用户名: 密码: 验证码:
双频容性耦合等离子体特性的发射光谱研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
双频容性耦合等离子体(dual frequency capacitively coupled plasma DF-CCP)是近年来发展起来的一种新型的等离子体源。由于其采用了一个高频电源和一个低频电源共同驱动等离子体,可以实现相对独立的控制到达基片上离子的通量和能量,因而可能在纳米线宽电子器件的刻蚀加工中得到应用。关于它的特性的研究是当前低温等离子体学术界的一个热点。
     本文主要采用发射光谱诊断方法,研究了双频容性耦合氮等离子体中氮分子及离子的转动和振动温度,氩等离子体的空间均匀性,以及CHF3等离子体中活性基团成分随等离子体参量变化的特性。它们是:
     (1)采用光谱拟合求解转动和振动温度的方法,研究了单射频放电中激发频率对氮等离子体中氮分子N_2和离子N_2~+转动温度及振动温度的影响。
     发现氮分子转动温度在激发频率为13MHz时有最小值,这是由于分子的加热模式发生了转变的缘故,即由离子诱导为主的加热模式转变为由电子诱导为主的加热模式引起的。另一方面,随着激发频率从2MHz增加到13MHz,氮离子的转动温度从550K下降到350K,之后基本保持不变。在低频放电时离子的转动温度明显高于分子的转动温度。这些都是由于低频电场对离子比对分子的加热更有效,以及存在对离子的共振加热所引起的。
     实验中发现,氮分子和离子的振动温度随频率的增加呈直线上升,但当频率超过23MHz后,氮分子振动温度的增长趋势明显减缓,在低功率下甚至出现下降,而氮离子振动温度的下降更大。同时还发现,氮分子振动温度的最大值所对应的放电气压也随激发频率的上升而下降。这些现象都是由于激发频率上升引起等离子体中电子密度上升而电子温度下降,进而导致振动激发主要由电子密度向电子温度起主要影响转变而产生的。
     (2)进而研究了双射频容性耦合氮等离子体中高频功率、低频功率和气压对氮分子和离子转动温度及振动温度的影响。
     在双射频(41MHz/2MHz)驱动的氮等离子体放电中,氮离子转动温度随低频功率的增长率比氮分子的大,这是因为氮离子能够被低频电场有效的加热。
     由于氮离子和分子的振动激发与电子温度有不同的依赖关系,以及高频功率和低频功率对于等离子体中电子温度的影响不同,实验中发现氮离子振动温度随低频功率的增长率大于氮分子振动温度的增长率。而高频功率的影响则与之相反,氮分子振动温度随高频功率的增长率大于氮离子振动温度的增长率。还发现,随着放电气压的上升,氮分子或离子的振动温度与转动温度的差距将缩小。
     (3)采用逆阿贝尔变换法,获得了等离子体发射光谱的径向分布,从而研究了单频和双频容性耦合氩等离子体的空间均匀性。
     单频放电时,在不同的激发频率下,等离子体的不均匀主要发生在电极板边缘,且边缘效应的影响程度会随着激发频率的上升而下降。这是因为放电电压随着激发频率的上升而下降引起的。另一方面,放电功率的上升也会使放电电压增加从而增强了边缘效应,导致了等离子体不均匀性的增加。而放电气压的上升,在2MHz放电时会使等离子体不均匀性下降,在13.56MHz和41MHz时则会使等离子体不均匀性上升。
     双频放电时,情况要相对复杂。放电气压的变化基本上未改变氩光谱线强度的轴向分布形貌,而高频和低频功率的变化却对它的轴向轮廓形貌有显著的影响。这是因为光谱强度与等离子体密度和温度相关,而高频和低频功率会改变等离子体密度和电子温度的轴向分布比例,相反放电气压则基本不会改变它们的轴向分布比例。在双频放电中,等离子体的不均匀还是主要发生在电极板边缘,这也是由边缘效应引起的。但是在除边缘之外的地方,其强度的起伏比单频放电时的多,这可能主要是由于使用双频放电时两个频率并没有完全解耦所致。
     (4)采用光强标定及光谱拟合等方法,研究了双频容性耦合CHF3等离子体中高频、低频功率和气压对于CHF3气体分解过程的影响。
     放电所产生的活性基团F和H的相对密度及F/CF2比随低频功率的增长率远大于高频功率,造成这个现象的原因是由于等离子体中的电子能从低频鞘层中获得更多的能量,而F和H基团主要由电子碰撞产生。
     同时还发现随着放电气压的上升,F和H的相对密度、及F/CF2比随之下降,这是因为气压的上升导致了电子温度的下降。
Capacitively coupled plasma (CCP) driven by dual frequency is currently becoming an important plasma source as a fine etching tool for manufacturing the ultralarge scale integrated (ULSI) circuits. In this dual frequency CCP reactor, one radio frequency (RF) is chosen to be much higher than the other, such an arrangement as to achieve an independent high flux and energy of ion onto the substrate. In this paper, the rotational and vibrational temperatures of nitrogen gas and ion, the Ar plasma nonuniformity and the dissociation of CHF3 in a dual frequency CCP are investigated by using optical emission spectroscopy (OES).
     1. The influence of exciting frequencies on the rotational and vibrational temperatures of nitrogen gas and ion in a CCP are investigated. The rotational and vibrational temperatures are acquired by comparing the measured and calculated spectra of selected transitions.
     It is observed that N_2 rotational temperature minimum around 13MHz is the combined effect of ion-dominated heating and electron-dominated heating in the plasma. +N 2rotational temperature almost drops linearly from about 550K to about 350K with increasing exciting frequency up to 13MHz, and then becomes unchanged with further increase of frequency. Also, N 2+rotational temperature is much higher than the corresponding N_2 rotational temperature in the plasma driven by low frequencies. These experimental phenomena may be attributed to the effective ion heating and/or possible resonant heating in the bulk plasma under the low frequency field.
     The N_2 and N_2~+ vibrational temperatures almost increase linearly with increasing exciting frequency up to 23MHz, and after that increase slowly or even decrease. The pressure corresponding to the maximum point of N_2 vibrational temperature decreases with increasing exciting frequency. These experimental phenomena is attributed to the electron density increasing whereas the electron temperature decreasing with exciting frequency rising.
     2. The changes of the rotational and vibrational temperatures with the high frequency (HF) and low frequency (LF) input powers as well as the discharge pressure in dual frequency (41MHz/2MHz) capacitively coupled plasma discharges are investigated.
     The increment rate of N_2~+ rotational temperature with increasing LF power are larger than that of HF power, because the N_2~+ can be effective heated by low frequency fields.
     Due to the HF power and LF power having different influences on the electron temperature, the increment rate of N 2+ vibrational temperature with increasing LF power is larger than that of HF power. While the influence of HF power on vibrational temperature is just opposite to the situation of the LF, the increment rate of N_2 vibrational temperature with increasing HF power is larger than that of LF power. With the discharge pressure increasing, the difference between the vibrational and rotational temperature decrease.
     3. The Ar plasma nonuniformity in a single and dual frequency CCP is studied by using optical emission spectroscopy with Able inversion method.
     In a single frequency CCP, plasma nonuniformity is mainly caused by edge effect. The edge effect decreases with increasing exciting frequency. This is due to discharge voltage decreases with increasing exciting frequency. Additionally, the increasing RF power can make discharge voltage increase to enhance the edge effect, and lead the plasma nonuniformity degree increases. With the discharge pressure increasing, the plasma nonuniformity degree decreases in 2MHz discharge, while it increases in 13.56MHz and 41MHz discharge.
     In a dual frequency CCP, the situation is rather complex. The increase of discharge pressure does not change the shape of Ar line the intensity profiles along the vertical, while the HF and LF power does. It is due to the HF and LF power can change the distribution of plasma density and electron temperature along the vertical, while the pressure not. The plasma nonuniformity is also mainly caused by edge effect. There are much small nonuniformity in a dual frequency CCP than that of a single frequency CCP. It may be due to the HF and LF power is not uncoupled completely.
     4. The dissociation of CHF3 in a CCP driven by dual frequency sources (41MHz/2MHz) is experimentally investigated by using optical emission spectroscopy technique.
     It is observed that the increment rate of the relative density of F and H and the ratio of F/CF2 with increasing LF power are larger than that of HF power. It is caused by the different kinetics absorbed from sheaths of low and high frequency, where electrons can acquire more bouncing kinetics from low frequency oscillating sheath in favor of ionization and dissociation of parent gas and radicals in the plasma.
     It is also observed the relative density of F and H, and the ratio of F/CF2 decrease with increasing discharge pressure. This is due to the electron temperature decrease with increasing discharge pressure.
引文
[1]李定,陈银华,马锦秀,杨维纮,《等离子体物理学》,北京:高等教育出版社,2006。
    [2] M. A. Lieberman, and A. J. Lichtenberg, Principles of Plasma Discharges and Material Processing, New York: Wiley, 2005.蒲以康等译,《等离子体放电原理与材料处理》,北京:科学出版社,2007。
    [3]陈杰瑢,《低温等离子体化学及其应用》,北京:科学出版社,2001。
    [4]菅井秀郎(日),《等离子体电子工程学》,北京:科学出版社,2002。
    [5] M. A. Lieberman, The 9th Asia-Pacific Conference on Plasma Science and Technology, Huangshan, China 2008.
    [6]网易数码,http://digi.163.com/,2009。
    [7] V. Vahedi, C. K. Birdsall and M. A. Lieberman, Phys. Fluids B 1993 5 2719.
    [8] T. Kitajima, Y. Takeo, Z. Lj. Petrovi?, and T. Makabe, Appl. Phys. Lett. 2000 77 489.
    [9] P. C. Boyle, A. R. Ellingboe and M. M. Turner, J. Phys. D: Appl. Phys. 2004 37 697.
    [10] G. A. Hebner, E. V. Barnat, P. A. Miller, A. M. Paterson and J. P. Holland, Plasma Sources Sci. Technol. 2006 15 879.
    [11] T. Gans, J. Schulze, D. O’Connell, U. Czarnetzki, R. Faulkner, A. R. Ellingboe and M. M. Turner, Appl. Phys. Lett. 2006 89 261502.
    [12] M. A. Lieberman, J. P. Booth, P Chabert, J. M. Rax and M. M. Turner, Plasma Sources Sci. Technol. 2002 11 283.
    [13] A. perret, P. Chabert, J. P. Booth, J. Jolly, J. Guillon and Ph. Auvray, Appl. Phys. Lett. 2003 83 243.
    [14] V. N. Volynets, A. G. Ushakov, D. Sung, Y. N. Tolmachev, V. G. Pashkovsky, J. B. Lee, T. Y. Kwon and K. S. Jeong, J. Vac. Sci. Technol. A 2008 26 406.
    [15] T. Mussenbrock, T. Hemke, D. Ziegler, R. P. Brinkmann and M. Klick, Plasma Sources Sci. Technol. 2008 17 025018.
    [16] E. Kawamura, M. A. Lieberman, and A. J. Lichtenberg, Phys. Plasmas, 2006 13 053506.
    [17] M. M. Turner, and P. Chabert, Phys. Rev. Lett. 2006 96 205001.
    [18] P. C. Boyle, A. R. Ellingboe and M. M. Turner, J. Phys. D 2004 37 697.
    [19] P. C. Boyle, A. R. Ellingboe and M. M. Turner, Plasma Sources Sci. Technol. 2004 13 493 .
    [20] F. R. Myers, M. Ramaswami, and T. S. Cale, J. Electrochem. Soc. 1994 141 1313.
    [21] Z. Q. Guan, Z. L. Dai, and Y. N. Wang, Phys. Plasmas 2005 12 123502.
    [22] J. K. Lee, O. V. Manuilenko, N. Y. Babaeva, H. C. Kim and J. W. Shon, Plasma Sources Sci. Technol. 2005 14 89.
    [23] J. K. Lee, N. Y. Babaeva, H. C. Kim, O. V. Manuilenko, Jong Won Shon, IEEE Trans. on Plasma Sci. 2004 32 47.
    [24] G. Wakayama and K. Nanbu, IEEE Trans. on Plasma Sci. 2003 31 638.
    [25] S. Wang, X. Xu and Y. N. Wang, Phys. Plasmas 2007 14 113501.
    [26] X. S. Li, Z. H. Bi, D. L. Chang, Z. C. Li, S. Wang, X. Xu, Y. Xu, W. Q. Lu, A. M. Zhu and Y. N. Wang, Appl. Phys. Lett. 2008 93 031504.
    [27] T. Ohmori, G.Takeshi and T. Makabe, J. Phys. D: Appl. Phys. 2004 37 2223.
    [28] V. M. Donnelly and M. V. Malyshev, Appl. Phys. Lett. 2000 77 2467.
    [29] D. B. Hash, D. Bose, M. V. V. S. Rao, B. A. Cruden, M. Meyyappan and S. P. Sharma, J. Appl. Phys. 2001 90 2148.
    [30] B. A. Cruden, M. V. V. S. Rao, S. P. Sharma and M. Meyyappan, J. Appl. Phys. 2002 91 8955.
    [31] B. Bai, H. H. Sawin and B. A. Cruden, J. Appl. Phys. 2006 99 013308.
    [32] N. Shota, K. Michio and A. Hiroshi, Plasma Sources Sci. Technol. 2006 15 783.
    [33] M. Tuszewski, J. Appl. Phys. 2006 100, 053301.
    [34] J. P. Booth, C. S. Corr, G. A. Curley, J. Jolly and J. Guillon, Appl. Phys. Lett. 2006 88 151502.
    [35]王帅,《双频容性耦合等离子体物理特性的混合模拟》,大连理工大学博士学位论文,2008。
    [1]陈杰瑢,《低温等离子体化学及其应用》,北京:科学出版社,2001。
    [2] U. Fantz, Plasma Sources Sci. Technol. 2006 15 S137.
    [3]赫兹堡,《分子光谱与分子结构》(第一卷),北京:科学出版社, 1983。
    [4]刘莉莹,《用发射光谱法测量氮气直流辉光放电的转动温度》,大连理工大学硕士学位论文,2002。
    [5]张家良,《低温等离子体发射光谱学研究》,大连理工大学博士学位论文,2002。
    [6]夏慧荣,王祖赓,《分子光谱学和激光光谱学导论》(第一版),上海:华东师范大学出版社,1989。
    [7] B. Bai, H. H. Sawin and B. A. Cruden, J. Appl. Phys. 2006 99 013308.
    [8] D. M. Phillips, J. Phys. D 1976 9 507.
    [9] R. A. Gottscho, R. W. Field, K. A. Dick and W. Benesch, J. Mol Spectrosc. 1979 74 435.
    [10] M. Tuszewski, J. Appl. Phys. 2006 100 053301.
    [11] R. A. Porter and W. R. Harshbarger, J. Electrochem. Soc. 1979 126 460.
    [12] G. Hartmann and P. C. Johnson, J. Phys. B 1978 11 1597.
    [13] T. Fukuchi, A. Y. Wong, and R. F. Wuerker, J. Appl. Phys. 1995 77 4899.
    [14]陈法新,郑坚,李正宏,徐荣昆,数值计算与计算机应用,2007 28 221.
    [15] R.álvarez, A. Rodero and M.C. Quintero, Spectrochimica Acta Part B, 2002 57 1665.
    [16] J. W. Coburn and M. Chen, J. Appl.Phys. 1980 51 3134.
    [17] R. d’Agostino, F. Cramarossa, S. De Benedictis, F. Fracassi, L. Láska, and K. Ma?ek, Plasma Chem. Plasma Process, 1985 5 239.
    [18] K. Takahashi, M. Hori and T. Goto, Jpn. J. Appl. Phys. 1994 33 4745.
    [1] C. Lee, K. Hiromitsu, H. Masaaki and K. Akira, Solid State Technol. 2005 11 39.
    [2] J. K. Lee, O. V. Manuilenko, N. Y. Babaeva, H. C. Kim and J. W. Shon, Plasma Sources Sci. Technol. 2005 14 89.
    [3] H. C. Kim, J. K. Lee and J. W. Shon, Phys. Plasmas 2003 10 4545.
    [4] N. Shota, K. Michio and A. Hiroshi, Plasma Sources Sci. Technol. 2006 15 783.
    [5] B. Bai, H. H. Sawin and B. A. Cruden, J. Appl. Phys. 2006 99 013308.
    [6] M. Tuszewski, J. Appl. Phys. 2006 100 053301.
    [7] B. A. Cruden, M. V. V. S. Rao, S. P. Sharma and M. Meyyappan, J. Appl. Phys. 2002 91 8955 .
    [8] V. M. Donnelly and M. V. Malyshev, Appl. Phys. Lett. 2000 77 2467.
    [9] D. B. Hash, D. Bose, M. V. V. S. Rao, B. A. Cruden, M. Meyyappan and S. P. Sharma, J. Appl. Phys. 2001 90 2148.
    [10] S. Koike, T. Sakamoto, H. Kobori, H. Matsuura and H. Akatsuka, Jpn. J. Appl. Phys. 2004 43 5550.
    [11] C. Biloiu, X. Sun, Z. Harvey and E. Scime, Rev. Sci. Instrm. 2006 77 10F117.
    [12] R. A. Porter and W. R. Harshbarger, J. Electrochem. Soc. 1979 126 460.
    [13] Z. L. Dai, Y. N. Wang and T. C. Ma, Phys. Rev. E 2002 65 036403.
    [14] E. A. Edelberg and E. S. Aydil, J. Appl. Phys. 1999 86 4799.
    [15] E. V. Barnat, P. A. Miller and G. A. Hebner, Appl. Phys. Lett. 2007 90 201503.
    [16] V. A. Godyak and R. B. Piejak, Phys. Rev. Lett. 1990 65 996.
    [17] S. J. You, S. K. Ahn, and H. Y. Chang, Appl. Phys. 2006 89 171502.
    [18] V. A. Godyak, R. B. Piejak, and B.M. Alexandrovich, Phys. Rev. Lett. 1992 68 40.
    [19] H. C. Kim and J. K. Lee, Phys. Rev. Lett. 2004 93, 085003.
    [20] S. J. You, H. C. Kim, C. W. Chung, H. Y. Chang and J. K. Lee, J. Appl. Phys. 2003 94 7422.
    [21] H. Nassar, S. Pellerin, K. Musiol, O. Martinie, N. Pellerin and J. M. Cormier, J. Phys.D: Appl. Phys. 2004 37 1904.
    [22] N. U. Rehman, F. U. Khan, N. A. D. Khattak and M. Zakaullah, Phys. Lett. A 2008 372 1462.
    [23] T. Sakamoto, H. Matsuura and H. Akatsuka, J. Appl. Phys. 2007 101 023307.
    [24] X. J. Huang, Y. Xin, Q. H. Yuan and Z. Y. Ning, Phys. Plasmas 2008 15 073501.
    [25] X. J. Huang, Y. Xin, L. Yang, Q. H. Yuan and Z. Y. Ning, Phys. Plasmas 2008 15 113504.
    [26] Z. D. Kang and Y. K. Pu, Chin. Phys. Lett. 2002 19, 211.
    [27] V. Vahedi, C. K. Birdsall and M. A. Lieberman, Phys. Fluids B 1993 5, 2719.
    [28] E. Abdel-Fattah and H. Sugai, Appl. Phys. Lett. 2003 83, 1533.
    [29] H. Nagai, S. Takashima, M. Hiramatsu, M. ori and T Goto, J. Appl. Phys. 2002 91 2615.
    [30] M. Miyauchi, Y. Miyoshi, Z.Lj. Petrovic and T Makabe, Solid State Electronics 2007 51 1418.
    [31] F. Tochikubo, A. Suzuki, S. Kakuta, Y. Terazono and T. Makabe, J Appl. Phys. 1990 66 5532.
    [32] F. Tochikubo, T. Makabe, S. Kakuta, and A. Suzuki, J Appl. Phys. 1992 71 2143.
    [33] S. Kakuta, Z. Lj. Petrovic, F. Tochikubo, and T. Makabe, J Appl. Phys. 1993 74 4923.
    [34] T. Kitajima, M. Izawa, R. Hashido, N. Nakano, and T. Makabe, Appl. Phys. Lett. 1996 69 758.
    [35] G. A. Hebner, E. V. Barnat, P. A. Miller, A. M. Paterson and J. P. Holland, Plasma Sources Sci. Technol. 2006 15 879.
    [36] P. A. Miller, E. V. Barnat, G. A. Hebner, A. M. Paterson and J. P. Holland, Plasma Sources Sci. Technol. 2006 15, 889.
    [37] H. H. Goto, H. D. Lowe and T. Ohmi, J. Vac. Sci. Technol. A 1992 10 3048.
    [38] T. Kitajima, Y. Takeo, Z. L. Petrovic and T. Makabe, Appl.Phys. Lett. 2000 77 489.
    [39] P. C. Boyle, A. R. Ellingboe, M. M. Turner, J.Phys.D: Appl. Phys. 2004 37 697.
    [40] P. C. Boyle, A. R. Ellingboe, M. M. Turner, Plasma Sources Sci. Technol. 2004 13 493.
    [41] J. K. Lee, O. V. Manuilenko, N. Y. Babaeva, H. C. Kim and J. W. Shon, Plasma Sources Sci. Technol. 2005 14, 89.
    [42] E. Semmler, P. Awakowicz and A. V. Keudell, Plasma Sources Sci. Technol. 2007 16 839.
    [43] T. Gans, J. Schulze, D. O'Connell, U. Czarnetzki, R. Faulkner, A. R. Ellingboe, and M. M. Turner, Appl. Phys. Lett. 2006 89 261502.
    [44] R. A. Porter and W. R. Harshbarger, J. Electrochem. Soc. 1979 126 460.
    [45] D. M. Phillips, J.Phys.D: Appl. Phys. 1976 9 507.
    [46] S. Koike, T. Sakamoto, H. Kobori, H. Matsuura and H. Akatsuka, J. J. Appl. Phys. 2004 43 5550.
    [47] R. J. Visser, J. A. G. Baggerman, J. P. J. Poppelaars and E. J. H. Collart, J. Appl. Phys. 1992 71 5792.
    [48] A. Chelouah, E. Marode, G. Hartmann and S. Achat, J.Phys.D: Appl. Phys. 1994 27 940 .
    [49] H. C. Kim, J. K. Lee and J. W. Shon, Phys. Plasmas 2003 10 4545.
    [50] E. A. Edelberg and E. S. Aydil, J. Appl. Phys. 1999 86 4799.
    [51] I. V. Schweigert, Appl. Phys. Lett. 2008 92 261501.
    [52] M. A. Lieberman and A. J. Lichtenberg, Principles of Plasma Discharges and Materials Processing (Wiley, New York, 2005), P.252.
    [53] N. U. Rehman, F. U. Khan, N. A. D. Khattak and M. Zakaullah, Phys. Lett. A 2008 372 1462.
    [54] J. K. Lee, N. Y. Babaeva, H. C. Kim, O. V. Manuilenko, and J. W. Shon, IEEE Trans. Plasma Sci. 2004 32 47.
    [1] M. A. Lieberman and A. J. Lichtenberg, Principles of Plasma Discharges and Materials Processing (Wiley, New York, 2005), P.14.
    [2] A. perret, P. Chabert, J. P. Booth, J. Jolly, J. Guillon and Ph. Auvray, Appl. Phys. Lett. 2003 83 243.
    [3] V. N. Volynets, A. G. Ushakov, D. Sung, Y. N. Tolmachev, V. G. Pashkovsky, J. B. Lee, T. Y. Kwon and K. S. Jeong, J. Vac. Sci. Technol. A 2008 26 406.
    [4] G. A. Hebner, E. V. Barnat, P. A. Miller, A. M. Paterson and J. P. Holland, Plasma Sources Sci. Technol. 2006 15 879.
    [5] P. A. Miller, E. V. Barnat, G. A. Hebner, A. M. Paterson and J. P. Holland, Plasma Sources Sci. Technol. 2006 15 889.
    [6] H. H. Goto, H. D. Lowe and T. Ohmi, J. Vac. Sci. Technol. A 1992 10 3048.
    [7] T. Kitajima, Y. Takeo, Z. L. Petrovic and T. Makabe, Appl. Phys. Lett. 2000 77 489.
    [8] M. M. Turner and P. Chabert, Phys. Rev. Lett. 2006 96 205001.
    [9] M. A. Lieberman, J. P. Booth, P Chabert, J. M. Rax and M. M. Turner, Plasma Sources Sci. Technol. 2002 11 283.
    [10] T. Mussenbrock, T. Hemke, D. Ziegler, R. P. Brinkmann and M. Klick, Plasma Sources Sci. Technol. 2008 17 025018.
    [11] T. Czerwiec and D. B. Graves, J. Phys. D 2004 37 2827.
    [12] V. Vahedi, C. K. Birdsall and M. A. Lieberman Phys. Fluids B 1993 5 2719.
    [13] D. O'Connell, T. Gans, E. Semmler and P. Awakowicz Appl. Phys. Lett. 2008 93 081502.
    [1] M. A. Lieberman and A. J. Lichtenberg, Principles of Plasma Discharges and Materials Processing (Wiley, New York, 2005), P.14, P.333, P.254.
    [2] D. Eon, V. Raballand, G. Cartry and C. Cardinaud, J. Phys. D 2007 40 3951.
    [3] E. Soda, S. Kondo, S. Saito, Y. Ichihashi, A. Sato, H. Ohtake and S. Samukawa, J. Vac. Sci. Technol. A 2008 26 875.
    [4] H. Nagai, S. Takashima, M. Hiramatsu, M. Hori and T Goto, J. Appl. Phys. 2002 91, 2615.
    [5] M. Miyauchi, Y. Miyoshi, Z.Lj. Petrovic and T Makabe, Solid State Electronics 2007 51 1418.
    [6] H. H. Goto, H. D. Lowe and T. Ohmi, J. Vac. Sci. Technol. A 1992 10 3048.
    [7] T. Kitajima, Y. Takeo, Z. L. Petrovic and T. Makabe, Appl. Phys. Lett. 2000 77 489.
    [8] M. M. Turner and P. Chabert, Phys. Rev. Lett. 2006 96 205001.
    [9] E. Semmler, P. Awakowicz and A. V. Keudell, Plasma Sources Sci. Technol. 2007 16 839.
    [10] P. C. Boyle, A. R. Ellingboe and M. M. Turner, J. Phys. D 2004 37 697.
    [11] P. C. Boyle, A. R. Ellingboe and M. M. Turner, Plasma Sources Sci. Technol. 2004 13 493.
    [12] P. C. Boyle, J. Robiche and M. M. Turner, J. Phys. D 2004 37 1451.
    [13] W. Jiang, X. Xu, Z. L. Dai and Y. N. Wang, Phys. Plasmas 2008 15 033502.
    [14] H. C. Kim, J. K. Lee and J. W. Shon, Phys. Plasmas 2003 10 4545.
    [15] H. C. Kim and J. K. Lee, Phys. Rev. Lett. 2004 93 805003.
    [16] J. K. Lee, O. V. Manuilenko, N. Y. Babaeva, H. C. Kim and J. W. Shon, Plasma Sources Sci. Technol. 2005 14 89.
    [17] T. Gans, J. Schulze, D. O'Connell, U. Czarnetzki, R. Faulkner, A. R. Ellingboe, and M. M. Turner, Appl. Phys. Lett. 2006 89 261502.
    [18] X. J. Huang, Y. Xin, Q. H. Yuan and Z. Y. Ning, Phys. Plasmas, 2008 15 073501.
    [19] X. J. Huang, Y. Xin, L. Yang, Q. H. Yuan and Z. Y. Ning, Phys. Plasmas, 2008 15 113504.
    [20] X. S. Li, Z. H. Bi, D. L. Chang, Z. C. Li, S. Wang, X. Xu, Y. Xu, W. Q. Lu, A. M. Zhu and Y. N. Wang, Appl. Phys. Lett. 2008 93 031504.
    [21] D. O'Connell, T. Gans, E. Semmler and P. Awakowicz, Appl. Phys. Lett. 2008 93 081502.
    [22] Q. H. Yuan, C. Ye, Y. Xin, X. J. Huang, Z. Y. Ning, and G. Q. Yin, Appl. Phys. Lett. 2008 93 071503.
    [23] Q. H. Yuan, Y. Xin, G. Q. Yin, X. J. Huang, K. Sun and Z. Y. Ning, J. Phys. D 2008 41 205209.
    [24] Y. J. Xu, C. Ye, X. J. Huang, J. Yuan, Z. Y. Xing and Z. Y. Ning, Chin. Phys. Lett. 2008 25 2942.
    [25] M. Kazunobu, W. Gentaro, Y. Takashi and M. Toshiaki, J. Appl.Phys. 2002 91 9494.
    [26] S. Samukawa and S. Furuoya, Appl. Phys. Lett. 1993 63 2044.
    [27] X. Li, L. Ling, X. F. Hua, G. S. Oehrlein, Y. C. Wang, and H. M. Anderson, J. Vac. Sci. Technol. A 2003 21 1955.
    [28] J. P. Booth, C. S. Corr, G. A. Curley, J. Jolly and J. Guillon, Appl. Phys. Lett. 2006 88 151502.
    [29] V. Georgieva, A. Bogaerts, R. Gijbels, J. Appl. Phys. 2003 94 3748.
    [30] J. W. Coburn and M. Chen, J. Appl.Phys. 1980 51 3134.
    [31] A. Qayyum, Shaista Zeb, M. A. Naveed, S. A. Ghauri, M. Zakaullah, and A. Waheed, J. Appl.Phys. 2005 98 103303.
    [32] A. Chingsungnoen, J. I. B. Wilson, V. Amornkibamrung, C. Thomas, and T. Burinprakhon, Plasma Sources Sci. Technol. 2007 16 434.
    [33] D. M. Phillips, J. Phys. D 1976 9 507.
    [34] V. M. Donnelly and M. V. Malyshev, Appl. Phys. Lett. 2000 77 2467.
    [35] M. Tuszewski, J. Appl. Phys. 2006 100, 053301.
    [36] K. Takahashi, M. Hori and T. Goto, Jpn. J. Appl. Phys. 1994 33 4745.
    [37] D.M.Gruen, C.D.Zuiker, A.R.Krauss, X.Z.Pan, J. Vac. Sci. Technol. A 1995 13 1628 .
    [38] R.d’Agostino, L.Martinu, and V.Pische, Plasma Chem. Plasma Process, 1991 11 243.
    [39] U. Fantz, Plasma Sources Sci. Technol. 2006 15 S137.
    [40] E. A. Edelberg and E. S. Aydil, J. Appl. Phys. 1999 86 4799.
    [41] E. V. Barnat, P. A. Miller, G. A. Hebner, A. M. Paterson, Theodoros Panagopoulos, Edward Hammond, and J. Holland, Appl. Phys. Lett. 2007 90 201503.
    [42] V. A. Godyak and R. B. Piejak, Phys. Rev. Lett. 1990 65 996.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700