用户名: 密码: 验证码:
施用不同缓/控释氮肥对旱地—作物系统N_2O直接排放和间接排放的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
气候变暖是当今全球性的环境问题,其主要原因是大气中温室气体浓度的不断增加。N2O是重要的温室气体之一,主要源于农业氮肥的施用。为满足未来不断增长的人口对粮食纤维的需要,氮肥使用将持续增加,其无疑将导致更多的N2O进入大气中。缓/控释氮肥作为一种新型改性氮肥,已被列为我国中长期科学与技术发展规划纲要(2006-2020)优先发展主题之一。研究其在农田生态系统上对N2O的直接和间接排放及影响因素有助于全面理解缓/控释氮肥对N2O的减排效果及未来全面推广应用的可行性,进而为后《京都议定书》时代我国温室气体减排政策提供技术支持和科学依据,具有重要意义。
     本研究目的是:①研究不同类型的典型缓/控释氮肥对旱地-作物系统N2O直接和间接排放的影响,探索产N20的相关微生物过程;②比较施用不同类型缓/控释氮肥的环境效益和经济效益,并在此基础上评价不同类型缓/控释氮肥对N2O减排的技术和经济可行性。
     本研究采用室内培养实验,盆栽试验,小区试验和大田试验相结合的方法定量研究了不同类型的缓/控释氮肥对旱地-作物系统N20的直接和间接减排效果。本研究室外试验于2006-2008年冬小麦和夏玉米4个生长季上设了7种氮肥处理。普通尿素(U)作为常规氮肥,另6种氮肥分别代表缓/控释氮肥中的三大类型。其中钙镁磷肥包膜尿素(CMCU),树脂包膜尿素(PCU)和硫磺包膜尿素(SCU)三种包膜肥料代表缓/控释氮肥中的物理型;尿甲醛(UF)代表缓/控释氮肥中的化学型;尿素添加硝化抑制剂双氰胺和脲酶抑制剂氢醌(BIHD)和尿素添加增铵一号(BIEA)代表缓/控释氮肥中的生物化学型。同时以不施肥处理作为对照(CK)。根据当地农作习惯,施肥方式为撒施;常规施氮水平冬小麦和夏玉米生长季分别为250kgN/hm2和300kgN/hm2,并于盆栽试验和大田试验增设了减施30%氮的低氮水平处理。N2O的采集和分析采用静态暗箱-气相色谱法,氨挥发采用原位通气法测定。室内实验主要是通过微生物分离纯化手段分离出自养硝化菌和异养硝化/好氧反硝化菌,并在不同土壤WFPS条件下进行无菌土反接种培养实验,以研究其对土壤内外源氮转化为N2O的作用。
     研究结果显示:1.冬小麦季N2O直接排放主要取决于土壤温度而不是土壤水分,玉米生长季则正好相反。玉米季N2O直接排放最适宜的土壤WFPS为55%-60%。冬小麦季累积N2O排放平均仅为玉米生长季的15%左右。不同缓/控释氮肥的N素释放特性不同决定了其施入土壤后N2O直接排放的季节性动态变化有差异。包膜肥料和尿素处理的N2O直接排放更易受施肥后首次强降雨的影响,但降雨对BIHD处理的N2O直接排放几乎不产生影响。
     尿甲醛和尿素添加生物抑制剂处理不论在小麦还是玉米生长季其N2O直接排放均较尿素处理为低,其减排率波动范围为15%-63%;但包膜肥料处理(CMCU, PCU和SCU)在不同的气候条件下N2O直接排放具有不同的表现特征。施肥后有强降雨,则包膜肥料处理N2O直接排放显著高于尿素处理,其增加率高达8%-99%;施肥后持续晴天则较尿素处理为低,减排率波动范围为4%-39%。
     2.不同生长季不同肥料处理的氨挥发速率及氨损失不同。水热条件和肥料本身的N素释放特性决定了其氨挥发的差异。在相同的田间环境条件下,冬小麦生长季不同肥料处理的氨挥发损失表现为BIEA>CMCU>SCU>UF>U>PCU;2007和2008玉米生长季不同肥料处理的氨挥发损失分别表现为U>PCU> CMCU>SCU>BIHD >UF和BIEA>U>BIHD>SCU>UF>PCU。而不同氮肥处理的间接N2O排放大小顺序与氨挥发的规律一致。总之,与尿素处理相比PCU处理无论是冬小麦季还是玉米生长季其间接N2O排放一直小于尿素处理,而BIEA则一直显著大于尿素处理。UF处理在玉米生长季间接N2O排放也一直小于尿素处理。
     3.与尿素相比,包膜肥料SCU和PCU无论在小麦上还是玉米生产上有明显的增产效果,且氮肥利用率较高。UF在小麦生产上表现为减产效应,但在玉米生产上表现为明显增产效应。BIEA和BIHD在玉米上也有增产效果,但增产率两者有差异。测土配方施肥是提高氮肥利用率的前提。净效益比较结果表明种植玉米对环境的影响要远远高于小麦。从不同缓/控释氮肥总N20排放来说,在小麦季上PCU,SCU,UF有较好的总N2O减排效果,而在玉米季上UF和BIHD总减排效果最好,平均减排率分别达41%和56%。结合经济效益和环境安全性可知在小麦作物上施用树脂包膜尿素和硫磺包膜尿素,在玉米作物上施用尿甲醛既能提高农民收益,又能使环境影响最小,应为肥料选择时的首选,值得政府大力推广
     4.在添加外源N尿素的条件下,同一假单胞菌属(Pseudomonas sp.)的两株异养硝化/好氧反硝化菌株HX2和XM1在不同水分条件下产N2O不同。在30%的土壤WFPS条件下产N2O皆高于60%WFPS条件,尤其XM1菌在60%的水分条件下几乎不产生N2O。在50%~60%土壤WFPS条件下N2O的产生有异养硝化菌的参与,土壤WFPS越低,异养硝化菌或好氧反硝化菌所起的作用越大。而较高含水量如50%WFPS条件的土壤中,N2O的产生过程主要是以自养硝化为主,其产N2O量几乎是异养硝化/好氧反硝化菌处理的2.1倍。反映在生产实践上若是低土壤水分条件,则适宜施入低C/N的肥料,有助于减少N2O的产生并达到减排的目的。
     本研究综合考虑了不同缓/控释氮肥氮的总损失情况,将环境效益和经济效益联系起来,为全面客观评价不同缓/控释氮肥在N2O减排上的作用提供了新的思路。
Climate change and global warming continue to be subject to considerable scientific debate and public concern. Nitrous oxide (N2O) is an important trace gas that causes global warming and stratospheric ozone depletion. Nitrogen fertilization is considered as a primary source of N2O emissions from agricultural soils. The consumption of synthetic nitrogen fertilizer in agriculture has increased over the past several decades and will continue to increase to meet the food and fibre demands of the growing global population, which will no doubt result in the release of additional N2O into the atmosphere. A wise use of synthetic fertilizer N is important to mitigate N2O emissions.
     Slow/controlled-release N fertilizers, proposed as an alternative to conventional N fertilizers, have become a priority topic in the Chinese middle- and long-term science and technology development plan guidelines (2006-2020). To compare and assess the direct and indirect N2O emissions from cropland with different slow- and controlled-release nitrogen fertilizers, and thus to provide critical information for N2O mitigation in China are necessary.
     The objectives of this research were:1) to examine the performance of different typical slow/controlled-release nitrogen fertilizers compared to conventional urea in relation to crop N uptake and direct and indirect N2O emission under winter wheat and maize rotation system, and hence 2) to assess the technical and economical feasibility of mitigation of N2O for slow/controlled-release N fertilizers to be popularized in future.
     To approach the above objectives, incubaion experiments and field experiments were employed in this study. Outdoor experiments with physically altered, chemically altered and biochemically inhibited nitrogen fertilizers which represent three typical varieties of slow- and controlled-release N fertilizers were conducted during the 2006-07 and 2007-08 winter wheat growing seasons and during the 2007 and 2008 maize growing seasons to evaluate the potential of these formulations to mitigate N2O emissions. The physically altered nitrogen includes Ca-Mg-P-coated urea (CMCU), polymer-coated urea (PCU) and sulfur-coated urea (SCU). Urea formaldehyde (UF) was used as the chemically altered nitrogen. Urea with dicyandiamide and hydroquinone (BIHD) and urea with enhanced ammonium nutrition (BIEA) were used as the biochemically inhibited nitrogen. Commercial urea (U) was applied as a comparison. No fertilizer was employed as a control (CK). N2O fluxes were measured with the static chamber method. Ammonia volatilization from soil was determined by the venting method. In terms of conventional rates in this region, the total amounts of nitrogen applied in the wheat and maize growing season were 250 and 300 kgN/hm2, respectively. Some treatments with reduction nitrogen by 30% were also employed. All N fertilizers were broadcast-applied. In order to find out the main microbial processes which contribute to N2O emission, indoor incubation experiments to isolate autotrophic nitrifiers and heterotrophic nitrifiers/aerobic denitrifiers from agricultural soil were conducted.
     Results of this study are presented as follows:
     1) N2O direct emissions during the wheat growing season mainly depended on soil temperature rather than on soil WFPS. On the contrary, N2O direct emissions were greatly affected by rainfall and hence soil moisture over the maize growing season. The cumulative N2O emissions from different treatments in the winter wheat growing season was far lower (averaged only about 15%) than that in the maize growing season, and the N2O direct emission factors followed the same pattern. The optimum WFPS for high N2O emission was at 50%~65% in the field condition.
     The different N release characteristic of each fertilizer after application resulted in different seasonal direct emissions of N2O among the several fertilizer types. Direct emissions of N2O from the coated and urea fertilizers were easily affected by the heavy rainfall event followed by basal fertilization. However, the rainfall had no obvious effect on direct emissions of N2O for the BIHD treatment.
     In comparison with the U, the UF and BIEA treatments reduced direct emissions of nitrous oxide by 15%~62% for the wheat and maize growing seasons, and the BIHD treatment reduced direct emissions of N2O by 33%~63% for the maize growing season. However, the treatments with the coated nitrogen generally enhanced direct emissions of nitrous oxide by 8%~99% in comparison to U treatment when rainfall followed application, while reduced direct emissions of nitrous oxide by 4%~39% when an extended drought was experienced after application. We conclude that the application of chemically altered or biochemically inhibited nitrogen fertilizers has great potential to mitigate direct emissions of nitrous oxide, but the use of physically altered nitrogen fertilizers would enhance direct emissions of nitrous oxide under wet climate condition.
     2)During the winter wheat growing season, only PCU treatment reduced ammonia volatilization by 20%, while the other treatments (UF, CMCU, SCU and BIEA) enhanced ammonia volatilization by 45%~282% when compared to U treatment。However, ammonia volatilization for CMCU, BIHD, SCU, UF and PCU treatments were lower than that for urea treatment over the maize growing seasons, especially UF and PCU treatments had significant reduction effect on ammonia volatilization, averaged reduction by up to 80%. In addition, ammonia volatilization for BIEA treatment was always higher compared to urea treatment.
     3) There was obvious improvement in yield production and higher NUE with use of PCU and SCU in both winter wheat and maize growing seasons as compared to urea. UF treatment reduced yield of wheat but increased the maize production. To further calculate the indirect emissions of nitrous oxide suggest that PCU and SCU may be effective in reducing total N2O emission and increasing the economic benefit in wheat planting. However, the net benefit was almost negative value whatever application of any fertilizers in maize growing season. Among all treatments, UF showed priorities in reducing total N2O emissions and increasing economic benefit in maize planting.
     4) It is essential for mitigation N2O emission to investigate the nitrifying and denitrifying mechanisms of N2O production. In this study, two strains HX2 and XM1 as Pseudomonas sp. which could both heterotrophic nitrify and aerobic denitrify were isolated. They produced more N2O in 30% soil WFPS than that in 60% soil WFPS, especially XM1 almost produced no N2O in 60% soil WFPS. Compared to autotrophic nitrification, heterotrophic nitrification/aerobic denitrification produced fewer N2O at 50%~60% soil WFPS, and it played more important role in N2O production with soil WFPS decreasing. The results indicated that the application of low C/N fertilizer under low soil WFPS condition could depress N2O production and hence reduce N2O emission.
引文
1. Adviento-Borbe M. A. A., Haddix M. L., Binder D. L., Walters D. T. and Dobermann A.2007. Soil greenhouse gas fluxes and global warming potential in four high-yielding maize systems. Global Change Biology,13:1972-1988
    2. Akiyama H., Tsuruta H., Watanabe T.2000. N2O and NO emissions from soils after the application of different chemical fertilizers. Chemosphere-Global Change Science,2:313-320
    3. Akiyama H., Yan X. and Yagi K.2006. Estimations of emission factors for fertilizer-induced direct N2O emissions from agricultural soils in Japan:Summary of available data. Soil Science and Plant Nutrition,52:774-787
    4. Akiyama, H., Tsuruta, H.2002. Effect of chemical fertilizer form on N2O, NO and NO2 fluxes from Andisol field. Nutrient Cycling in Agroecosystems,63:219-230
    5. Anderson I. C., Poth M., Homstead J., Burdige D.1993. A comparison of NO and N2O production by the autotrophic nitrifier Nitrosomonas europaea and the heterotrophic nitrifier Alcaligenes faecalis. Applied and Environmental Microbiology,59(11):3525-3533
    6. Avrahami S. and Bohannan B. J. M.2009. N2O emission rates in a California meadow soil are influenced by fertilizer level, soil moisture and the community structure of ammonia-oxidizing bacteria. Global Change Biology,15:643-655
    7. Avrahami S., Conrad R. and Braker G.2002. Effect of soil ammonium concentration on n2o release and on the community structure of ammonia oxidizers and denitrifiers. Applied and Environmental Microbiology,68(11):5685-5692
    8. Ball B. C., McTaggart I. P., Scott A.2004. Mitigation of greenhouse gas emissions from soil under silage production by use of organic manures or slow-release fertilizer. Soil Use and Management, 20:287-295
    9. Barton L. and Colmer T. D.2006. Irrigation and fertiliser strategies for minimizing nitrogen leaching from turfgrass. Agricultural Water Management,80:160-175
    10. Barton L., Kiese R., Gatter D. D., Butterbach-Bahl K., Buck R., Hinz C., Murphy D.V.2008. Nitrous oxide emissions from a cropped soil in a semi-arid climate. Global Change Biology, 14:177-192
    11. Bateman E. J. and Baggs E. M.2005. Contributions of nitrification and denitrification to N2O emissions from soils at different water-filled pore space. Biology and Fertility of Soils,41:379-388
    12. Beerling D. J., Hewitt C. N., Pyle J. A. and Raven J. A.2007. Critical issues in trace gas biogeochemistry and global change. Philosophical Transactions of the Royal. Society A, 365:1629-1642
    13. Bentsen. J., Petersen B. M., Jacobsen B. H., Olesen J. E., Hutchings N. J.2003. Evaluating nitrogen taxation scenarios using the whole farm simulation model FASSET. Agricultural Systems, 76:817-839
    14. Berenguer P., Santiveri F., Boixadera J., Lloveras J.2009. Nitrogen fertilisation of irrigated maize under Mediterranean conditions. European Journal of Agronomy,30:163-171
    15. Boeckx P., Xu X., Van Cleemput O.2005. Mitigation of N2O and CH4 emission from rice and wheat cropping systems using dicyandiamide and hydroquinone. Nutrient Cycling in Agroecosystems,72:41-49
    16. Bouwman A. F.1996. Direct emission of nitrous oxide from agricultural soils. Nutrient Cycling in Agroecosystems,46:53-70
    17. Bouwman A. F., Fung I., Matthews F., John J.1993. Global analysis of the potential for N2O producation in natural soils. Global Biogeochemical Cycles,7 (3):557-597
    18. Bouwman A. F., Boumans L. J. M. and Batjes N. H.2002. Emissions of N2O and NO from fertilized fields:Summary of available measurement data. Global Biogeochemical Cycles, 16(4):1080-1088
    19. Brink C., Kroeze C., Klimont Z.2001. Ammonia abatement and its impact on emissions of nitrous oxide and methane—Part 2:application for Europe. Atmospheric Environment,35:6313-6325
    20. Brown L., Syed B., Jarvis S. C., Sneath R. W., Phillips V. R., Goulding K. W. T., Li C.2002. Development and application of a mechanistic model to estimate emission of nitrous oxide from UK agriculture. Atmospheric Environment,36:917-928
    21. Cai G. X., Chen D. L., Ding H., Pacholski A., Fan X. H. and Zhu Z. L.2002. Nitrogen loss from fertilizers applied to maize, wheat and rice in the North China plain. Nutrient Cycling in Agroecosystems,63:187-195
    22. Cameron H. J. D. K. C., Sherlock R. R.2007. Comparison of the effectiveness of a nitrification inhibitor, dicyandiamide, in reducing nitrous oxide emissions in four different soils under different climatic and management conditions. Soil Use and Management,23:1-9
    23. Carreres R., Sendra J., Ballesteros R., Valiente E. F., Quesada A., Carrasco D., Leganes F., de la Cuadra J. G.2003. Assessment of slow release fertilizers and nitrification inhibitors in flooded rice. Biology and Fertility of Soils,39:80-87
    24. Castignettii D., Hollocher T. C.1984. Heterotrophic Nitrification Among Denitrifiers. Applied and Environmental Microbiology,47(4):620-623
    25. Chapuis-Lardy L., Metay A., Martinet M., Rabenarivo M., Toucet J., Douzet J. M., Razafimbelo T., Rabeharisoa L., Rakotoarisoa J.2009. Nitrous oxide fluxes from Malagasy agricultural soils. Geoderma,148:421-427
    26. Chen L., Boeckx P., Zhou L., Van Cleemput O. and Li R.1998. Effect of hydroquinone, dicyandiamide and encapsulated calcium carbide on urea N uptake by spring wheat, soil mineral N content and N2O emission. Soil Use and Management,14:230-233
    27. Chen S. T., Huang Y., Zou J. W.2008. Relationship between nitrous oxide emission and winter wheat production. Biology and Fertility of Soils,44:985-989
    28. Cheng W., Tsuruta H., Chen G. X., Yagi K.2004. N2O and NO production in various Chinese agricultural soils by nitrification. Soil Biology and Biochemistry,36:953-963
    29. Cheng W. G, Sudo S., Tsuruta H., Yagi K., Hartley A.2006. Temporal and spatial variations in N2O emissions from a Chinese cabbage field as a function of type of fertilizer and application. Nutrient Cycling in Agroecosystems,74:147-155
    30. Chu H. Y., Hosen Y., Yagi K.2007. NO, N2O, CH4 and CO2 fluxes in winter barley field of Japanese Andisol as affected by N fertilizer management. Soil Biology and Biochemistry, 39:330-339
    31. Chu H. Y., Hosen Y., Yagi K., Okada K., Ito O.2005. Soil microbial biomass and activities in a Japanese Andisol as affected by controlled release and application depth of urea. Biology and Fertility of Soils,42(2):1-8
    32. Conrad R.1996. Soil Microorganisms as Controllers of Atmospheric Trace Gases (H2, CO, CH4, OCS, N2O, and NO). American Society for Microbiology,60(4):609-640
    33. Council of European Communities.1998. Council Directive 98/83/EC of 3 November 1998 on the quality of water in tented for human consumption. Council of European Communities, Brussels
    34. Dambreville C, Morvan T., GermonJean-C.2008. N2O emission in maize-crops fertilized with pig slurry, matured pig manure or ammonium nitrate in Brittany. Agriculture, Ecosystems and Environment,123:201-210
    35. Davies D. M. and Williams P. J.1995. The Effect of the Nitrification Inhibitor Dicyandiamide on Nitrate Leaching and Ammonia Volatilization:A U.K. Nitrate Sensitive Areas Perspective. Journal of Environmental Management,45:263-272
    36. De Klein C. A. M., Sherlock R. R., Cameron K. C., and vander Weerden T. J.2001. Nitrous oxide emissions from agricultural soils in New Zealand a review of current knowledge and directions for future research. Journal of the Royal Society of New Zealand,31(3):543-574
    37. Delgado J. A., Mosier A. R.1996. Mitigation alternatives to decrease nitrous oxides emissions and urea-nitrogen loss and their effect on methane flux. Journal of Environmental Quality, 25:1105-1111
    38. Delgado J. A., Shaffer M. J., Lal H., McKinney S. P., Gross C. M., Cover H.2008. Assessment of nitrogen losses to the environment with a Nitrogen Trading Tool (NTT). Computers and Electronics in Agriculture,63:193-206
    39. Di H. J., Cameron K. C. and Sherlock R. R.2007. Comparison of the effectiveness of a nitrification inhibitor, dicyandiamide, in reducing nitrous oxide emissions in four different soils under different climatic and management conditions. Soil Use and Management,23:1-9
    40. Di H. J. and Cameron K. C.2002. The use of a nitrification inhibitor, dicyandiamide (DCD), to decrease nitrate leaching and nitrous oxide emissions in a simulated grazed and irrigated grassland. Soil Use and Management,18:395-403
    41. Dick J., Kaya B., Soutoura M., Skiba U., Smith R., Niang A. and Tabo R.2008. The contribution of agricultural practices to nitrous oxide emissions in semi-arid Mali. Soil Use and Management, 24:292-301
    42. Ding W. X., Cai Y., Cai Z. C., Yagi K., Zheng X. H.2007. Nitrous oxide emissions from an intensively cultivated maize-wheat rotation soil in the North China Plain. Science of the Total Environment,373:501-511
    43. Dobbie K. E., McTaggart I. P., Smith K. A.1999. Nitrous oxide emissions from intensive agricultural systems:Variations between crops and seasons, key driving variables, and mean emission factors. Journal of Geophysical Research,104 (D21):26891-26899
    44. Dobbie K. E., Smith K. A.2003a. Impact of different forms of N fertilizer on N2O emissions from intensive grassland. Nutrient Cycling in Agroecosystems,67(1):37-46
    45. Dobbie K. E., Smith K. A.2003b. Nitrous oxide emission factors for agricultural soils in Great Britain:the impact of soil water-filled pore space and other controlling variables. Global Change Biology,9:204-218
    46. Dorland S. and Beauchamp E.1991. Denitrification and ammonification at low soil temperatures. Soil Science, (71):293-303
    47. Drury C. F., Reynolds W. D., Tan C. S., Welacky T. W., Calder W., and McLaughlin N. B.2006. Emissions of nitrous oxide and carbon dioxide:influence of tillage type and nitrogen placement depth.Soil Science Society of America,70:570-581
    48. Du C. W., Zhou J. M., Shaviv A.2006. Release characteristics of nutrients from polymer-coated compound controlled release fertilizers. Journal of Polymers and Environment,14:223-230
    49. Eichner M. J.1990. Nitrous oxide emissions from fertilized soils:summary of available data. Journal of Environmental Quality,19:272-280
    50. Esqui'vel, M. G., Ferreira, R. B., Teixeira A. R.2000. Protein degradation in C3 and C4 plants subjected to nutrient starvation. Particular reference to ribulose bisphosphate carboxylase/oxygenase and glycolate oxidase. Plant Science,153:15-23
    51. Fernandez-Escobar R., Benlloch M., Herrera E., Garcia-Novelo J. M.2004. Effect of traditional and slow-release N fertilizers on growth of olive nursery plants and N losses by leaching. Scientia Horticulturae,101:39-49
    52. Fernandez-Luqueno F., Reyes-Varela V., Martinez-Suarez C., Reynoso-Keller R. E. Mendez-Bautista J., Ruiz-Romero E., Lopez-Valdez F., Luna-Guido M. L., Dendooven L.2009. Emission of CO2 and N2O from soil cultivated with common bean (Phaseolus vulgaris L.) fertilized with different N sources. Science of the Total Environment. doi:10.1016/j.scitotenv.2009.04.016
    53. Firestone M. K., Davidson E. A.1989. Microbiological basis of NO and N2O production and consumption in soil. In:Andreae M, Schimel D, editors. Exchange of trace gases between terrestrial ecosystems and the atmosphere. Chichester:John Wiley and Sons, pp:7-21
    54. Flynn H. C., Smith J. O., Smith K. A., Wright J., Smith P. and Massheder J.2005. Climate- and crop-responsive emission factors significantly alter estimates of current and future nitrous oxide emissions from fertilizer use. Global Change Biology,11:1522-1536
    55. Food and Agricultural Organization of the United Nations, FAOSTAT Database (http://www.fao.org/faostat/).
    56. Freney J. R.1997. Strategies to reduce gaseous emissions of nitrogen from irrigated agriculture. Nutrient Cycling in Agroecosystems,48:155-160
    57. Frink C. R., Waggoner P. E., and Ausubel J. H.1999. Nitrogen fertilizer:Retrospect and prospect. Proceedings of the National Academy of Sciences USA,96:1175-1180
    58. Galloway J. N., Cowling E. B.2002. Reactive nitrogen and the world:200 years of change. Ambio, 31(2):64-71
    59. Galloway J. N., Dentener F. J., Capone D. G., Boyer E. W., Howarth R. W., Seitzinger S. P., Asner G. P., Cleveland C. C., Green P. A., Holland E. A., Karl D. M., Michaels A. F., Porter J. H., Townsend A. R. and Vorosmarty C. J.2004. Nitrogen cycles:Past, present and future. Biogeochemistry,70:153-226
    60. Galloway J. N., Dentener F. J., Manner E., Cai Z., Abrol Y. P., Dadhwal V.K., and Murugan A. V. 2008. The environmental reach of Asia. Annual Review of Environment and Resources,33:461-481
    61. Gentile R., Vanlauwe B., Chivenge P., Six J.2008. Interactive effects from combining fertilizer and organic residue inputs on nitrogen transformations. Soil Biology and Biochemistry,40:2375-2384
    62. Goodroad L. L., Keeney D. R.1984. Nitrous oxide production in aerobic soils under varying pH, temperature and water content. Soil Biology and Biochemistry,16(1):39-43
    63. Goulding K., Jarvis S. and Whitmore A.2008. Optimizing nutrient management for farm systems. Philosophical Transactions of the Royal. Society B,363:667-680
    64. Grant R. F., Pattey E.2003. Modelling variability in N2O emissions from fertilized agricultural fields. Soil Biology and Biochemistry,35:225-243
    65. Gregorich E. G., Rochette P., VandenBygaart A. J., Angers D. A.2005. Greenhouse gas contributions of agricultural soils and potential mitigation practices in Eastern Canada. Soil and Tillage Research,83:53-72
    66. Guo J., Zhou C.2007. Greenhouse gas emissions and mitigation measures in Chinese agroecosystems. Agricultural and Forest Meteorology,142:270-277
    67. Hadi A., Jumadi O., Inubushi K., Yagi K.2008. Mitigation options for N2O emission from a corn field in Kalimantan, Indonesia. Soil Science and Plant Nutrition,54:644-649
    68. Haile-Mariam S., Collins H. P., Higgins S. S.2008. Greenhouse gas fluxes from an irrigated sweet corn (Zea mays L.)-potato (Solanum tuberosum L.) rotation. Journal of Environmental Quality, 37:759-771
    69. Hansen J., Sato M., Kharecha P., Russell G., Lea D. W. and Siddall M.2007. Climate change and trace gases. Philosophical Transactions of the Royal Society A,365:1925-1954
    70. Hellebrand H. J., Scholz V., Kern J.2008. Fertiliser induced nitrous oxide emissions during energy crop cultivation on loamy sand soils. Atmospheric Environment,42:8403-8411
    71. Hiscock K. M., Bateman A. S., Muhlherr I. H., Fukada T., and Dennis P. F.2003. Indirect emissions of nitrous oxide from regional aquifers in the United Kingdom. Environmental Science and Technology,37:3507-3512
    72. Hou A., Akiyama H., Nakajima Y., Sudo S., Tsuruta H.2000. Effects of urea form and soil moisture on N2O and NO emissions from Japanese Andosols. Chemosphere, Global Change Science, 2:321-327
    73. Hou A., Tsuruta H.2003. Nitrous oxide and nitric oxide fluxes from an upland field in Japan:effect of urea type, placement, and crop residues. Nutrient Cycling in Agroecosystems,65:191-200
    74. Huang Y., Zou J., Zheng X., Wang Y., Xu X.2004. Nitrous oxide emissions as influenced by amendment of plant residues with different C:N ratios. Soil Biology and Biochemistry,36:973-981
    75. Hyde B. P., Hawkins M. J., Ryan M., Carton O. T.2006. Nitrous oxide emissions from a fertilized grazed grass land in Ireland. International Congress Series,1293:351-354
    76. Insam H. and Wett B.2008. Control of GHG emission at the microbial community level. Waste Management,28:699-706
    77. Intergovernmental Panel on Climate Change (IPCC).1997. In:Houghton, J. T., Meira Filho, L. G., Lim, B., Trennton, K., Mamaty, I., Bonduki, Y., Griggs, D. J., Callander, B. A. (Eds.),1996. Revised IPCC Guidelines for National Greenhouse Gas Inventories, vol.1-3
    78. Intergovernmental Panel on Climate Change (IPCC).2001. Climate Change 2001:the scientific basis. Contribution of Working Group Ⅰ to the Third Assessment Report of the Intergovernmental Panel on Climate Change (eds. Houghton, J. T., Ding, Y., Griggs, D. J., Noguer, M., Vander Linden P. J.), Cambridge University Press, Cambridge
    79. IPCC 2006.《2006年IPCC国家温室气体清单指南》,国家温室气体清单计划编写,编辑:Eggleston H.S., Buendia L., Miwa K., Ngara T.和Tanabe K.出版者:日本全球环境战略研究所
    80. Intergovernmental Panel on Climate Change (IPCC).2007. Chapter 8:Agriculture. In:Metz., B., Davidson., O., Bosch., P., Dave., R., Meyer., L. (Eds.), Climate Change 2007:Mitigation. Contribution of Working Group Ⅲ to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA
    81. Iqbal M. M. and Goheer M. A.2008. Greenhouse Gas Emissions from agro-ecosystems and their contribution to environmental change in the Indus basin of Pakistan. Advances in Atmospheric Sciences,25(6):1043-1052
    82. Johnson J. M. F., Franzluebbers A. J., Weyers S. L., Reicosky D. C.2007. Agricultural opportunities to mitigate greenhouse gas emissions. Environmental Pollution,150:107-124
    83. Jumadi O., Hala Y., Muis A., Ali A., Palennari M., Yagi K., Inubushi K.2008. Influences of chemical fertilizers and a nitrification inhibitor on greenhouse gas fluxes in a corn (Zea mays L.) field in Indonesia. Microbes and Environmnets,23(1):29-34
    84. Jungkunst H. F., Freibauer A., Neufeldt H., and Bareth G.2006. Nitrous oxide emissions from agricultural land use in Germany—a synthesis of available annual field data. Journal of Plant Nutrition and Soil Science,169:341-351
    85. Kaewpradit W., Toomsan B., Cadisch G., Vityakon P., Limpinuntana V., Saenjan P., Jogloy S., Patanothai A.2009. Mixing groundnut residues and rice straw to improve rice yield and N use efficiency. Field Crops Research,110:130-138
    86. Kavdir Y., Hellebrand H. J., Kern J.2008. Seasonal variations of nitrous oxide emission in relation to nitrogen fertilization and energy crop types in sandy soil. Soil and Tillage Research,98:175-186
    87. Kessavalou A., Doran J. W., Mosier A. R., Drijber R. A.1998. Greenhouse gas fluxes following tillage and wetting in a wheat-fallow cropping system. Journal of Environmental Quality, 27:1105-1116
    88. Kester R. A., Boer W. D., Laanbroek H. J.1997. Production of NO and N2O by Pure Cultures of Nitrifying and Denitrifying Bacteria during Changes in Aeration. Applied and Environmental Microbiology,63(10):3872-3877
    89. Khalil M., Schmidhalter U., Gutser R.2006. N2O, NH3 and NOx emissions as a function of urea granule size and soil type under aerobic conditions. Water, Air, and Soil Pollution,175(1-4): 127-148
    90. Kim J. K., Park K. J., Cho K. S., Nam S. W., Park T. J., Bajpai R.2005. Aerobic nitrification-denitrification by heterotrophic Bacillus strains. Bioresource Technology, 96:1897-1906
    91. Koponen H. T., Flojt L., Martikainen P. J.2004. Nitrous oxide emissions from agricultural soils at low temperatures:a laboratory microcosm study. Soil Biology and Biochemistry,36:757-766
    92. Krupa S. V.2003. Effects of atmospheric ammonia (NH3) on terrestrial vegetation:a review. Environmental Pollution,124:179-221
    93. Kumazawa K.2002. Nitrogen fertilization and nitrate pollution in groundwater in Japan:Present status and measures for sustainable agriculture. Nutrient Cycling in Agroecosystems,63:129-137
    94. Kusa K., Sawamoto T., Hatano R.2002. Nitrous oxide emissions for 6 years from a gray lowland soil cultivated with onions in Hokkaido, Japan. Nutrient Cycling in Agroecosy stems,63:239-247
    95. Lemaire R., Meyer R., Taske A., Crocetti G. R., Keller J. and Yuan Z.2006. Identifying causes for N2O accumulation in a lab-scale sequencing batch reactor performing simultaneous nitrification, denitrification and phosphorus removal. Journal of Biotechnology,122:62-72
    96. Lemke R. L., Zhong Z., Campbell C. A., and Zentner R.2007. Can pulse crops play a role in mitigating greenhouse gases from North American agriculture? Agronomy Journal,99:1719-1725
    97. Li X., Hu C., Delgado J. A., Zhang Y., Ouyang Z.2007. Increased nitrogen use efficiencies as a key mitigation alternative to reduce nitrate leaching in north china plain. Agricultural Water Management,89:137-147
    98. Liebig M. A., Morgan J. A., Reeder J. D., Ellert B. H., Gollany H. T., Schuman G. E.2005. Greenhouse gas contributions and mitigation potential of agricultural practices in northwestern USA and western Canada. Soil and Tillage Research,83:25-52
    99. Lin D. X., Fan X. H., Hu F., Zhao H. T. and Luo J. F.2007. Ammonia volatilization and nitrogen utilization efficiency in response to urea application in rice fields of the Taihu lake region, China. Pedosphere,17(5):639-645
    100. Liu X. J., Mosier A. R., Halvorson A. D., Reule C. A., Zhang F. S.2007. Dinitrogen and N2O emissions in arable soils:Effect of tillage, N source and soil moisture. Soil Biology and Biochemistry,39:2362-2370
    101. Ma B. L., Wu T. Y., Tremblay N., Deen W., Morrison M. J., Mclaughlin N. B., Gregorich E. G., Stewart G.2009b. Nitrous oxide fluxes from corn fields:On-farm assessment of the amount and timing of nitrogen fertilizer. Global Change Biology. "Accepted Article".doi:10.1111/j.1365-2486. 2009.01932.x.
    102. Ma W. Q., Li J. H., Ma L., Wang F. H., Sisak I., Cushman G., Zhang F. S.2009a. Nitrogen flow and use efficiency in production and utilization of wheat, rice, and maize in China. Agricultural Systems,99:53-63
    103. Maag M., Vinther F.P.1996. Nitrous oxide emission by nitrification and denitrification in different soil types and at different soil moisture contents and temperatures. Applied Soil Ecology,4:5-14
    104. Macadam X. M. B., del Prado A., Merino P., Estavillo J. M., Pinto M., Gonzalez-Murua C.2003. Dicyandiamide and 3,4-dimethyl pyrazole phosphate decrease N2O emissions from grassland but dicyandiamide produces deleterious effects in clover. Journal of Plant Physiology,160:1517-1523
    105. Maeda M., Zhao B., Ozaki Y., Yoneyama T.2003. Nitrate leaching in an Andisol treated with different types of fertilizers. Environmental Pollution,121:477-487
    106. Majumdar D., Pathak H., Kumar S., Jain M. C.2002. Nitrous oxide emission from a sandy loam Inceptisol under irrigated wheat in India as influenced by different nitrification inhibitors. Agriculture, Ecosystems and Environment,91:283-293
    107. Malhi S. S., Lemke R., Wang Z. H., Chhabra B. S.2006. Tillage, nitrogen and crop residue effects on crop yield, nutrient uptake, soil quality, and greenhouse gas emissions. Soil and Tillage Research,90:171-183
    108. Malhi S. S., Lemke R.2007. Tillage, crop residue and N fertilizer effects on crop yield, nutrient uptake, soil quality and nitrous oxide gasemissions in a second 4-yr rotation cycle. Soil and Tillage Research,96:269-283
    109. Malla G., Bhatia A., Pathak H., Prasad S., Jain N., Singh J.2005. Mitigating nitrous oxide and methane emissions from soil in rice-wheat system of the Indo-Gangetic plain with nitrification and urease inhibitors. Chemosphere,58:141-147
    110. Mao X. Y., Sun K. J., Wang D. H., Liao Z. W.2005. Controlled-release fertilizer(CRF):A green fertilizer for controlling non-point contamination in agriculture. Journal of Environmental sciences, 17(2):181-184
    111. Matsuzaka E., Nomura N., Nakajima-Kambe T., Okada N., Nakahara T.2003. A sample screening procedure for heterotrophic nitrifying bacteria with oxygen-tolerant denitrification activity. Journal of Bioscience and Bioengineering,95(4):409-411
    112. McGarry S. J., O'Toole P., Morgan M. A.1987. Effects of soil temperature and moisture content on ammonia volatilization from ureatreated pasture and tillage soils. Irish Journal of Agricultural Research,26:173-182
    113. McLain J. E. T., Martens D. A.2006. N2O production by heterotrophic N transformations in a semiarid soil. Applied Soil Ecology,32:253-263
    114. Mcswiney C. P. and Robertson G. P.2005. Nonlinear response of N2O flux to incremental fertilizer addition in a continuous maize (Zea mays L.) cropping system. Global Change Biology,11:1-8
    115. McTaggart I. P., Tsuruta H.2003. The influence of controlled release fertilizers and the form of applied fertilizer nitrogen on nitrous oxide emissions from an andosol. Nutrient Cycling in Agroecosystems,67:47-54
    116. Meijide A., Garci'a-Torres L., Arce A., Vallejo A.2009. Nitrogen oxide emissions affected by organic fertilization in a non-irrigated Mediterranean barley field. Agriculture, Ecosystems and Environment,132:106-115
    117. Men'endez S., L'opez-Bellido R. J., Ben'itez-Vega J., Gonz'alez-Murua C, Lopez-Bellido L., Estavillo J. M.2008. Long-term effect of tillage, crop rotation and N fertilization to wheat on gaseous emissions under rainfed Mediterranean conditions. European Journal of Agronomy, 28:559-569
    118. Meng L., Ding W., Cai Z.2005. Long-term application of organic manure and nitrogen fertilizer on N2O emissions, soil quality and crop production in a sandy loam soil. Soil Biology and Biochemistry,37:2037-2045
    119. Mengel K., Hutsch B., Kane Y.2006. Nitrogen fertilizer application rates on cereal crops according to available mineral and organic soil nitrogen. European Journal of Agronomy, 24:343-348
    120. Merino P., Estavillo J. M., Graciolli L. A., Pinto M., Lacuesta M., MunAoz-Rueda A., Gonzalez-Murua C.2002. Mitigation of N2O emissions from grassland by nitrification inhibitor and Actilith F2 applied with fertilizer and cattle slurry. Soil Use Management,18:135-141
    121. Mkhabela M. S., Gordon R., Burton D., Madani A., Hart W., Elmi A.2006. Ammonia and nitrous oxide emissions from two acidic soils of Nova Scotia fertilised with liquid hog manure mixed with or without dicyandiamide. Chemosphere,65:1381-1387
    122. Moesby L., Hansen E. W., Christensen J. D., H(?)yer C. H., Juhl G. L. and Olsen H. B.2005. Dry and moist heat sterilisation cannot inactivate pyrogenicity of Gram positive microorganisms. European Journal of Pharmaceutical Sciences,26:318-323
    123. Morita M., Uemoto H., Watanabe A.2008. Nitrogen-removal bioreactor capable of simultaneous nitrification and denitrification for application to industrial wastewater treatment. Biochemical Engineering Journal,41:59-66
    124. Mosier A. and Kroeze C.1998. A new approach to estimate emissions of nitrous oxide from agriculture and its implications for the global N2O budget. IGBP Newsletter,34:8-13
    125. Mosier A. R.2001. Exchange of gaseous nitrogen compounds between agricultural systems and the atmosphere. Plant and Soil,228:17-27
    126. Mosier A. R.2002. Environmental challenges associated with needed increases in global nitrogen fixation. Nutrient Cycling in Agroecosystems,63:101-116
    127. Mosier A. R. and Zhu Z. L.2000. Changes in patterns of fertilizer nitrogen use in Asia and its consequences for N2O emissions from agricultural systems. Nutrient Cycling in Agroecosystems,57: 107-117
    128. Mosier A. R., Kroeze C.2000. Potential impact on the global atmospheric N2O budget of the increased nitrogen input required to meet future global food demands. Chemosphere-Global Change Science,2:465-473
    129. Mosier A., Duxbury J. M., Freney J. R., Heinemeyer O., Minamy K.1998. Assessing and mitigating N2O emissions from agricultural soils. Climatic Change,40:7-38
    130. Mosier A. R., Kroeze C., Nevison C., Oenema O., Seitzinger S., VanCleemput, O.1998. Closing the global N2O budget:Nitrous oxide emissions through the agricultural nitrogen cycle. Nutrient Cycling in Agroecosystems,52:225-248
    131.Nastri A., Toderi G., Bernti E., Govi G.2000. Ammonia volatilization and yield response from urea applied to wheat with urease(NBPT) and nitrification (DCD) inhibitors. Agrochimica,44(5-6): 231-239
    132. Neufeldt H., Schafer M.2008. Mitigation strategies for greenhouse gas emissions from agriculture using a regional economic-ecosystem model. Agriculture, Ecosystems and Environment, 123:305-316
    133. Neufeldt H., Schafer M., Angenendt E., Li C., Kaltschmitt M., Zeddies J.2006. Disaggregated greenhouse gas emission inventories from agriculture via a coupled economic-ecosystem model. Agriculture, Ecosystems and Environment,112:233-240
    134. Nyord T., Schelde K. M., Soaard H. T., Jensen L. S., Sommer S. G.2008. A simple model for assessing ammonia emission from ammoniacal fertilisers as affected by pH and injection into soil. Atmospheric Environment,42:4656-4664
    135. Oertli J. J.1980. Controlled-release fertilizers. Fertilizer Research,1:103-123
    136. Ortiz R., Sayre K. D., Govaerts B., Gupta R., Subbarao G. V., Ban T., Hodson D., Dixon J. M., Ortiz-Monasterio J. I., Reynolds M.2008. Climate change:Can wheat beat the heat? Agriculture, Ecosystems and Environment,126:46-58
    137. Panek J. A., Matson P. A., Orti'Z-Monasterio I., Brooks P.2000. Distinguishing nitrification and denitrification sources of N2O in a Mexican wheat system using 15N. Ecological Applications, 10(2):506-514
    138. Papen H., Von Berg R.1998. A Most Probable Number method (MPN) for the estimation of cell numbers of heterotrophic nitrifying bacteria in soil. Plant and Soil,199:123-130
    139. Parton W. J., Ojimad S., Cole C. V., Schimel D. S.1994. A general model for soil organic matter dynamics:sensitivity to litter chemistry, texture and management. Soil Science Society of America Journal,39:147-167
    140. Passianoto C. C., Ahrens T., Feigl B. J., Steudler P. A, do Carmo J. B., Melillo J. M.2003. Emissions of CO2, N2O, and NO in conventional and no-till management practices in Rondnia, Brazil. Biology and Fertility of Soils,38:200-208
    141. Pathak H. and Nedwell D. B.2001. Nitrous oxide emission from soil with different fertilizers, water levels and nitrification inhibitors. Water, Air, and Soil Pollution,129:217-228
    142. Pathak H., Wassmann R.2007. Introducing greenhouse gas mitigation as a development objective in rice-based agriculture:I. Generation of technical coefficients. Agricultural Systems,94:807-825
    143. Pattey E., Edwards G. C., Desjardins R. L., Pennock D. J., Smith W., Grant B., MacPherson J. I. 2007. Tools for quantifying N2O emissions from agroecosystems. Agricultural and Forest Meteorology,142:103-119
    144. Paul L. L., van Vuuren D. P., Olivier J. G. J., den Elzen M. G. J.2007. Long-term reduction potential of non-CO2 greenhouse gases. Environmental Science and Policy,10:85-103
    145. Potter C. S., Maton P. A., Vitousek P. M., Davidson E. A.1996. Process modeling of controls on nitrogen trace gas emissions from soil worldwide. Journal of Geophysical Research,101:1361-1367
    146. Product Information Sheet For ATCC 25196. (http://www.atcc.org/)
    147. Rawluk G. C. D. and Racz G. J.2001. Ammonia volatilization from soils fertilizer with urea and varying rates of urease inhibitor NBPT. Canadian Journal of Soil Science,81:239-246
    148. Reay D. S., Smith K. A., Edwards A. C.2003. Nitrous oxide emission from agricultural drainage waters. Global Change Biology,9:195-203
    149. Reay D. S., Smith K. A., Edwards A. C.2004. Nitrous oxide in agricultural drainage waters following field fertilisation. Water, Air and Soil Pollution,4:437-451
    150. Reay D., Smith K. A., Edwards A. C., Hiscock K. M., Dong L. F.2005. Indirect nitrous oxide emissions:Revised emission factors. Environmental Sciences,2:153-158
    151. Reidy B., Da'mmgen U., Dohler H., Eurich-Menden B., van Evert F. K., Hutchings N. J., Luesink H. H., Menzi H., Misselbrook T. H., Monteny G. J., Webb J.2008. Comparison of models used for national agricultural ammonia emission inventories in Europe:Liquid manure systems. Atmospheric Environment,42:3452-3464
    152. Reinhard W., Heinz F., Lu X., Ju X., Volker R.2008. Isotopologue ratios of N2O emitted from microcosms with NH4+ fertilized arable soils under conditions favoring nitrification. Soil Biology and Biochemistry,40:2416-2426
    153. Richardson D. J., Watmough N. J.1999. Inorganic nitrogen metabolism in bacteria. Current Opinion in Chemical Biology,3(2):207-219
    154. Roberts T. L.2008. Improving Nutrient Use Efficiency. Turkish Journal of Agriculture and Forestry,32:177-182
    155. Robertson L. A., Kuenen J. G.1984. Aerobic denitrification—old wine in new bottles. Antonievan Leeuwenhoek,50:525-544
    156. Robertsow L. A., Cornelisse R., De Vos P., Hadioetomo R. and Kuenen J. G.1989. Aerobic denitrification in various heterotrophic nitrifiers. Antonie van Leeuwenhoek,56:289-299
    157. Rover M., Heinemeyer O., Kaiser E.1998. Microbial induced nitrous oxide emissions from an arable soil during winter. Soil Biology and Biochemistry,30:1859-1865
    158. Rozas H. S., Echeverr H. and Barbieri P. A.2004. Nitrogen balance as affected by application time and nitrogen fertilizer rate in irrigated no-tillage maize. Agronomy Journal,96:1622-1631
    159. Ruser R., Flessa H., Russow R., Schmidt G., Buegger F., Munch J. C.2006. Emission of N2O, N2 and CO2 from soil fertilized with nitrate effect of compaction, soil moisture and rewetting. Soil Biology and Biochemistry,38:263-274
    160. Russow R., Spott O., Stange C. F.2008. Evaluation of nitrate and ammonium as sources of NO and N2O emissions from black earth soils (Haplic Chernozem) based on 15N field experiments. Soil Biology and Biochemistry,40:380-391
    161. Sanchez-Martina L., Vallejoa A., Dickb J., Skibab U. M.2008. The influence of soluble carbon and fertilizer nitrogen on nitric oxide and nitrous oxide emissions from two contrasting agricultural soils. Soil Biology and Biochemistry,40:142-151
    162. Sage R.F., Pearcy R.W.1987a. The nitrogen use efficiency of C3 and C4 plants I. Leaf nitrogen, growth, and biomass partitioning in Chenopodiumalbum (L.) and Amaranthus Retroflexus (L.). Plant Physiology,84:954-958
    163. Sage R.F., Pearcy R.W.1987b. The nitrogen use efficiency of C3 and C4 plants II. Leaf nitrogen effects on the gas exchange characteristics of Chenopodium Album (L.) and Amaranthus Retroflexus (L.) Plant Physiology,84:959-963
    164. Sage R. F., Pearcy R. W., Seemann J. R.1987. The nitrogen use efficiency of C3 and C4 plants III. Leaf nitrogen effects on the activity of carboxylating enzymes in Chenopodium album (L.) and Amaranthus retroflexus (L.). Plant Physiology,85(2):355-359
    165. Sawamoto T., Nakajima Y., Kasuya M., Tsuruta H., Yagi K.2005. Evaluation of emission factors for indirect N2O emission due to nitrogen leaching in agroecosystems. Geophysical Research Letters,32(3):doi:10.1029/2004GL021625
    166. Schlesinger W. H.2009. On the fate of anthropogenic nitrogen. PNAS,106(1):203-208
    167. Schou J. S., Skop E., Jensen J. D.2000. Integrated agrienvironmental modelling:A cost effectiveness analysis of two nitrogen tax instruments in the Vejle Fjord watershed, Denmark. Journal of Environmental Management,58:199-212
    168. Scotta M. J., Sandsb R. D., Rosenberg N. J., Izaurralde R. C.2002. Future N2O from US agriculture: projecting effects of changing land use, agricultural technology, and climate on N2O emissions. Global Environmental Change,12:105-115
    169. Shaviv A.2001. Advances in controlled release fertilizers. Advances in Agronomy,71:1-49
    170. Shoji S. and Kanno H.1994. Use of polyolefin-coated fertilizers for increasing fertilizer efficiency and reducing nitrate leaching and nitrous oxide emissions. Fertilizer Research,39:147-152
    171. Shoji S., Delgado J., Mosier A., Miura Y.2001. Use of controlled release fertilizers and nitrification inhibitors to increase nitrogen use efficiency and to conserve air and water quality. Communications in Soil Science and Plant Analysis,32(7 and 8):1051-1070
    172. Shoji S., Gandeza A. T., Kimura K.1991. Simulation of crop response to polyolefin-coated urea. Ⅱ. Nitrogen uptake by corn. Soil Science Society of America Journal,55:1468-1473
    173. Simojoki A. and Jaakkola A.2000. Effect of nitrogen fertilization, cropping and irrigation on soil air composition and nitrous oxide emission in a loamy clay. European Journal of Soil Science, 51:413-424
    174. Singurindy O., Molodovskay M., Richards B. K., Steenhuis T. S.2009. Nitrous oxide emission at low temperatures from manure-amended soils under corn (Zea mays L.). Agriculture, Ecosystems and Environment,132:74-81
    175. Skiba U. M., Sheppard L. J., MacDonald J., Fowler D.1998. Some key environmental variables controlling nitrous oxide emissions from agricultural and semi-natural soils in Scotland. Atmospheric Environment,19:3311-3320
    176. Skiba U., Smith K. A.2000. The control of nitrous oxide emissions from agricultural and natural soils. Chemosphere-Global Change Science,2:379-386
    177. Smart D. R. and Bloom A. J.2001. Wheat leaves emit nitrous oxide during nitrate assimilation. PNAS,98 (14):7875-7878
    178. Smil V.1999. Nitrogen in crop production:An account of global flows. Global Biogeochemical Cycles,13:647-662
    179. Smith K. A. and Conen F.2004. Impacts of land management on fluxes of trace greenhouse gases. Soil Use and Management,20:255-263
    180. Smith K. A., McTaggart I. P. and Tsuruta H.1997. Emissions of N2Oand NO associated with nitrogen fertilization in intensive agriculture, and the potential for mitigation. Soil Use and Management,13:296-304
    181. Smith K. A., Thomson P. E., Clayton H., Mctaggart I. P., Conen F.1998. Effects of temperature, water content and nitrogen fertilisation on emissions of nitrous oxide by soils. Atmospheric Environment,32(19):3301-3309
    182. Smith P., Martino D., Cai Z., Gwary D., Janzen H., Kumar P., McCarl B., Ogle S., O'Mara F., Rice C., Scholes B., Sirotenko O., Howden M., McAllister T., Pan G., Romanenkov V., Schneider U., Towprayoon S.2007. Policy and technological constraints to implementation of greenhouse gas mitigation options in agriculture. Agriculture, Ecosystems and Environment,118:6-28
    183. Smith P., Martino D., Cai Z. C., Gwary D., Janzen H., Kumar P., McCarl B., Ogle S., O'Mara F., Rice C., Scholes B., Sirotenko O., Howden M., McAllister T., Pan G., Romanenkov V., Schneider U., Towprayoon S., Wattenbach M., Smit J.2008. Greenhouse gas mitigation in agriculture. Philosophical Transactions of the Royal. Society B,363:789-813
    184. Spicer R. A.1993. Palaeoecology, past climate systems, and C3/C4 photosynthesis. Chemosphere, 27(6):947-978
    185. Stevenson B. A., Verburg P. S. J.2006. Effluxed CO2-13C from sterilized and unsterilized treatments of a calcareous soil. Soil Biology and Biochemistry,38:1727-1733
    186. Sun B., Shen R. P., Bouwman A. F.2008. Surface N balances in agricultural crop production systems in china for the period 1980-2015. Pedosphere,18(3):304-315
    187. Syvasalo E., Regina K., Turtola E., Lemola R., Esala M.2006. Fluxes of nitrous oxide and methane, and nitrogen leaching from organically and conventionally cultivated sandy soil in western Finland. Agriculture, Ecosystems and Environment,113:342-348
    188.Takaya N., Antonina B. M., Sakairi C., Sakaguchi Y., Kato I., Zhou Z., and Shoun H.2003. Aerobic Denitrifying bacteria that produce low levels of nitrous oxide. Applied and Environmental Microbiology,69(6):3152-3157
    189. Tian G., Cai Z., Cao J., Li X.2001. Factors affecting ammonia volatilisation from a rice-wheat rotation system. Chemosphere,42:123-129
    190. Toma Y., Kimura S. D., Hirose Y., Kusa K., Hatano R.2007. Variation in the emission factor of N2O derived from chemical nitrogen fertilizer and organic matter:A case study of onion fields in Mikasa, Hokkaido, Japan. Soil Science and Plant Nutrition,53:692-703
    191. Turner R. K., Georgiou S., Gren I. M., Wulff F., Barrett S., Soderqvist T., Bateman I. J., Folke C., Langaas S., Zylicz T., Maler K. G. and Markowska A.1999. Managing nutrient fluxes and pollution in the Baltic:An interdisciplinary simulation study. Ecological Economics,30:333-352
    192.UNFCCC.2007.第三次评估报告,pp:499
    193. Venterea R. T., Rolston D. E.2000. Mechanisms and kinetics of nitric and nitrous oxide production during nitrification in agricultural soil. Global Change Biology,6:303-316
    194. Verge X. P. C., DeKimpe C., Desjardins R. L.2007. Agricultural production, greenhouse gas emissions and mitigation potential. Agricultural and Forest Meteorology,142:255-269
    195. Wagner-riddle C., Furon A., Mclaughlin N., Ivanlee, Barbeau J., Ayasundara S., Parkin G., Bertoldi P.V., Warland J.2007. Intensive measurement of nitrous oxide emissions from a corn-soybean-wheat rotation under two contrasting management systems over 5 years. Global Change Biology,13:1722-1736
    196. Walker N编,中国科学院南京土壤研究所微生物室译.1981.土壤微生物学.北京:科学出版社,pp:223-248
    197. Wang X. Z., Zhu J. G., Gao R., Yasukazu H. and Feng K.2007. Nitrogen Cycling and Losses Under Rice-Wheat Rotations ith Coated Urea and Urea in the Taihu Lake Region. Pedosphere, 17(1):62-69
    198. Wang Y. S., Wang Y. H.2003. Quick measurement of CH4, CO2 and N2O emissions from a short-plant ecosystem. Advances in Atmospheric Sciences,20:842-844
    199. Watanabe T.2006. Influence of 2-chloro-6 (trichloromethyl) pyridine and dicyandiamide on nitrous oxide emission under different soil conditions. Soil Science and Plant Nutrition,52:226-232
    200. Webster E. A. and Hopkins D. W.1996. Contributionsfrom different microbial processes to N2O emission from soil under different moisture regimes. Biology and Fertility of Soils,22:331-335
    201. Wolf I., Brumme R.2002. Contribution of nitrification and denitrification sources for seasonal N2O emissions in an acid German forest soil. Soil Biology and Biochemistry,34:741-744
    202. Wrage N., Velthof G. L., Beusichem M. L., van-Oenema O.2001. Role of nitrifier denitrification in the production of nitrous oxide. Soil Biology and Biochemistry,33:1723-1732
    203. Wrage N., Velthof G. L., Laanbroek H. J., Oenema O.2004. Nitrous oxide production in grassland soils:assessing the contribution of nitrifier denitrification. Soil Biology and Biochemistry, 36:229-236
    204. Xing G. X., Zhu Z. L.1997. Preliminary studies on N2O emissions fluxes from upland soils and paddy soils in China. Nutrient Cycling in Agroecosystems,49:17-22
    205. Xing G. X., Yan X. Y.1999. Direct nitrous oxide emissions from agricultural fields in China estimated by the revised 1996 IPPC guidelines for national greenhouse gases. Environmental Science and Policy,2:355-361
    206. Xing G. X., Zhu Z. L.2000. An assessment of N loss agricultural fields to the environment in China. Nutrient Cycling in Agroecosystems,57:67-73
    207. Xu X. K., Boeckx P., van Cleemput O.2002a. Urease and nitrification inhibitors to reduce emissions of CH4 and N2O in rice production. Nutrient Cycling in Agroecosystems,64 (1-2): 203-211
    208. Xu X. K., Boeckx P., Zhou L. K. van Cleemput O.2002b. Inhibition experiments on nitrous oxide emission from paddy soils. Global Biogeochemical Cycles,16:doi:1011029/2001GB001397
    209. Xu X., Boeckx P., Van Cleemput O., Kazuyuki I.2005. Mineral nitrogen in a rhizosphere soil and in standing water during rice (Oryza sativa L.) growth:effect of hydroquinone and dicyandiamide. Agriculture, Ecosystems and Environment,109:107-117
    210. Yan X. Y., Akimito H., Ohara T.2003. Estimation of nitrous oxide, nitric oxide and ammonia emissions from croplands in East, Southeast and South Asia. Global Change Biology,9:1080-1096
    211. Yan X., Hosen Y., Yagi K.2001. Nitrous oxide and nitric oxide emissions from maize field plots as affected by N fertilizer type and application method. Biology and Fertility of Soils,34:297-303
    212. Yan X., Jin J.Y., He P., Liang M. Z.2008. Recent Advances on the technologies to increase fertilizer use efficiency. Agricultural Sciences in China,7(4):469-479
    213. Yokoyama K., Ohama T.2005. Effect of inorganic N composition of fertilizers on nitrous oxide emission associated with nitrification and denitrification. Soil Science and Plant Nutrition,51(7): 967-972
    214. Yuan, Z. Y., Liu, W. X., Niu, S. L., Wan, S. Q.2007. Plant nitrogen dynamics and nitrogen-use strategies under altered nitrogen seasonality and competition. Annals of Botany,100:821-830
    215. Zaman M., Nguyen M. L., Blennerhassett J. D., Quin B. F.2008. Reducing NH3, N2O and NO3--N losses from a pasture soil with urease or nitrification inhibitors and elemental S-amended nitrogenous fertilizers. Biology and Fertility of Soils,44:693-705
    216. Zhang J., Han X.2008. N2O emission from the semi-arid ecosystem under mineral fertilizer (urea and superphosphate) and increased precipitation in northern China. Atmospheric Environment, 42:291-302
    217. Zhang Y. M., Chen D. L., Zhang J. B., Edis R., Hu C. S. and Zhu A. N.2004. Ammonia volatilization and denitrification losses from an irrigated maize-wheat rotation field in the North China Plain. Pedosphere,14(4):533-540
    218. Zheng X. H., Wang M. X., Wang Y. S., Shen R., Li J., Heyer J.1999. Characters of greenhouse gas (CH4, N2O, NO) emissions from croplands of southeast China. World Resource Review,11 (2): 229-246
    219. Zheng X., Fu C., Xu X., Yan X., Huang Y., Chen G., Han S., Hu F.2002. The Asian nitrogen case study. Ambio,31(2):79-87
    220. Zheng X., Wang M., Wang Y., Shen R., Gou J., Li J., Jin J., Li L.2000. Impacts of soil moisture on nitrous oxide emission from croplands:a case study on the rice-based agro-ecosystem in Southeast China. Chemosphere -Global Change Science,2:207-224
    221. Zheng X. H., Han S. H., Huang Y., Wang Y. S., and Wang M. X.2004. Re-quantifying the emission factors based on field measurements and estimating the direct N2O emission from Chinese croplands. Global Biogeochemical cycles,18:GB201810.1029/2003GB002167
    222. Zhu Z. L., Chen D. L.2002. Nitrogen fertilizer use in China-Contributions to food production, impacts on the environment and best management strategies. Nutrient Cycling in Agroecosystems, 63(2-3):117-127
    223.布坎南RE,吉本斯NE编,中国科学院微生物研究所译.1984.伯杰细菌鉴定手册.(第八版).北京:科学出版社出版,pp:274—312
    224.蔡贵信,朱兆良.1995.稻田中化肥氮的气态损失土壤学报,32(增刊):128-135
    225.陈冠雄,王正平.1995.稻田CH4和N2O的排放及养萍和施肥的影响.应用生态学报,6(4):378-382
    226.陈利军,史弈,李荣华,胡连生,周礼恺..1995.脲酶抑制剂和硝化抑制剂的协同作用对尿素氮转化和N20排放的影响.应用生态学报,6(4):368-372
    227.陈书涛,黄耀,郑循华,陈玉泉.2005.轮作制度对农田氧化亚氮排放的影响及驱动因子.中国农业科学,38(10):2053-2060
    228.陈文新.1989.土壤环境微生物学.北京:北京出版社,pp:133-151
    229.董红敏,李玉娥,陶秀萍,彭小培,李娜,朱志平.2008.中国农业源温室气体排放与减排技术对策.农业工程学报,24(10):269-273
    230.杜建军,毋永龙,田吉林,王益权,崔英德.2007.控/缓释肥料减少氨挥发和氮淋溶的效果研究.水土保持学报,21(2):49-52
    231.杜睿,王庚辰,吕达仁.2000.内蒙古典型草原土壤N2O产生的机理探讨.中国环境科学,20(5):387-391
    232.段亮,段增强,常江.2007.地表管理与施肥方式对太湖流域旱地氮素流失的影响.农业环境科学学报,26(3):813-818
    233.方华,莫江明.2006.活性氮增加:一个威胁环境的问题.生态环境,15(1):164-168
    234.高鹏程,张一平,张国云,吴存良.2002.水热耦合作用下氨扩散挥发动力学研究.西北农业学报,11(3):116-121
    235.高强,巨晓棠,邱慧珍,师奋志,张福锁.2003.应用长效氮肥降低土壤硝酸盐淋洗的研究.吉林农业大学学报,25(4):419-424
    236.勾继,郑循华,王明星,李长生.2004.华东地区稻麦轮作农田生态系统N2O排放的模拟研究.大气科学,24(6):835-842
    237.谷夺魁,刘树庆,宁国辉.2004.缓控释肥料研究进展及其环境安全研究.河北农业科学,18(14):100-104
    238.国家环境保护总局.2002.水和废水监测分析方法[M].(第四版).北京:中国环境出版社出版,pp:271-274
    239.何霞,吕剑,何义亮,赵彬,李春杰.2006.异养硝化机理的研究进展.微生物学报,46(5):844-847
    240.侯爱新,陈冠雄.1998.不同种类氮肥对土壤释放N2O的影响.应用生态学报,9(2):176-180
    241.黄斌,陈冠雄,Van Cleemput O.2000.长效碳酸氢铵对土壤硝化-反硝化过程和INO与N2O排放 的影响.应用生态学报,11(1):73-78
    242.黄国宏,陈冠雄,韩冰,Van Cleemput O.1999.土壤含水量与N2O产生途径研究.应用生态学报,10(1):53-56
    243.黄国宏,陈冠雄,张志明,吴杰,黄斌,Van Cleemput O.1998.玉米田N2O排放及减排措施研究.环境科学学报,18(4):344349
    244.黄进宝,范晓晖,张绍林.2006.太湖地区铁渗水耕人为土稻季上氮肥的氨挥发.土壤学报,143(15):786-792
    245.黄耀.2006.中国的温室气体排放、减排措施与对策.第四纪研究,26(5):722-732
    246.蒋静艳,黄耀,宗良纲.2003.水分管理与秸秆施用对稻田CH4和N2O排放的影响.中国环境科学,23(5):552-556
    247.杰弗里·萨克斯(Jeffrey D.S.)著,钱志清译.2009.达成新的全球气候变化议定书.国际经济合作,1:35-45
    248.巨晓棠,刘学军,邹国元,王朝辉,张福锁.2002.冬小麦/夏玉米轮作体系中氮素的损失途径分析.中国农业科学,35(12):1493-1499
    249.巨晓棠,潘家荣,刘学军,张福锁.2003.北京郊区冬小麦/夏玉米轮作体系中氮肥去向研究.植物营养与肥料学报,9(3):264-270
    250.雷利斌.2006.加硫尿素N、S在土壤中的转化及其作物效应研究.安徽农业大学硕士生毕业论文,安徽
    251.李长生.2001.生物地球化学的概念与方法-DNDC模型的发展.第四纪研究,21(2):89-99
    252.李方敏,樊小林,刘芳,汪强.2004.控释肥料对稻田氧化亚氮排放的影响.应用生态学报,15(11):2170-2174
    253.李阜棣,喻子牛.1996.农业微生物学实验技术.北京:中国农业出版社,pp:308
    254.李楠,陈冠雄.1993.植物释放N2O速率及施肥的影响.应用生态学报,4(3):295-298
    255.李生秀和刘彩云.1993.石灰性土壤铵态氮的挥发损失Ⅰ.土壤性质对铵态氮挥发损失的影响.干旱地区农业研究,11(suppl.):125-129
    256.李新慧.1999.京郊粮田土壤氮素损失机制与提高氮肥利用率.北京土壤学会简讯,(2):5
    257.李鑫,巨晓棠,张丽娟,万云静,刘树庆.2008.不同施肥方式对土壤氨挥发和氧化亚氮排放的影响.应用生态学报,19(1):99-104
    258.李宗新,董树亭,王空军,刘鹏,张吉旺,王庆成,刘春晓.2008.不同施肥条件下玉米田土壤养分淋溶规律的原位研究.应用生态学报,19(1):65-70
    259.李宗新,董树亭,王空军,张吉旺,刘鹏,王庆成,刘春晓.2007.不同肥料运筹对夏玉米田间土壤氮素淋溶与挥发影响的原位研究.植物营养与肥料学报,13(6):998-1005
    260.李宗新,王庆成,刘开昌,董树亭,王空军,张吉旺,刘春晓.2009.不同施肥模式下夏玉米田间土壤氨挥发规律.生态学报,29(1):307-314
    261.梁巍,张颖,岳进,吴劫,史奕,黄国宏.2004.长效氮肥施用对黑土水旱田CH4与N2O排放的影响.生态学杂志,23(3):44-48
    262.刘兵.2006.脲甲醛缓控释肥料在大田作物上应用效应及产业化发展途径研究.扬州大学硕士生毕业论文
    263.刘晶晶,汪苹,王欢.2008.一株异养硝化-好氧反硝化菌的脱氮性能研究.环境科学研究,21(3):121-125
    264.刘宇,匡耀求,黄宁生.2008.农村沼气开发与温室气体减排.中国人口资源与环境,18(3):48-53
    265.吕锡武.2002.同时硝化反硝化的理论和实践.环境化学,21(6):564-570
    266.雒新萍,白红英,路莉,李西祥,张清雨.2009.黄绵土N20排放的温度效应及其动力学特征.生态学报,29(3):1226-1233
    267.马立珊,王祖强,张水铭,马杏法,张桂英.1997.苏南太湖水系农业面源污染及其控制对策研究.环境科学学报,17(1):39-47
    268.梅丽娟,毛健,杨林章,王德建,尹斌,胡健,朴哲,殷士学.2004.土壤中“接力反硝化”机制的部分证据.土壤学报,41(3):408-413
    269.潘根兴.2008.中国土壤有机碳库及其演变与应对气候变化.气候变化研究进展,4(5):282-289
    270.秦晓波,李玉娥,刘克樱,万运帆,高清竹.2006.不同施肥处理对稻田氧化亚氮排放的影响.中国农业气象,27(4):273-276
    271.宋勇生,范晓晖,林德喜,杨林章,周健民.2004.太湖地区稻田氨挥发及影响因素的研究.土壤学报,41(2):265-269
    272.宋勇生,范晓晖.2003.稻田氨挥发研究进展.生态环境,12(2):240-244
    273.苏芳,黄彬香,丁新泉,高志岭,陈新平,张福锁,Kogge Martin, Romheld Volker.2006.不同氮肥形态的氨挥发损失比较.土壤,38(6):682-686
    274.王朝辉,刘学军,巨晓棠,张福锁.2002.北方冬小麦/夏玉米轮作体系土壤氨挥发的原位测定.生态学报,22(3):359-365
    275.王朝辉,刘学军,巨晓棠,张福锁.2002.田间土壤氨挥发的原位测定—通气法.植物营养与肥料学报,8(2):205-209
    276.王礼茂.2004.几种主要碳增汇/减排途径的对比分析.第四纪研究,24(2):191-197
    277.王秀斌,周卫,梁国庆,裴雪霞,夏文建,孙静文.2009.优化施肥条件下华北冬小麦/夏玉米轮作体系的土壤氨挥发.植物营养与肥料学报,15(2):344-351
    278.肖玉,谢高地,鲁春霞.2005.稻田生态系统氮素转化经济价值研究.应用生态学报,16(9):1745-1750
    279.谢军飞,李玉娥.2004.DNDC模型对北京旱地农田N2O排放的模拟对比分析.农业环境科学学报,23(4):691-695
    280.谢军飞,李玉娥.2005.土壤温度对旱地农田N2O排放的影响.中国农业气象,26(1):7-10
    281.熊正琴,邢光熹,鹤田治雄,施书莲,沈光裕,杜丽娟,钱薇.2002.种植夏季豆科作物对旱地氧化亚氮排放贡献的研究.中国农业科学,35(9):1104-1108
    282.熊正琴,邢光熹,鹤田治雄,施书莲,沈光裕,杜丽娟.2003.豆科绿肥和化肥氮对双季稻稻田氧化亚氮排放贡献的研究.土壤学报,40(5):703-710
    283.徐文彬,刘广深,刘维屏.2002a.降雨和土壤湿度对贵州旱田土壤N2O释放的影响.应用生态学报,13(1):67-70
    284.徐文彬,刘维屏,刘广深.2002b.温度对旱田土壤N2O排放的影响研究.土壤学报,39(1):1-8
    285.徐文彬.2000.浅谈推算和预测宏观尺度土壤N2O释放量的方法.土壤通报,31(2):91-95
    286.许秀成.2006.缓释、控释肥料生产、使用前景展望.磷肥与复肥,21(6):9-11
    287.薛禹群和张幼宽.2009.地下水污染防治在我国水体污染控制与治理中的双重意义.环境科学学报,29(3):474-481
    288.闫湘,金继运,何萍,梁鸣早.2008.提高肥料利用率技术研究进展.中国农业科学,41(2):450-459
    289.杨金玲,张甘霖,周瑞荣.2001.皖南丘陵地区小流域氮素径流输出的动态变化.农村生态环境,17(3):1-4
    290.叶欣,李俊,王迎红,刘恩民,李瑞雪,于强,陈炳新.2005.华北平原典型农田土壤氧化亚氮的排放特征.农业环境科学学报,24(6):1186-1191
    291.殷士学,陆驹飞.1997.硝酸异化还原成铵的微生物学过程.微生物学通报,24(3):170-173
    292.于克伟,陈冠雄,杨思河,吴杰,黄斌,黄国宏,徐慧.1995.几种旱地农作物在农田N2O释放中的作用及环境因素的影响.应用生态学报,6(4):387-391
    293.於俊杰,郝郑平,朱玲,李焱,何绪文.2008.发达国家温室气体减排现状及对我国的启示.环境工程学报,2(9):1281-1288
    294.岳进,梁巍,吴杰,史奕,黄国宏.2003.黑土稻田CH4和N2O排放及减排措施研究.应用生态学 报,14(11):2015-2018
    295.张承先,武雪萍,吴会军,蔡典雄.2008.不同土壤水分条件下华北冬小麦基施不同氮肥的氨挥发研究.中国土壤与肥料,(5):27-32
    296.张春华.2009.低碳经济:气候变化背景下的发展之路.WTO经济导刊,2:22-26
    297.张福锁,王激清,张卫峰,崔振岭,马文奇,陈新平,江荣风.2008.中国主要粮食作物肥料利用率现状与提高途径.土壤学报,145(15):915-924
    298.张厚.1998.农业减排温室气体的技术措施.农业环境与发展,1:17-22
    299.张小全,武曙红,何英,侯振宏.2005.森林、林业活动与温室气体的减排增汇.林业科学,141(16):150-156
    300.赵荣钦,黄爱民,秦明周,杨浩.2004.中国农田生态系统碳增汇/减排技术研究进展.河南大学学报(自然科学版),34(1):60-65
    301.郑循华,王明星,王跃思,沈壬兴,张文,龚宴邦.1997.温度对农田N2O产生与排放的影响.环境科学,18(5):1-5
    302.郑循华,王明星,王跃思.1996.稻麦轮作生态系统中土壤湿度对N2O产生与排放的影响.应用生态学报,7(3):273-279
    303.中国化肥网http://www.fert.cn
    304.中国粮油网http://www.chinagrain.cn
    305.中国统计年鉴.2008.北京:中国统计出版社
    306.中华人民共和国气候变化信息公报.1994.北京:中国计划出版社.pp:31-32
    307.周静,崔键,王霞.2008.红壤不同含水量对尿素氨挥发的影响.土壤,40(6):930-933
    308.周礼恺,徐星凯,陈利军,李荣华,Van Cleemput O.1999.氢醌和双氰胺对种稻土壤N2O和CH4排放的影响.应用生态学报,10(2):189-192
    309.周立祥,黄峰源,王世梅.2006.好氧反硝化菌的分离及其在土壤氮素转化过程中的作用.土壤学报,143(13):430-435
    310.朱兆良.2008.中国土壤氮素研究.土壤学报,45(5):778-783
    311.邹建文,黄耀,宗良纲,郑循华,王跃思.2003.稻田CH4和N20排放及其影响因素.环境科学学报,23(6):758-764

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700