9-咔唑聚合物基态和激发态性质的理论研究[J].高等学校化学学报,2007,28(5):955-959.
    [27]TSUCHIMOTO T,MATSUBAYASHI H,KANEKO M,NAGASE Y,MIYAMURA T,SHIRAKAWA E.Indium-catalyzed annulation of 2-aryl- and 2-heteroarylindoles with propargyl ethers:Concise synthesis and photophysical properties of diverse aryl- and heteroaryl-annulated[a]carbazoles[J].J.Am.Chem.Soc.,2008,130:15823-15835.
    [28]TRETIAK S,CHERNYAK V,MUKAMEL S.Origin,scaling,and saturation of second order polarizabilities in donor/acceptor polyenes[J].Chem.Phys.Lett.,1998,287(1/2):75-82.
    [1]GARNIER F,HAJLAOUI R,YASSAR A,SRIVASTAVA P.All-polymer field-effect transistor realized by printing techniques[J].Science,1994,265:1684-1686.
    [2]BAO Z,LOVINGER A J,BROWN J.New air-stable n-channel organic thin film transistors[J].J.Am.Chem.Soc.,1998,120(1):207-208.
    [3]SCH(O|¨)N J H,BERG S,KLOC K,BATLOGG B.Ambipolar pentacene field-effect transistors and inverters[J].Science,2000,287:1022-1023.
    [4]SAKAMOTO Y,KOMATSU S,SUZUKI T.Tetradecafluorosexithiophene:The first perfluorinated oligothiophene[J].J.Am.Chem.Soc.,2001,123(19):4643-4644.
    [5]THOMAS K R J,LIN J T,TAO Y T.Light-emitting carbazole derivatives:Potential electroluminescent materials[J].J.Am.Chem.Soc.,2001,123(38):9404-9411.
    [6]INADA H,SHIROTA Y.1,3,5-Tris[4-(diphenylamino)phenyl]benzene and its methyl-substituted derivatives as a novel class of amorphous molecular materials[J].J.Mater.Chem.,1993,3(3):319-320.
    [7]GRAZULEVICIUS J V,STROHRIEGL P,PIELICHOWSKI J,et al.Carbazole-containing polymers:Synthesis,properties and applications[J].Prog.Polym.Sci.,2003,28(9):1297-1353.
    [8]MORIN J F,LECLERC M,ADES D,et al.Polycarbazoles:25 years of progress [J].Macromol.Rapid.Commun.,2005,26(10):761-788.
    [9]宋学良,金佳科,董浩宇,唐本忠,孙景志.外围带咔唑基的联苯桥联PPV齐聚物的稳定性[J].高等学校化学学报,2006,27(11):2209-2212.
    [10]BELLET(?)TE M,BOUCHARD J,Leclerc M,et al.Photophysics and solvent-induced aggregation of 2,7-carbazole-based conjugated polymers[J].Macromolecules,2005,38(3):880-887.
    [11]TSAI M H,HONG Y H,CHANG C H,et al.3-(9-Carbazolyl)carbazoles and 3,6-di(9-carbazolyl)carbazoles as effective host materials for efficient blue organic electrophosphorescence[J].Adv.Mater.,2007,19(6):862-866.
    [12]ZHANG K,TAO Y,YANG C,et al.Synthesis and properties of carbazole main chain copolymers with oxadiazole pendant toward bipolar polymer host:Tuning the HOMO/LUMO level and triplet energy[J].Chem.Mater.,2008,20(23):7324-7331.
    [13]YANG L,FENG J K,REN A M,et al.The electronic structure and optical properties of carbazole-based conjugated oligomers and polymers:A theoretical investigation[J].Polymer,2006,47:1397-1404.
    [14]薄冬生,任爱民,封继康,杨丽.3,9-咔唑聚合物基态和激发态性质的理论研究[J].高等学校化学学报,2007,28(5):955-959.
    [15]LEE C,WANG W,PARR R G.Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density[J].Phys.Rev.B,1988,37(2):785-789.
    [16]FORESMAN J B,HEAD-GORDON M,POPLE J A,et al.Toward a systematic molecular orbital theory for excited states[J].J.Phys.Chem.,1992,96:135-149.
    [17]COSSI M,SCALMANIi G,REGAR N,et al.New developments in the polarizable continuum model for quantum mechanical and classical calculations on molecules in solution[J].J.Phys.Chem.,2002,117:43-54.
    [18]CASIDA M E,JAMORSKI C,CASIDA K C,et al.Molecular excitation energies to high-lying bound states from time-dependent density-functional response theory: Characterization and correction of the time-dependent local density approximation ionization threshold [J]. J. Phys. Chem., 1998, 108: 4439-4449.
    
    [19] FRISCH M J, TRUCKS G W, SCHLEGEL H B, et al. Gaussian 03, Revision C. 2 [CP]. Pittsburgh PA: Gaussian Inc, 2003.
    
    [20] PALIULIS O, OSTRAUSKITE J, GAIDELIS V, et al. Synthesis of conjugated carbazole trimers and pentamers by Suzuki coupling [J]. Macromol. Chem. Phys., 2003,204(14): 1706-1712.
    
    [21] GRIGALEVICIUS S, GRAZULEVICIUS J V, GAIDELIS V, et al. Synthesis and properties of poly(3,9-carbazole) and low-molar-mass glass-forming carbazole compounds [J]. Polymer, 2002,43(9): 2603-2608.
    
    [22] WANG J F, FENG J K, REN A M, YANG L. Theoretical studies of the structure, absorption and emission properties of terfluorene and ter(9,9-diarylfluorene) derivatives [J]. Chin. J Chem., 2005, 23: 1618-1624.
    
    [23] YANG L, Feng J K, Ren A M. Theoretical studies on the electronic and optical properties of two new alternating fluorene/carbazole copolymers [J]. J. Comput. Chem., 2005, 26: 969-979.
    
    [24] YANG L, FENG J K, REN A M, ZHANG M, MA Y G, LIU X D. Structures, electronic states and electroluminescent properties of a series of CuI complexes [J]. Eur. J. Inorg. Chem., 2005, 1867-1879.
    
    [25] YANG G C, SU T, SHI S Q, SU Z M, ZHANG H Y, WANG Y. Theoretical study on photophysical properties of phenolpyridyl boroncomplexes [J]. J. Phys. Chem. A, 2005, 111: 2739-2744.
    
    [26] YANG L, FENG J K, REN A M. Structural, electronic and optical properties of a series of oligofluorene-thiophene oligomers and polymers [J]. J. Molecular Structure: Theochem., 2006, 758: 29-39.
    
    [27] LIU Y L, FENG J K, REN A M. Structural, electronic, and optical properties of phosphole-containing π-conjugated oligomers for light-emitting diodes [J]. J. Comput. Chem., 2007, 28: 2500-2509.
    
    [28] LIU Y L, FENG J K, REN A M. Theoretical study of optical and electronic properties of the bis-dipolar diphenylamino-endcapped oligoarylfluorenes as promising light emitting materials [J]. J. Phys. Org. Chem., 2007, 20: 600-609.
    [29] LI H C, LIN Y P, CHOU P T, CHENG Y M, LIU R S. Color tuning and highly efficient blue emitters of finite diphenylamino-containing oligo(arylenevinylene) derivatives using fluoro substituents [J]. Adv. Funct. Mater., 2007, 17: 520-530.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700