用户名: 密码: 验证码:
TiO_2基纳米管阵列用于光催化降解车内TVOC的基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于当前汽车内部TVOC严重危害人体健康。本论文以光催化技术在环境领域的广泛应用为背景,从分析汽车内饰材料释放TVOC及光催化技术的特点出发,通过搭建TVOC释放、阳极氧化及光催化降解TVOC实验台,研究了汽车内饰材料释放的TVOC的特征及TiO2基纳米管阵列光催化材料的制备工艺,并通过建立TiO2基纳米管阵列降解TVOC的数理模型,来揭示TVOC降解速率与光催化工艺参数的定量关系。
     实验研究发现TVOC释放系数随温度的升高、湿度的增加而升高;选择了三种预处理方法对纤维类内饰材料的TVOC作了去除效果研究,结果显示,三种预处理方法均能有效去除脚垫中TVOC,其中水洗风干法效果最好,且水洗温度越高,效果越好。
     利用阳极氧化法制备了TNAs并进行表征,结果显示,纳米管的形貌与溶剂有关,具有合适粘度及电导率的乙二醇适宜于作阳极氧化制备TNAs的溶剂;阳极面积过大或过小时,不能生成纳米管或生成后很快破裂,当极液比为0.05cm-1时,能生成形貌较好的TNAs;电极间距适中时,本研究条件下,电极间距为2cm时,形成垂直于钛片表面的规则排列的TNAs。
     基于TVOC分子在纳米管内的质量传递原理,建立了TANs用于光催化降解TVOC的反应速率数理模型,通过实验估计了模型参数,并将模型预测结果与实验数据对比,吻合较好,误差在±20%以内。模型结果表明:存在最优管径,使降解速率达到最大。
     实验研究了光催化活性较好的Fe2O3/TiO2、Cu2O/TNAs复合纳米管的制备工艺,分析了二者的形貌、光响应程度及对模拟车内TVOC气体的降解效果,发现降解效果的提高程度与Cu2O、Fe2O3的掺入量有关,Cu2O/TNAs复合纳米管的降解效果优于Fe2O3/TNAs;二者对TVOC的降解符合一级反应规律。
     实验研究了Cu2O/TNAs中含Cu量、反应温度、混合气体的湿度及含氧量对TVOC光催化降解的影响,建立了Cu2O/TNAs光催化降解TVOC的动力学模型,并将模型预测结果与实验数据对比,误差在±20%以内。模型显示Cu2O/TNAs催化降解该类TVOC的最佳催化剂含Cu量为31.37%,最佳含氧量为36.92%,最佳湿度为33.71%。
As is known to us all, automotive interior materials release lots of volatile organic compounds(VOC), which harm human health seriously. This paper outlines the TVOC emission from interior materials and the wide application of photocatalytic purification technology in the environment field. By setting up TVOC emission measuring bench and photocatalytic TVOC degradation bench, We studied the TVOC emission characteristic from interior materials and the preparation process of TiO2-based nanotube arrays, and established the mathematical medol of TVOC photocatalytic degradation on TiO2-based nanotube arrays, which reveals the quantitative relationship between the TVOC degradation rate and the photocatalytic process parameter.
     The results reveal that the TVOC release coefficient increases with increasing temperature and humidity and the three pretreatment methods can effectively remove TVOC in mats, in which washing and dryiny method works best, and the higher water temperature is beneficial to the release of TVOC.
     TiO2nanotubes arrays(TNAs) were prepared by anodic oxidation and were characterized by SEM, the results have showed that the nanotubes morphology is related to the solvent; ethylene glycol which is of moderate viscosity and conductivity is suitable to be solvent for preparation of TNAs; the anode area is too large or too small to generate nanotubes. Better morphology TNAs have been prepared with the ratio of anode area to electrolyte volume being0.05cm-1and the appropriate electrode gap.
     On the basic of mass transfer theory of TVOC molecular in nanotube, The TVOC photocatlytic degration rate model in TNAs has been proposed and model parameter has been estimated. And model values were compared with the experimental data, the error was less than20%. The model shows there is an optimal diameter for the maximum degradation rate.
     The preparation processes of Fe2O3/TNAs and Cu2O/TNAs composite nanotubes with better photocatalytic activity have been studied by experiment. The paper analyses the morphology, the optical response of Fe2O3/TNAs and Cu2O/TNAs and TVOC degradation effects on them, the results show the TVOC degradation effect on Cu2O/TNAs is better than on Fe2O3/TNAs, which are related to the Fe2O3and Cu2O amount, and the TVOC degradation on Fe2O3/TNAs and Cu2O/TNAs meets first-order kinetics.
     The effects of Cu content, temperature, humidity, oxygen content on photocatalytic degradation of TVOC were studied, and the kinetic model has been established. And model values were compared with the experimental data, the error was less than20%. The model shows the TVOC degradation effect is best when the doped-copper content, oxygen content and humidity is31.37%,36.92%and33.71%,respectively.
引文
[1]刘艳霖王国胜.深圳家用汽车车内空气污染状况调查分析[J].科技信息,2010(17):367.
    [2]Zhang G, Li T, Luo M, et al. Air pollution in the microenvironment of parked new cars[J]. Build Environ,2008,43(3):315-319.
    [3]吴洁珊.车内装饰材料释放有机污染物采样/分析方法及应用研究[学位论文].中山大学分析化学,2008.
    [4]张旭.中国汽车内环境污染情况调查今日公布结果[EB/OL].(2004-06-05)http://www.bj.xinhuanet.com/bjpd_sdzx/2004-06/05/content_2259083.htm.
    [5]Lynette A. Dibble G B R. Kinetics of the gas-solid heterogeneous photocatalytic oxidation of trichloroethylene by near UV illuminated titanium dioxide[J]. Letters Catalysis,1990, 4(4-6):345-354.
    [6]International Center For Technology Assessment. In-Car Air Pollution the Hidden Threat to Automobile Drivers [R].An Assessment of The Air Quality inside Automobile Passenger Compartments,2000.
    [7]L M. Indoor Air Quality in Relation to Sensory Irritation due to Volatile Organic Compounds [J]. ASHRAE Transactions,1986,92 (IA):306-316.
    [8]Cheng S K B A. Volatile Organic Compounds in New Car Interiors[R].15th International Clean Air & Environment Conference,2000.
    [9]Bauhof H, Wensing M. Standard Test Methods for the Determination of VOCs and SVOCs in Automobile Interiors[S].1999.
    [10]KERGER M J F A. Measurement of volatile organic compounds inside automobiles[J]. J Expo Anal Env Epid,2003,13(1):31-41.
    [11]Toshiaki Yoshida I M. A case study on identification of airborne organic compounds and time courses of their concentrations in the cabin of a new car for private use [J]. Environ Int,2006,32:58-79.
    [12]Fedoruk M J K. B D. Measurement of Volatile Organic Compounds inside Automobiles [J]. Journal of Eposure Analysis and Environmental Epidemiology,2003,13(1):31-41.
    [13]赵寿堂,宁占武,胡玢,等.车内空气中挥发性有机物的研究[J].环境污染治理技术与设备,2005,6(9):51-53.
    [14]陈小开.车内挥发性有机物污染的分析评价及吸附光催化研究[学位论文].湖南大学供热、供燃气、通风及空调工程,2011.
    [15]贺小凤,刘艳霖,王桂霞,等.汽车内装饰材料挥发性有机物GC-MS测定和分析[J].环境科学与技术,2010,33(12):149-151,163.
    [16]Black MS W L W A. Measuring the TVOC contributions of carpet using environmental chambers.:Proceedings of the Sixth International Conference on Indoor Air Quality and Climate., Helsinki, Finland,1993[C]. Indoor Air'93.401-405.
    [17]Wolkoff P C N P G. Documentation of field laboratory emission cell "FLEC"-identification of emission from carpet,linoleum,paint and sealant by modelling.: Proceedings of the Sixth International Conference on Indoor Air Quality and Climate., Helsinki, Finland,1993[C]. Indoor Air'93.349-554.
    [18]Sollinger S, Levsen K, Wunsch G. Indoor air pollution by organic emissions from textile floor coverings. Climate chamber studies under dynamic conditions[J]. Atmospheric Environment. Part B. Urban Atmosphere,1993,27(2):183-192.
    [19]Little J C, Hodgson A T, Gadgil A J. Modeling emissions of volatile organic compounds from new carpets[J]. Atmos Environ,1994,28(2):227-234.
    [20]Guo H, Murray F, Lee S C, et al. Evaluation of emissions of total volatile organic compounds from carpets in an environmental chamber[J]. Build Environ, 2004,39(2):179-187.
    [21]朱天乐.微环境空气质量控制[M].一.北京:北京航空航天大学出版社,2006.
    [22]张寅平 张立志 刘晓华 莫金汉.建筑环境传质学[M].一.北京:中国建筑工出版社,2006.
    [23]Wan-Kuen Jo J P H C. Photocatalytic destruction of VOCs for in-vehicle air cleaning[J]. Journal of Photochemistry and Photobiology A:Chemistry,2002,148(1-3):109-119.
    [24]Ollis D F. Photocatalytic purification and remediation of contaminated air and water[J]. Comptes Rendus de l'Academie des Sciences-Series IIC-Chemistry,2000,3(6):405-411.
    [25]郝吉明 马广大 王书肖.大气污染控制工程[M].三.北京:高等教育出版社,2010.309-313.
    [26]Ohtani B. Preparing articles on photocatalysis-beyond the illusions misconceptions misconceptions, and speculation[J]. Chem Lett,2008,37(3):217-229.
    [27]Hoffmann M R, Martin S T, Choi W, et al. Environmental Applications of Semiconductor Photocatalysis[J]. Chem Rev,1995,95(1):69-96.
    [28]Adams D M, Brus L, Chidsey C E D, et al. Charge Transfer on the Nanoscale:Current Status[J]. The Journal of Physical Chemistry B,2003,107(28):6668-6697.
    [29]Alivisatos A P. Perspectives on the Physical Chemistry of Semiconductor Nanocrystals[J]. The Journal of Physical Chemistry,1996,100(31):13226-13239.
    [30]Sumio L. Helical microtubules of graphitic carbon[J]. Nature,1991(354):56-58.
    [31]DV Bavykin F C W. Titanate and titania nanotubes:synthesis, properties and applications[M]. Cambrige,UK:Royal Society of Chemistry,2010.
    [32]Haehnel V, Fahler S, Schaaf P, et al. Towards smooth and pure iron nanowires grown by electrodeposition in self-organized alumina membranes[J]. Acta Mater, 2010,58(7):2330-2337.
    [33]Xie Y, Zhou L, Huang C, et al. Fabrication of nickel oxide-embedded titania nanotube array for redox capacitance application[J]. Electrochim Acta,2008,53(10):3643-3649.
    [34]Kang S H, Kim J, Kim Y, et al. Surface Modification of Stretched TiO2 Nanotubes for Solid-State Dye-Sensitized Solar Cells[J]. The Journal of Physical Chemistry C, 2007,111(26):9614-9623.
    [35]Hoyer P. Formation of a Titanium Dioxide Nanotube Array[J]. Langmuir, 1996,12(6):1411-1413.
    [36]Lee S, Jeon C, Park Y. Fabrication of TiO2 Tubules by Template Synthesis and Hydrolysis with Water Vapor[J]. Chem Mater,2004,16(22):4292-4295.
    [37]Lee J, Leu I, Hsu M, et al. Fabrication of Aligned TiO2 One-Dimensional Nanostructured Arrays Using a One-Step Templating Solution Approach[J]. The Journal of Physical Chemistry B,2005,109(27):13056-13059.
    [38]Brinda B. Lakshmi P K D A. Sol-Gel Template Synthesis of Semiconductor Nanostructures[J]. Chem Mater,1997,9(3):857-862.
    [39]Zhang M, Bando Y, Wada K. Sol-gel template preparation of TiO2 nanotubes and nanorods[J]. Jouranl of Exposure Analysis and Environmental Epidemiology, 2001,20(2):167-170.
    [40]Park I, Jang S, Hong J S, et al. Preparation of Composite Anatase TiO2 Nanostructure by Precipitation from Hydrolyzed TiC14 Solution Using Anodic Alumina Membrane[J]. Chem Mater,2003,15(24):4633-4636.
    [41]Gao H, Gosvami N N, Deng J, et al. Template-Assisted Patterning of Nanoscale Self-assembled Monolayer Arrays on Surfaces[J]. Langmuir,2006,22(19):8078-8082.
    [42]Ou H, Lo S. Review of titania nanotubes synthesized via the hydrothermal treatment: Fabrication, modification, and application[J]. Sep Purif Technol,2007,58(1):179-191.
    [43]Bavykin D V, Parmon V N, Lapkin A A, et al. The effect of hydrothermal conditions on the mesoporous structure of TiO2 nanotubes[J]. J Mater Chem,2004,14(22):3370-3377.
    [44]Kasuga T, Hiramatsu M, Hoson A, et al. Formation of Titanium Oxide Nanotube[J]. Langmuir,1998,14(12):3160-3163.
    [45]Miyauchi M, Tokudome H. Super-hydrophilic and transparent thin films of TiO2 nanotube arrays by a hydrothermal reaction[J]. J Mater Chem,2007,17(20):2095-2100.
    [46]Zwilling V, Darque-Ceretti E, Boutry-Forveille A, et al. Structure and physicochemistry of anodic oxide films on titanium and TA6V alloy[J]. Surf Interface Anal, 1999,27(7):629-637.
    [47]Zhao J, Wang X, Chen R, et al. Fabrication of titanium oxide nanotube arrays by anodic oxidation[J]. Solid State Commun,2005,134(10):705-710.
    [48]Zhao J, Wang X, Sun T, et al. In situ templated synthesis of anatase single-crystal nanotube arrays[J]. Nanotechnology,2005,16(10):2450-2454.
    [49]Ong K G, Varghese O K, Mor G K, et al. Application of finite-difference time domain to dye-sensitized solar cells:The effect of nanotube-array negative electrode dimensions on light absorption[J]. Sol Energ Mat Sol C,2007,91(4):250-257.
    [50]J. Frank A, Kopidakis N, Lagemaat J V D. Electrons in nanostructured TiO2 solar cells: transport, recombination and photovoltaic properties[J].2004.
    [51]Mor G K, Shankar K, Paulose M, et al. Use of Highly-Ordered TiO2 Nanotube Arrays in Dye-Sensitized Solar Cells[J]. Nano Lett,2005,6(2):215-218.
    [52]Mor G K, Shankar K, Paulose M, et al. Use of Highly-Ordered TiO2 Nanotube Arrays in Dye-Sensitized Solar Cells[J]. Nano Lett,2005,6(2):215-218.
    [53]Adachi M, Murata Y, Okada I, et al. Formation of Titania Nanotubes and Applications for Dye-Sensitized Solar Cells[J]. J Electrochem Soc,2003,150(8):G488-G493.
    [54]Maggie P A K S. Application of highly-ordered TiO 2 nanotube-arrays in heterojunction dye-sensitized solar cells[J]. Journal of Physics D:Applied Physics,2006,39(12):2498.
    [55]Albu S P, Ghicov A, Macak J M, et al.250 μm long anodic TiO2 nanotubes with hexagonal self-ordering[J]. physica status solidi (RRL)-Rapid Research Letters, 2007,1(2):R65-R67.
    [56]Wan J, Yan X, Ding J, et al. Self-organized highly ordered TiO2 nanotubes in organic aqueous system[J]. Mater Charact,2009,60(12):1534-1540.
    [57]Paulose M, Prakasam H E, Varghese O K, et al. TiO2 Nanotube Arrays of 1000 μm Length by Anodization of Titanium Foil:Phenol Red Diffusion[J]. The Journal of Physical Chemistry C,2007,111(41):14992-14997.
    [58]Gong D, Grimes C A, Varghese O K, et al. Titanium oxide nanotube arrays prepared by anodic oxidation[J]. J Mater Res,2001,16(12):3331-3334.
    [59]Cai Q, Paulose M, Varghese O K, et al. The Effect of Electrolyte Composition on the Fabrication of Self-Organized Titanium Oxide Nanotube Arrays by Anodic Oxidation[J]. J Mater Res,2005,20(01):230-236.
    [60]Mor G K, Shankar K, Paulose M, et al. Enhanced Photocleavage of Water Using Titania Nanotube Arrays[J]. Nano Lett,2004,5(1):191-195.
    [61]R. Beranek H H A P. Self-Organized Porous Titanium Oxide Prepared in H2SO4/HF Electrolytes [J]. Electrochem. Solid-State Lett.,6(3):B12-B14.
    [62]Ruan C, Paulose M, Varghese O K, et al. Enhanced photoelectrochemical-response in highly ordered TiO2 nanotube-arrays anodized in boric acid containing electrolyte[J]. Sol Energ Mat Sol C,2006,90(9):1283-1295.
    [63]Yin Y, Jin Z, Hou F, et al. Synthesis and Morphology of TiO2 Nanotube Arrays by Anodic Oxidation Using Modified Glycerol-Based Electrolytes[J]. J Am Ceram Soc, 2007,90(8):2384-2389.
    [64]Paulose M, Mor G K, Varghese O K, et al. Visible light photoelectrochemical and water-photoelectrolysis properties of titania nanotube arrays[J]. Journal of Photochemistry and Photobiology A:Chemistry,2006,178(1):8-15.
    [65]Beranek R, Tsuchiya H, Sugishima T, et al. Enhancement and limits of the photoelectrochemical response from anodic TiO2 nanotubes [J]. Appl Phys Lett, 2005,87(24):243114-243116.
    [66]Macak J M, Sirotna K, Schmuki P. Self-organized porous titanium oxide prepared in Na2SO4/NaF electrolytes[J]. Electrochim Acta,2005,50(18):3679-3684.
    [67]Cai Q, Paulose M, Varghese O K, et al. The Effect of Electrolyte Composition on the Fabrication of Self-Organized Titanium Oxide Nanotube Arrays by Anodic Oxidation[J]. J Mater Res,2005,20(01):230-236.
    [68]Ghicov A, Tsuchiya H, Macak J M, et al. Titanium oxide nanotubes prepared in phosphate electrolytes[J]. Electrochem Commun,2005,7(5):505-509.
    [69]Tsuchiya H, Macak J M, Taveira L, et al. Self-organized TiO2 nanotubes prepared in ammonium fluoride containing acetic acid electrolytes[J]. Electrochem Commun, 2005,7(6):576-580.
    [70]孙岚,李静,庄惠芳,等.TiO2纳米管阵列的制备、改性及其应用研究进展[J].无机化学学报,2007,23(11):1841-1850.
    [71]Propst E K, Kohl P A. The Electrochemical Oxidation of Silicon and Formation of Porous Silicon in Acetonitrile[J]. J Electrochem Soc,1994,141(4):1006-1013.
    [72]Foll H, Christophersen M, Carstensen J, et al. Formation and application of porous silicon[J]. Materials Science and Engineering:R:Reports,2002,39(4):93-141.
    [73]Foll H, Langa S, Carstensen J, et al. Pores in Ⅲ-Ⅴ Semiconductors[J]. Adv Mater, 2003,15(3):183-198.
    [74]Grimes C A. Synthesis and application of highly ordered arrays of TiO2 nanotubes[J]. J Mater Chem,2007,17(15):1451-1457.
    [75]Mor G K, Varghese O K, Paulose M, et al. A review on highly ordered, vertically oriented TiO2 nanotube arrays:Fabrication, material properties, and solar energy applications[J]. 2006.
    [76]Paulose M, Shankar K, Yoriya S, et al. Anodic Growth of Highly Ordered TiO2 Nanotube Arrays to 134 u m in Length[J]. The Journal of Physical Chemistry B, 2006,110(33):16179-16184.
    [77]Paulose M, Prakasam H E, Varghese O K, et al. TiO2 Nanotube Arrays of 1000 u m Length by Anodization of Titanium Foil:Phenol Red Diffusion[J]. The Journal of Physical Chemistry C,2007,111(41):14992-14997.
    [78]Prakasam H E, Shankar K, Paulose M, et al. A New Benchmark for TiO2 Nanotube Array Growth by Anodization[J]. The Journal of Physical Chemistry C, 2007,111(20):7235-7241.
    [79]Macak J M, Hildebrand H, Marten-Jahns U, et al. Mechanistic aspects and growth of large diameter self-organized TiO2 nanotubes[J]. J Electroanal Chem,2008,621(2):254-266.
    [80]Mohapatra S K, Misra M, Mahajan V K, et al. A novel method for the synthesis of titania nanotubes using sonoelectrochemical method and its application for photoelectrochemical splitting of water[J]. J Catal,2007,246(2):362-369.
    [81]Ruan C, Paulose M, Varghese O K, et al. Enhanced photoelectrochemical-response in highly ordered TiO2 nanotube-arrays anodized in boric acid containing electrolyte[J]. Sol Energ Mat Sol C,2006,90(9):1283-1295.
    [82]Watcharenwong A, Chanmanee W, de Tacconi N R, et al. Self-organized TiO2 nanotube arrays by anodization of Ti substrate:Effect of anodization time, voltage and medium composition on oxide morphology and photoelectrochemical response[J]. J Mater Res, 2007,22(11):3186-3195.
    [83]Chanmanee W, Watcharenwong A, Chenthamarakshan C R, et al. Titania nanotubes from pulse anodization of titanium foils[J]. Electrochem Commun,2007,9(8):2145-2149.
    [84]Macak J M, Tsuchiya H, Taveira L, et al. Smooth Anodic TiO2 Nanotubes[J]. Angewandte Chemie International Edition,2005,44(45):7463-7465.
    [85]曹春斌.阳极氧化TIO:纳米管阵列的制备、生长机理及光催化应用研究[学位论文].安徽大学,2011.
    [86]El Ruby Mohamed A, Rohani S. Modified TiO2 nanotube arrays (TNTAs):progressive strategies towards visible light responsive photoanode, a review[J]. Energy & Environmental Science,2011,4(4):1065-1086.
    [87]Ruan C, Paulose M, Varghese O K, et al. Fabrication of Highly Ordered TiO2 Nanotube Arrays Using an Organic Electrolyte[J]. The Journal of Physical Chemistry B, 2005,109(33):15754-15759.
    [88]Mor C A G L. TiO2 Nanotube Arrays Synthesis, Properties, and Applications[M]. New York:Springer Science p Business Media,LLC 2009.22-26.
    [89]Karthik Shankar G K M H. Highly-ordered TiO2 nanotube arrays up to 220 μm in length: use in water photoelectrolysis and dye-sensitized solar cells [J]. Nanotechnology,2007,18(6).
    [90]Paulose M, Shankar K, Yoriya S, et al. Anodic Growth of Highly Ordered TiO2 Nanotube Arrays to 134 u m in Length[J]. The Journal of Physical Chemistry B, 2006,110(33):16179-16184.
    [91]Shankar K, Mor G K, Fitzgerald A, et al. Cation Effect on the Electrochemical Formation of Very High Aspect Ratio TiO2 Nanotube Arrays in Formamide-Water Mixtures[J]. The Journal of Physical Chemistry C,2006,111(1):21-26.
    [92]Xu C, Shaban Y A, Ingler Jr. W B, et al. Nanotube enhanced photoresponse of carbon modified (CM)-n-TiO2 for efficient water splitting[J]. Sol Energ Mat Sol C, 2007,91(10):938-943.
    [93]Zhao Y, Li Y, Wang C, et al. Carbon-doped anatase TiO2 nanotube array/glass and its enhanced photocatalytic activity under solar light[J]. Solid State Sci,2013,15(0):53-59.
    [94]Chen L, Ho Y, Guo W, et al. Enhanced visible light-induced photoelectrocatalytic degradation of phenol by carbon nanotube-doped TiO2 electrodes[J]. Electrochim Acta, 2009,54(15):3884-3891.
    [95]Chen L, Ho Y, Guo W, et al. Enhanced visible light-induced photoelectrocatalytic degradation of phenol by carbon nanotube-doped TiO2 electrodes[J]. Electrochim Acta, 2009,54(15):3884-3891.
    [96]Cong Y, Li X, Qin Y, et al. Carbon-doped TiO2 coating on multiwalled carbon nanotubes with higher visible light photocatalytic activity[J]. Applied Catalysis B:Environmental, 2011,107(1鈥?):128-134.
    [97]Geng J, Yang D, Zhu J, et al. Nitrogen-doped TiO2 nanotubes with enhanced photocatalytic activity synthesized by a facile wet chemistry method[J]. Mater Res Bull, 2009,44(1):146-150.
    [98]Vitiello R P, Macak J M, Ghicov A, et al. N-Doping of anodic TiO2 nanotubes using heat treatment in ammonia[J]. Electrochem Commun,2006,8(4):544-548.
    [99]Xu J, Ao Y, Chen M, et al. Photoelectrochemical property and photocatalytic activity of N-doped TiO2 nanotube arrays[J]. Appl Surf Sci,2010,256(13):4397-4401.
    [100]Zhang Y, Fu W, Yang H, et al. Synthesis and characterization of P-doped TiO2 nanotubes[J]. Thin Solid Films,2009,518(1):99-103.
    [101]Chen X, Zhang X, Su Y, et al. Preparation of visible-light responsive PF-codoped TiO2 nanotubes[J]. Appl Surf Sci,2008,254(20):6693-6696.
    [102]Lei L, Su Y, Zhou M, et al. Fabrication of multi-non-metal-doped TiO2 nanotubes by anodization in mixed acid electrolyte[J]. Mater Res Bull,2007,42(12):2230-2236.
    [103]Asahi R, Morikawa T, Ohwaki T, et al. Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides[J]. Science,2001,293(5528):269-271.
    [104]Chen X, Glans P, Qiu X, et al. X-ray spectroscopic study of the electronic structure of visible-light responsive N-, C- and S-doped TiO2[J]. J Electron Spectrosc, 2008,162(2):67-73.
    [105]Tang X, Li D. Sulfur-Doped Highly Ordered TiO2 Nanotubular Arrays with Visible Light Response[J]. The Journal of Physical Chemistry C,2008,112(14):5405-5409.
    [106]Lu N, Quan X, Li J, et al. Fabrication of Boron-Doped TiO2 Nanotube Array Electrode and Investigation of Its Photoelectrochemical Capability[J]. The Journal of Physical Chemistry C,2007,111 (32):11836-11842.
    [107]Zhao W, Ma W, Chen C, et al. Efficient Degradation of Toxic Organic Pollutants with Ni2O3/TiO2-xBx under Visible Irradiation[J]. J Am Chem Soc,2004,126(15):4782-4783.
    [108]Su Y, Chen S, Quan X, et al. A silicon-doped TiO2 nanotube arrays electrode with enhanced photoelectrocatalytic activity[J].2008.
    [109]Ileperuma O A, Tennakone K, Dissanayake W D D P. Photocatalytic behaviour of metal doped titanium dioxide:Studies on the Photochemical Synthesis of Ammonia on Mg/TiO2 Catalyst Systems[J].1990.
    [110]刘守新,刘鸿.光催化及光电催化基础与应用[M].北京:化学工业出版社,2007.81.
    [111]Choi W, Termin A, Hoffmann M R. Effects of Metal-Ion Dopants on the Photocatalytic Reactivity of Quantum-Sized TiO2 Particles[J]. Angewandte Chemie International Edition in English,1994,33(10):1091-1092.
    [112]宁成云,王玉强,郑华德,等.Cu掺杂二氧化钛纳米管阵列的研究[J].硅酸盐通报,2009,28(4):775-778.
    [113]Liu S, Yang L, Xu S, et al. Photocatalytic activities of C-N-doped TiO2 nanotube array/carbon nanorod composite[J].2009.
    [114]Ghicov A, Schmidt B, Kunze J, et al. Photoresponse in the visible range from Cr doped TiO2 nanotubes[J]. Chem Phys Lett,2007,433(4-6):323-326.
    [115]Jianling Zhao X W Y K. Photoelectrochemical Activities of W-Doped Titania Nanotube Arrays Fabricated by Anodization [J].2008,20(14):1213-1215.
    [116]Adan C, Bahamonde A, Fernandez-Garcia M, et al. Structure and activity of nanosized iron-doped anatase TiO2 catalysts for phenol photocatalytic degradation [J]. Applied Catalysis B:Environmental,2007,72(1-2):11-17.
    [117]Sun L, Li J, Wang C L, et al. An electrochemical strategy of doping Fe3+ into TiO2 nanotube array films for enhancement in photocatalytic activity[J]. Sol Energ Mat Sol C, 2009,93(10):1875-1880.
    [118]Ranjit K T, Viswanathan B. Synthesis, characterization and photocatalytic properties of iron-doped TiO2 catalysts[J]. Journal of Photochemistry and Photobiology A:Chemistry, 1997,108(1):79-84.
    [119]Navi-o J A, Colon G, Maci as M, et al. Iron-doped titania semiconductor powders prepared by a sol-gel method. Part Ⅰ:synthesis and characterization[J]. Applied Catalysis A:General,1999,177(1):111-120.
    [120]Zhu J, Chen F, Zhang J, et al. Fe3+-TiO2 photocatalysts prepared by combining sol-gel method with hydrothermal treatment and their characterization[J]. Journal of Photochemistry and Photobiology A:Chemistry,2006,180(1-2):196-204.
    [121]Piera E, Tejedor-Tejedor M I, Zorn M E, et al. Relationship concerning the nature and concentration of Fe(Ⅲ) species on the surface of TiO2 particles and photocatalytic activity of the catalyst[J]. Applied Catalysis B:Environmental,2003,46(4):671-685.
    [122]Di Paola A, Garci-a-Lopez E, Marcr G, et al. Surface characterisation of metal ions loaded TiO2 photocatalysts:structure- activity relationship[J]. Applied Catalysis B: Environmental,2004,48(3):223-233.
    [123]Adan C, Bahamonde A, Fernandez-Garcfa M, et al. Structure and activity of nanosized iron-doped anatase TiO2 catalysts for phenol photocatalytic degradation [J]. Applied Catalysis B:Environmental,2007,72(1-2):11-17.
    [124]Xin B, Ren Z, Wang P, et al. Study on the mechanisms of photoinduced carriers separation and recombination for Fe3+-TiO2 photocatalysts[J]. Appl Surf Sci, 2007,253(9):4390-4395.
    [125]Chen S, Paulose M, Ruan C, et al. Electrochemical ly synthesized CdS nanoparticle-modified TiO2 nanotube-array photoelectrodes:Preparation, characterization, and application to photoelectrochemical cells[J]. Journal of Photochemistry and Photobiology A:Chemistry,2006,177(2-3):177-184.
    [126]Huang L, Peng F, Wang H, et al. Controlled synthesis of octahedral Cu2O on TiO2 nanotube arrays by electrochemical deposition[J]. Mater Chem Phys,2011,130(1 2):316-322.
    [127]Zhang S, Zhang S, Peng F, et al. Electrodeposition of polyhedral Cu2O on TiO2 nanotube arrays for enhancing visible light photocatalytic performance[J]. Electrochem Commun, 2011,13(8):861-864.
    [128]Seabold J A, Shankar K, Wilke R H T, et al. Photoelectrochemical Properties of Heterojunction CdTe/TiO2 Electrodes Constructed Using Highly Ordered TiO2 Nanotube Arrays[J]. Chem Mater,2008,20(16):5266-5273.
    [129]Zhang H, Quan X, Chen S, et al. "Mulberry-like" CdSe Nanoclusters Anchored on TiO2 Nanotube Arrays:A Novel Architecture with Remarkable Photoelectrochemical Performance[J]. Chem Mater,2009,21(14):3090-3095.
    [130]Ratanatawanate C, Xiong C, Balkus K J. Fabrication of PbS Quantum Dot Doped TiO2 Nanotubes[J]. ACS Nano,2008,2(8):1682-1688.
    [131]Sarkar S K, Kim J Y, Goldstein D N, et al. In2S3 Atomic Layer Deposition and Its Application as a Sensitizer on TiO2 Nanotube Arrays for Solar Energy Conversion[J]. The Journal of Physical Chemistry C,2010,114(17):8032-8039.
    [132]Kuang S, Yang L, Luo S, et al. Fabrication, characterization and photoelectrochemical properties of Fe2O3 modified TiO2 nanotube arrays[J]. Appl Surf Sci, 2009,255(16):7385-7388.
    [133]Yuxin Y A Z J. Enhanced solar water-splitting efficiency using core/sheath heterostructure CdS/TiO 2 nanotube arrays[J]. Nanotechnology,2007,18(49):495608.
    [134]Sun W, Yu Y, Pan H, et al. CdS Quantum Dots Sensitized TiO2 Nanotube-Array Photoelectrodes[J]. J Am Chem Soc,2008,130(4):1124-1125.
    [135]Li X, Cheng Y, Liu L, et al. Enhanced photoelectrochemical properties of TiO2 nanotubes co-sensitized with CdS nanoparticles and tetrasulfonated copper phthalocyanine[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2010,353(2-3):226-231.
    [136]Bai J, Li J, Liu Y, et al. A new glass substrate photoelectrocatalytic electrode for efficient visible-light hydrogen production:CdS sensitized TiO2 nanotube arrays[J]. Applied Catalysis B:Environmental,2010,95(3-4):408-413.
    [137]Zhang J, Tang C, Bang J H. CdS/TiO2-SrTiO3 heterostructure nanotube arrays for improved solar energy conversion efficiency[J]. Electrochem Commun, 2010,12(8):1124-1128.
    [138]Zhang S, Zhang S, Peng F, et al. Electrodeposition of polyhedral Cu2O on TiO2 nanotube arrays for enhancing visible light photocatalytic performance[J]. Electrochem Commun, 2011,13(8):861-864.
    [139]Cong Y, Li Z, Zhang Y, et al. Synthesis of α-Fe2O3/TiO2 nanotube arrays for photoelectro-Fenton degradation of phenol[J]. Chem Eng J,2012,191(0):356-363.
    [140]Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature,1972,238(5358):37-38.
    [141]Frank S N, Bard A J. Heterogeneous photocatalytic oxidation of cyanide ion in aqueous solutions at titanium dioxide powder[J]. J Am Chem Soc,1977,99(1):303-304.
    [142]Liu H, Lian Z, Ye X, et al. Kinetic analysis of photocatalytic oxidation of gas-phase formaldehyde over titanium dioxide[J]. Chemosphere,2005,60(5):630-635.
    [143]Ye X, Chen D, Gossage J, et al. Photocatalytic oxidation of aldehydes:Byproduct identification and reaction pathway[J]. Journal of Photochemistry and Photobiology A: Chemistry,2006,183(1-2):35-40.
    [144]Benoit-Marquie F, Wilkenhoner U, Simon V, et al. VOC photodegradation at the gas-solid interface of a TiO2 photocatalyst:Part I:1-butanol and 1-butylamine[J]. Journal of Photochemistry and Photobiology A:Chemistry,2000,132(3):225-232.
    [145]Peral J, Ollis D F. Heterogeneous photocatalytic oxidation of gas-phase organics for air purification:Acetone,1-butanol, butyraldehyde, formaldehyde, and m-xylene oxidation[J]. J Catal,1992,136(2):554-565.
    [146]Obuchi E, Sakamoto T, Nakano K, et al. Photocatalytic decomposition of acetaldehyde over TiO2/SiO2 catalyst[J]. Chem Eng Sci,1999,54(10):1525-1530.
    [147]Stengl V, Houskova V, Bakardjieva S, et al. Photocatalytic degradation of acetone and butane on mesoporous titania layers[J]. New J Chem,2010,34(9):1999-2005.
    [148]Kim S B, Hong S C. Kinetic study for photocatalytic degradation of volatile organic compounds in air using thin film TiO2 photocatalyst[J]. Applied Catalysis B: Environmental,2002,35(4):305-315.
    [149]Sauer M L, Ollis D F. Acetone Oxidation in a Photocatalytic Monolith Reactor[J]. J Catal, 1994,149(1):81-91.
    [150]Vincent G, Marquaire P M, Zahraa O. Abatement of volatile organic compounds using an annular photocatalytic reactor:Study of gaseous acetone[J]. Journal of Photochemistry and Photobiology A:Chemistry,2008,197(2-3):177-189.
    [151]Zorn M E, Tompkins D T, Zeltner W A, et al. Photocatalytic oxidation of acetone vapor on TiO2/ZrO2 thin films[J]. Applied Catalysis B:Environmental,1999,23(1):1-8.
    [152]Sauer M L, Ollis D F. Photocatalyzed Oxidation of Ethanol and Acetaldehyde in Humidified Air[J]. J Catal,1996,158(2):570-582.
    [153]Vorontsov A V, Dubovitskaya V P. Selectivity of photocatalytic oxidation of gaseous ethanol over pure and modified TiO2[J]. J Catal,2004,221(1):102-109.
    [154]Kozlov D V, Paukshtis E A, Savinov E N. The comparative studies of titanium dioxide in gas-phase ethanol photocatalytic oxidation by the FTIR in situ method[J]. Applied Catalysis B:Environmental,2000,24(1):L7-L12.
    [155]Peral J, Ollis D F. Heterogeneous photocatalytic oxidation of gas-phase organics for air purification:Acetone,1-butanol, butyraldehyde, formaldehyde, and m-xylene oxidation[J]. J Catal,1992,136(2):554-565.
    [156]Zhang S, Zheng Z, Wang J, et al. Heterogeneous photocatalytic decomposition of benzene on lanthanum-doped TiO2 film at ambient temperature[J]. Chemosphere, 2006,65(11):2282-2288.
    [157]Zhong J, Wang J, Tao L, et al. Photocatalytic degradation of gaseous benzene over TiO2/Sr2CeO4:Kinetic model and degradation mechanisms[J]. J Hazard Mater, 2007,139(2):323-331.
    [158]Zhang Y P, Yang R, Xu Q J, et al. Characteristics of photocatalytic oxidation of toluene, benzene, and their mixture[J]. J Air Waste Manag Assoc,2007,57(1):94-101.
    [159]D'Hennezel O, Pichat P, Ollis D F. Benzene and toluene gas-phase photocatalytic degradation over H2O and HCL pretreated TiO2:by-products and mechanisms[J]. Journal of Photochemistry and Photobiology A:Chemistry,1998,118(3):197-204.
    [160]Augugliaro V, Coluccia S, Loddo V, et al. Photocatalytic oxidation of gaseous toluene on anatase TiO2 catalyst:mechanistic aspects and FT-IR investigation[J]. Applied Catalysis B:Environmental,1999,20(1):15-27.
    [161]Einaga H, Mochiduki K, Teraoka Y. Photocatalytic Oxidation Processes for Toluene Oxidation over TiO2 Catalysts[J]. Catalysts,2013,3(1):219-231.
    [162]Attwood A L, Edwards J L, Rowlands C C, et al. Identification of a Surface Alkylperoxy Radical in the Photocatalytic Oxidation of Acetone/O2 over TiO2[J]. The Journal of Physical Chemistry A,2003,107(11):1779-1782.
    [163]Chen D H, Ye X, Li K. Oxidation of PCE with a UV LED Photocatalytic Reactor[J]. Chem Eng Technol,2005,28(1):95-97.
    [164]Choi W, Ko J Y, Park H, et al. Investigation on TiO2-coated optical fibers for gas-phase photocatalytic oxidation of acetone[J]. Applied Catalysis B:Environmental, 2001,31(3):209-220.
    [165]刘洋,尚静,王忠.Ti02纳米粒子光催化降解室内挥发性有机污染物苯的研究[J].2006.
    [166]左国民,徐敏,程振兴,等.挥发性有机物的气相光解及光催化降解研究[J].2001.
    [167]Ken-ichi Okamoto Y Y H T. Kinetics of heterogeneous photocatalytic decomposition of phenol over anatase TiO2 power[J]. Bull Chem Soc Jpn,1985,58(7):2023-2027.
    [168]Chen F, Yang X, Wu Q. Photocatalytic Oxidation of Escherischia coli, Aspergillus niger, and Formaldehyde under Different Ultraviolet Irradiation Conditions[J]. Environ Sci Technol,2009,43(12):4606-4611.
    [169]Egerton T A, King C J. The influence of light intensity on photoactivity in TiO2 pigmented systems[J]. Journal of the Oil and Colour Chemists Association, 1979,62(10):386-391.
    [170]Obee T N, Brown R T. TiO2 Photocatalysis for Indoor Air Applications:Effects of Humidity and Trace Contaminant Levels on the Oxidation Rates of Formaldehyde, Toluene, and 1,3-Butadiene[J]. Environ Sci Technol,1995,29(5):1223-1231.
    [171]杨莉萍,刘震炎.光催化氧化有机物所需光强的数学模型和估计方法[J].上海交通大学学报,2005,39(11):1895-1898.
    [172]Obee T N, Hay S O. Effects of Moisture and Temperature on the Photooxidation of Ethylene on Titania[J]. Environ Sci Technol,1997,31(7):2034-2038.
    [173]Sano T, Negishi N, Takeuchi K, et al. Degradation of toluene and acetaldehyde with Pt-loaded TiO2 catalyst and parabolic trough concentrator[J]. Sol Energy, 2004,77(5):543-552.
    [174]Hager S, Bauer R. Heterogeneous photocatalytic oxidation of organics for air purification by near UV irradiated titanium dioxide[J]. Chemosphere,1999,38(7):1549-1559.
    [175]Fu X, Clark L A, Zeltner W A, et al. Effects of reaction temperature and water vapor content on the heterogeneous photocatalytic oxidation of ethylene[J]. Journal of Photochemistry and Photobiology A:Chemistry,1996,97(3):181-186.
    [176]Zorn M E, Tompkins D T, Zeltner W A, et al. Photocatalytic oxidation of acetone vapor on TiO2/ZrO2 thin films[J]. Applied Catalysis B:Environmental,1999,23(1):1-8.
    [177]Park D, Zhang J, Ikeue K, et al. Photocatalytic Oxidation of Ethylene to CO2 and H2O on Ultrafine Powdered TiO2 Photocatalysts in the Presence of O2 and H2O[J]. J Catal, 1999,185(1):114-119.
    [178]Ao C H, Lee S C. Combination effect of activated carbon with TiO2 for the photodegradation of binary pollutants at typical indoor air level[J]. Journal of Photochemistry and Photobiology A:Chemistry,2004,161(2-3):131-140.
    [179]Chang C P, Chen J N, Lu M C. Heterogeneous photocatalytic oxidation of acetone for airpurification by near UV-irradiated titanium dioxide[J]. J Environ Sci Health A Tox Hazard Subst Environ Eng,2003,38(6):1131-1143.
    [180]Luo Y, Ollis D F. Heterogeneous Photocatalytic Oxidation of Trichloroethylene and Toluene Mixtures in Air:Kinetic Promotion and Inhibition, Time-Dependent Catalyst Activity[J]. J Catal,1996,163(1):1-11.
    [181]Kim S B, Hong S C. Kinetic study for photocatalytic degradation of volatile organic compounds in air using thin film TiO2 photocatalyst[J]. Applied Catalysis B: Environmental,2002,35(4):305-315.
    [182]Raillard C, Hequet V, Le Cloirec P, et al. Kinetic study of ketones photocatalytic oxidation in gas phase using TiO2-containing paper:effect of water vapor[J]. Journal of Photochemistry and Photobiology A:Chemistry,2004,163(3):425-431.
    [183]Kuo-Hua W, Huan-Hung T, Yung-Hsu H. A study of photocatalytic degradation of trichloroethylene in vapor phase on TiO2 photocatalyst[J]. Chemosphere, 1998,36(13):2763-2773.
    [184]Obee T N, Brown R T. TiO2 Photocatalysis for Indoor Air Applications:Effects of Humidity and Trace Contaminant Levels on the Oxidation Rates of Formaldehyde, Toluene, and 1,3-Butadiene[J]. Environ Sci Technol,1995,29(5):1223-1231.
    [185]Kim S B, Hwang H T, Hong S C. Photocatalytic degradation of volatile organic compounds at the gas-solid interface of a TiO2 photocatalyst[J]. Chemosphere, 2002,48(4):437-444.
    [186]李文彩,鹿院卫,常梦媛,等.反应物流速和湿度对室内污染物甲醛的光催化氧化影响的实验研究[J].2007.
    [187]Jo W, Park J, Chun H. Photocatalytic destruction of VOCs for in-vehicle air cleaning[J]. 2002.
    [188]Yang R, Zhang Y P, Zhao R Y. An improved model for analyzing the performance of photocatalytic oxidation reactors in removing volatile organic compounds and its application[J]. J Air Waste Manag Assoc,2004,54(12):1516-1524.
    [189]Sauer M L, Ollis D F. Acetone Oxidation in a Photocatalytic Monolith Reactor[J]. J Catal, 1994,149(1):81-91.
    [190]Obee T N. Photooxidation of Sub-Parts-per-Million Toluene and Formaldehyde Levels on Titania Using a Glass-Plate Reactor[J].1996.
    [191]Deveau P, Arsac F, Thivel P, et al. Different methods in TiO2 photodegradation mechanism studies:Gaseous and TiO2-adsorbed phases[J]. J Hazard Mater, 2007,144(3):692-697.
    [192]Sanchez B, Cardona A I, Romero M, et al. Influence of temperature on gas-phase photo-assisted mineralization of TCE using tubular and monolithic catalysts[Z].1999:54, 369-377.
    [193]曹小艳.用于车内VOC治理的光催化剂的制备及其性能研究[学位论文].湖北工业大学化学工艺,2010.31-41.
    [194]Augugliaro V, Coluccia S, Loddo V, et al. Photocatalytic oxidation of gaseous toluene on anatase TiO2 catalyst:mechanistic aspects and FT-IR investigation[J]. Applied Catalysis B:Environmental,1999,20(1):15-27.
    [195]李晓红,徐自力,于连香,等TiO2/SiO2纳米粒子气相光催化降解甲苯的研究[J].吉林大学学报(理学版),2005,43(2):247-251.
    [196]Brigden C T, Poulston S, Twigg M V, et al. Photo-oxidation of short-chain hydrocarbons over titania[J]. Applied Catalysis B:Environmental,2001,32(1-2):63-71.
    [197]Yamazaki-Nishida S, Fu X, Anderson M A, et al. Chlorinated byproducts from the photoassisted catalytic oxidation of trichloroethylene and tetrachloroethylene in the gas phase using porous TiO2 pellets[J]. Journal of Photochemistry and Photobiology A: Chemistry,1996,97(3):175-179.
    [198]Zhang Z, Wang C, Zakaria R, et al. Role of Particle Size in Nanocrystalline TiO2-Based Photocatalysts[J]. The Journal of Physical Chemistry B,1998,102(52):10871-10878.
    [199]Maira A J, Yeung K L, Lee C Y, et al. Size Effects in Gas-Phase Photo-oxidation of Trichloroethylene Using Nanometer-Sized TiO2 Catalysts[J]. J Catal, 2000,192(1):185-196.
    [200]邹学军.Ti02基纳米材料制备及光催化降解气相甲苯的研究[学位论文].大连理工大学,2011.
    [201]Gong D, Grimes C A, Varghese O K, et al. Titanium oxide nanotube arrays prepared by anodic oxidation[J]. J Mater Res,2001,16(12):3331-3334.
    [202]Mor G K, Varghese O K, Paulose M, et al. A review on highly ordered, vertically oriented TiO2 nanotube arrays:Fabrication, material properties, and solar energy applications[J]. 2006.
    [203]Macak J M, Hildebrand H, Marten-Jahns U, et al. Mechanistic aspects and growth of large diameter self-organized TiO2 nanotubes[J]. J Electroanal Chem,2008,621(2):254-266.
    [204]Kang S H, Kim J, Kim H S, et al. Formation and mechanistic study of self-ordered TiO2 nanotubes on Ti substrate[J]. J Ind Eng Chem,2008,14(1):52-59.
    [205]张舒,陶杰,王玲,等.TiO2纳米管阵列生长进程及微观结构的研究[J].稀有金属材料与工程,2009,38(1):29-33.
    [206]孙岚,李静,庄惠芳,等.TiO2纳米管阵列的制备、改性及其应用研究进展[J].无机化学学报,2007,23(11):1841-1850.
    [207]Allam N K, Grimes C A. Effect of cathode material on the morphology and photoelectrochemical properties of vertically oriented TiO2 nanotube arrays[J]. Sol Energ Mat Sol C,2008,92(11):1468-1475.
    [208]Vega V, Cerdeira M A, Prida V M, et al. Electrolyte influence on the anodic synthesis of TiO2 nanotube arrays[J]. J Non-Cryst Solids,2008,354(47-51):5233-5235.
    [209]Feng X, Macak J M, Schmuki P. Robust Self-Organization of Oxide Nanotubes over a Wide pH Range[J]. Chem Mater,2007,19(7):1534-1536.
    [210]Sreekantan S, Lockman Z, Hazan R, et al. Influence of electrolyte pH on TiO2 nanotube formation by Ti anodization[J]. J Alloy Compd,2009,485(1-2):478-483.
    [211]Zhang Y, Yang R, Xu Q, et al. Characteristics of Photocatalytic Oxidation of Toluene, Benzene, and Their Mixture[J]. J Air Waste Manage,2007,57(1):94-101.
    [212]Fedoruk M J, Kerger B D. Measurement of volatile organic compounds inside automobiles[dagger][J]. Jouranl of Exposure Analysis and Environmental Epidemiology,2003,13(1):31-41.
    [213]Cometto-Mufniz J E, Cain W S. Thresholds for odor and nasal pungency[J]. Physiol Behav, 1990,48(5):719-725.
    [214]Yoshida T, Matsunaga I. A case study on identification of airborne organic compounds and time courses of their concentrations in the cabin of a new car for private use[J]. Environ Int,2006,32(1):58-79.
    [215]环境保护部科技标准司.GB/T 27630—2011--2011.乘用车内空气质量评价指南[S].北京:中国环境科学出版社,2011.
    [216]Wolkoff P. Impact of air velocity, temperature, humidity, and air on long-term voc emissions from building products[J]. Atmos Environ,1998,32(14-15):2659-2668.
    [217]阴育新.TiO2纳米管阵列的阳极氧化制备与光电催化性能[学位论文].天津:天津大学,2007.83.
    [218]Kasuga T, Hiramatsu M, Hoson A, et al. Titania Nanotubes Prepared by Chemical Processing[J]. Adv Mater,1999,11(15):1307-1311.
    [219]Chen Q, Zhou W, Du G H, et al. Trititanate Nanotubes Made via a Single Alkali Treatment[J]. Adv Mater,2002,14(17):1208-1211.
    [220]Tsai C, Teng H. Regulation of the Physical Characteristics of Titania Nanotube Aggregates Synthesized from Hydrothermal Treatment[J]. Chem Mater, 2004,16(22):4352-4358.
    [221]Nian J, Teng H. Hydrothermal Synthesis of Single-Crystalline Anatase TiO2 Nanorods with Nanotubes as the Precursor[J]. The Journal of Physical Chemistry B, 2006,110(9):4193-4198.
    [222]Gong D, Grimes C A, Varghese O K, et al. Titanium oxide nanotube arrays prepared by anodic oxidation[J]. J Mater Res,2001,16(12):3331-3334.
    [223]Varghese O K, Gong D, Paulose M, et al. Crystallization and high-temperature structural stability of titanium oxide nanotube arrays[J]. J Mater Res,2003,18(01):156-165.
    [224]Varghese O K, Paulose M, Shankar K, et al. Water-Photolysis Properties of Micron-Length Highly-Ordered Titania Nanotube-Arrays[Z].2005:5,1158-1165.
    [225]Palmas S, Da Pozzo A, Mascia M, et al. Effect of the preparation conditions on the performance of TiO2 nanotube arrays obtained by electrochemical oxidation[J]. Int J Hydrogen Energ,2011,36(15):8894-8901.
    [226]Omidvar H, Goodarzi S, Seif A, et al. Influence of anodization parameters on the morphology of TiO2 nanotube arrays[J]. Superlattice Microst,2011,50(1):26-39.
    [227]Kilinc N, nnik E, Ozturk Z Z. Fabrication of TiO2 nanotubes by anodization of Ti thin films for VOC sensing[J]. Thin Solid Films,2011,520(3):953-958.
    [228]Liu Y, Wang D, Cao L, et al. Structural engineering of highly ordered TiO2 nanotube array by periodic anodization of titanium[J]. Electrochem Commun,2012,23(0):68-71.
    [229]Okada M, Tajima K, Yamada Y, et al. Self-Organized Formation of Short TiO2 Nanotube Arrays By Complete Anodization of Ti Thin Films[J]. Physics Procedia, 2012,32(0):714-718.
    [230]Wang J, Lin Z. Freestanding TiO2 Nanotube Arrays with Ultrahigh Aspect Ratio via Electrochemical Anodization[J]. Chem Mater,2008,20(4):1257-1261.
    [231]Macak J M, Tsuchiya H, Ghicov A, et al. TiO2 nanotubes:Self-organized electrochemical formation, properties and applications[J]. Current Opinion in Solid State and Materials Science,2007,11(1-2):3-18.
    [232]Prakasam H E, Shankar K, Paulose M, et al. A New Benchmark for TiO2 Nanotube Array Growth by Anodization[J]. The Journal of Physical Chemistry C, 2007,111 (20):7235-7241.
    [233]Kim S E, Lim J H, Lee S C, et al. Anodically nanostructured titanium oxides for implant applications[J]. Electrochim Acta,2008,53(14):4846-4851.
    [234]Paulose M, Shankar K, Yoriya S, et al. Anodic Growth of Highly Ordered TiO2 Nanotube Arrays to 134 μm in Length[J]. The Journal of Physical Chemistry B, 2006,110(33):16179-16184.
    [235]Zeng X, Gan Y X, Clark E, et al. Amphiphilic and photocatalytic behaviors of TiO2 nanotube arrays on Ti prepared via electrochemical oxidation[J]. J Alloy Compd, 2011,509(24):L221-L227.
    [236]Srimuangmak K, Niyomwas S. Effects of Voltage and Addition of Water on Photocatalytic Activity of TiO2 Nanotubes Prepared by Anodization Method[J]. Energy Procedia,2011,9(0):435-439.
    [237]Shankar K, Mor G K, Fitzgerald A, et al. Cation Effect on the Electrochemical Formation of Very High Aspect Ratio TiO2 Nanotube Arrays in Formamide-Water Mixtures[J]. The Journal of Physical Chemistry C,2006,111(1):21-26.
    [238]Sun K, Chen Y, Kuo M, et al. Synthesis and characterization of highly ordered TiO2 nanotube arrays for hydrogen generation via water splitting[J]. Mater Chem Phys, 2011,129(1-2):35-39.
    [239]El Ruby Mohamed A, Rohani S. Modified TiO2 nanotube arrays (TNTAs):progressive strategies towards visible light responsive photoanode, a review[J]. Energy & Environmental Science,2011,4(4):1065-1086.
    [240]Sun L, Li J, Wang C L, et al. An electrochemical strategy of doping Fe3+ into TiO2 nanotube array films for enhancement in photocatalytic activity[J]. Sol Energ Mat Sol C, 2009,93(10):1875-1880.
    [241]Mo J, Zhang Y, Xu Q, et al. Photocatalytic purification of volatile organic compounds in indoor air:A literature review[J]. Atmos Environ,2009,43(14):2229-2246.
    [242]Lockman Z, Sreekantan S, Ismail S, et al. Influence of anodisation voltage on the dimension of titania nanotubes[J]. J Alloy Compd,2010,503(2):359-364.
    [243]Oh H, Kim I, Jang K, et al. Influence of electrolyte and anodic potentials on morphology of titania nanotubes[J]. Metals and Materials International,2012,18(4):673-677.
    [244]Lockman Z, Sreekantan S, Ismail S, et al. Influence of anodisation voltage on the dimension of titania nanotubes[J]. J Alloy Compd,2010,503(2):359-364.
    [245]Zhao J, Yang X. Photocatalytic oxidation for indoor air purification:a literature review[J]. Build Environ,2003,38(5):645-654.
    [246]Chen W, Zhang J S. UV-PCO device for indoor VOCs removal:Investigation on multiple compounds effect[J]. Build Environ,2008,43(3):246-252.
    [247]廖振华,陈建军,姚可夫,等.纳米Ti02光催化剂负载化的研究进展[J].无机材料学 报,2004,19(1):17-24.
    [248]Deveau P, Arsac F, Thivel P, et al. Different methods in TiO2 photodegradation mechanism studies:Gaseous and Ti02-adsorbed phases[J]. J Hazard Mater, 2007,144(3):692-697.
    [249]Mo J, Zhang Y, Yang R. Novel insight into VOC removal performance of photocatalytic oxidation reactors[J]. Indoor Air,2005,15(4):291-300.
    [250]Rothenberger G, Moser J, Graetzel M, et al. Charge carrier trapping and recombination dynamics in small semiconductor particles[J]. J Am Chem Soc,1985,107(26):8054-8059.
    [251]Li Puma G, Salvad6-Estivill I, Obee T N, et al. Kinetics rate model of the photocatalytic oxidation of trichloroethylene in air over TiO2 thin films[J]. Sep Purif Technol, 2009,67(2):226-232.
    [252]Chang H T, Wu N, Zhu F. A kinetic model for photocatalytic degradation of organic contaminants in a thin-film TiO2 catalyst[J]. Water Res,2000,34(2):407-416.
    [253]Bird R. B. S W E L. Transport Phenomena[M].北京:化学工业出版社,2004.490-520.
    [254]郝吉明.马广大王书肖.大气污染控制工程[M].三.北京:高等教育出版社.307-308.
    [255]陆燧丽,毛慈波.光在组织中传输的光强分布的蒙特卡罗模拟[J].华中理工大学学报,1995,23(7):1-5.
    [256]刘守新,刘鸿.光催化及光电催化基础与应用[M].北京:化学工业出版社,2007.66-67.
    [257]Yoriya S, Grimes C A. Self-assembled anodic TiO2 nanotube arrays:electrolyte properties and their effect on resulting morphologies[J]. J Mater Chem,2011,21(1):102-108.
    [258]Zhang S, Zhang S, Peng F, et al. Electrodeposition of polyhedral Cu2O (?)m TiO2 nanotube arrays for enhancing visible light photocatalytic performance[J]. Electrochem Commun, 2011,13(8):861-864.
    [259]Han C, Li Z, Shen J. Photocatalytic degradation of dodecyl-benzenesulfonate over TiO2-Cu2O under visible irradiation[J]. J Hazard Mater,2009,168(1):215-219.
    [260]Liu H, Shon H K, Sun X, et al. Preparation and characterization of visible light responsive Fe2O3-TiO2 composites[J]. Appl Surf Sci,2011,257(13):5813-5819.
    [261]Zang L, Macyk W, Lange C, et al. Visible-Light Detoxification and Charge Generation by Transition Metal Chloride Modified Titania[J]. Chemistry-A European Journal, 2000,6(2):379-384.
    [262]Rami-rez-Ortiz J, Ogura T, Medina-Valtierra J, et al. A catalytic application of Cu2O and CuO films deposited over fiberglass[J]. Appl Surf Sci,2001,174(3-4):177-184.
    [263]Xiong L, Yang F, Yan L, et al. Bifunctional photocatalysis of TiO2/Cu2O composite under visible light:Ti3+ in organic pollutant degradation and water splitting[J].J Phys Chem Solids,2011,72(9):1104-1109.
    [264]Li Z, Liu J, Wang D, et al. Cu2O/Cu/TiO2 nanotube Ohmic heterojunction arrays with enhanced photocatalytic hydrogen production activity[J]. Int J Hydrogen Energ, 2012,37(8):6431-6437.
    [265]Li L, Lei J, Ji T. Facile fabrication of p-n heteroj unctions for Cu2O submicroparticles deposited on anatase TiO2 nanobelts[J]. Mater Res Bull,2011,46(11):2084-2089.
    [266]Yang L, Luo S, Li Y, et al. High Efficient Photocatalytic Degradation of p-Nitrophenol on a Unique Cu2O/TiO2 p-n Heterojunction Network Catalyst[J]. Environ Sci Technol, 2010,44(19):7641-7646.
    [267]Huang L, Peng F, Wang H, et al. Preparation and characterization of Cu2O/TiO2 nano-nano heterostructure photocatalysts[J]. Catalysis Communications, 2009,10(14):1839-1843.
    [268]El Ruby Mohamed A, Rohani S. Modified TiO2 nanotube arrays (TNTAs):progressive strategies towards visible light responsive photoanode, a review[J]. Energy & Environmental Science,2011,4(4):1065-1086.
    [269]Zhang S, Zhang S, Peng F, et al. Electrodeposition of polyhedral Cu2O on TiO2 nanotube arrays for enhancing visible light photocatalytic performance[J]. Electrochem Commun, 2011,13(8):861-864.
    [270]Han C, Li Z, Shen J. Photocatalytic degradation of dodecyl-benzenesulfonate over TiO2-Cu2O under visible irradiation[J]. J Hazard Mater,2009,168(1):215-219.
    [271]Jiang G, Wang R, Jin H, et al. Preparation of Cu2O/TiO2 composite porous carbon microspheres as efficient visible light-responsive photocatalysts[J]. Powder Technol, 2011,212(1):284-288.
    [272]Xu L, Xu H, Wu S, et al. Synergy effect over electrodeposited submicron Cu2O films in photocatalytic degradation of methylene blue[J]. Appl Surf Sci,2012,258(11):4934-4938.
    [273]刘阳生,易莎.活性炭纤维负载纳米Mn02氧化甲苯的实验研究[J].应用基础与工程科学学报,2005,13(3):276-283.
    [274]Noguchi T, Fujishima A, Sawunyama P, et al. Photocatalytic Degradation of Gaseous Formaldehyde Using TiO2 Film[J]. Environ Sci Technol,1998,32(23):3831-3833.
    [275]Zhong J, Wang J, Tao L, et al. Photocatalytic degradation of gaseous benzene over TiO2/Sr2CeO4:Kinetic model and degradation mechanisms[J].2007.
    [276]Mo J, Zhang Y, Xu Q, et al. Photocatalytic purification of volatile organic compounds in indoor air:A literature review[J]. Atmos Environ,2009,43(14):2229-2246.
    [277]邹丽霞,钟秦,刘庆成.Ti02纳米线阵列膜的制备及其光催化降解气相甲醛动力学[J].化工学报,2006,57(2):311-317.
    [278]Yang R, Zhang Y, Xu Q, et al. A mass transfer based method for measuring the reaction coefficients of a photocatalyst[J]. Atmos Environ,2007,41(6):1221-1229.
    [279]Zorn M E, Tompkins D T, Zeltner W A, et al. Photocatalytic oxidation of acetone vapor on TiO2/ZrO2 thin films[J]. Applied Catalysis B:Environmental,1999,23(1):1-8.
    [280]Zhang Y, Yang R, Xu Q, et al. Characteristics of Photocatalytic Oxidation of Toluene, Benzene, and Their Mixture[J]. J Air Waste Manage,2007,57(1):94-101.
    [281]Umar A, Abaker M, Faisal M, et al. High-Yield Synthesis of Well-Crystalline-Fe2O3 Nanoparticles:Structural, Optical and Photocatalytic Properties[Z].2011:11,3474-3480.
    [282]Spray R L, McDonald K. J, Choi K. Enhancing Photoresponse of Nanoparticulate a-Fe2O3 Electrodes by Surface Composition Tuning[J]. The Journal of Physical Chemistry C,2011,115(8):3497-3506.
    [283]Kuang S, Yang L, Luo S, et al. Fabrication, characterization and photoelectrochemical properties of Fe2O3 modified TiO2 nanotube arrays[J]. Appl Surf Sci, 2009,255(16):7385-7388.
    [284]Sanchez Mora E, Gomez Barojas E, Rojas Rojas E, et al. Morphological, optical and photocatalytic properties of TiO2-Fe2O3 multilayers[J]. Sol Energ Mat Sol C, 2007,91(15-16):1412-1415.
    [285]Zhang Z, Hossain M F, Takahashi T. Self-assembled hematite (α-Fe2O3) nanotube arrays for photoelectrocatalytic degradation of azo dye under simulated solar light irradiation[J]. Applied Catalysis B:Environmental,2010,95(3-4):423-429.
    [286]Jeon T H, Choi W, Park H. Photoelectrochemical and Photocatalytic Behaviors of Hematite-Decorated Titania Nanotube Arrays:Energy Level Mismatch versus Surface Specific Reactivity[J]. The Journal of Physical Chemistry C,2011,115(14):7134-7142.
    [287]Cong Y, Li Z, Zhang Y, et al. Synthesis of α-Fe2O3/TTiO2 nanotube arrays for photoelectro-Fenton degradation of phenol[J]. Chem Eng J,2012,191(0):356-363.
    [288]Zhang S, Zhang S, Peng F, et al. Electrodeposition of polyhedral Cu2O on TiO2 nanotube arrays for enhancing visible light photocatalytic performance[J]. Electrochem Commun, 2011,13(8):861-864.
    [289]Kontos A I, Likodimos V, Stergiopoulos T, et al. Self-Organized Anodic TiO2 Nanotube Arrays Functionalized by Iron Oxide Nanoparticles[J]. Chem Mater,2009,21(4):662-672.
    [290]Sanchez Mora E, Gomez Barojas E, Rojas Rojas E, et al. Morphological, optical and photocatalytic properties of TiO2-Fe2O3 multilayers[J]. Sol Energ Mat Sol C, 2007,91(15-16):1412-1415.
    [291]胡永茂,项金钟,李茂琼,等.纳米TiO2/Fe2O3复合材料的制备及其红外吸收性能研究[J].宇航材料工艺,2003,33(4):30-33.
    [292]Zhang S, Zhang S, Peng F, et al. Electrodeposition of polyhedral Cu2O on TiO2 nanotube arrays for enhancing visible light photocatalytic performance[J]. Electrochem Commun, 2011,13(8):861-864.
    [293]张声森.TiO_2纳米管阵列的制备、改性及其光催化性能研究[学位论文].华南理工大学,2012.124.
    [294]Kuang S, Yang L, Luo S, et al. Fabrication, characterization and photoelectrochemical properties of Fe2O3 modified TiO2 nanotube arrays[J]. Appl Surf Sci, 2009,255(16):7385-7388.
    [295]Mori K, Kanai S, Hara T, et al. Development of Ruthenium-Hydroxyapatite-Encapsulated Superparamagnetic γ-Fe2O3 Nanocrystallites as an Efficient Oxidation Catalyst by Molecular Oxygen[J]. Chem Mater,2007,19(6):1249-1256.
    [296]李光亮.负载Cu_2O型TiO_2纳米管的制备表征及其光电性能研究[学位论文].太原理工大学,2012.83.
    [297]Zhong L, Haghighat F, Blondeau P, et al. Modeling and physical interpretation of photocatalytic oxidation efficiency in indoor air applications[J]. Build Environ, 2010,45(12):2689-2697.
    [298]Kim S B, Hwang H T, Hong S C. Photocatalytic degradation of volatile organic compounds at the gas-solid interface of a TiO2 photocatalyst[J]. Chemosphere, 2002,48(4):437-444.
    [299]Zhang S, Zhang S, Peng F, et al. Electrodeposition of polyhedral Cu2O on TiO2 nanotube arrays for enhancing visible light photocatalytic performance[J]. Electrochem Commun, 2011,13(8):861-864.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700