用户名: 密码: 验证码:
羟基磷灰石表面改性及相关复合物的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
羟基磷灰石(HA或HAP)具有良好的生物相容性和成骨活性,能够与骨组织形成牢固的键性结合,是公认性能良好的骨修复替代材料。但其在应用中存在易碎性、机械强度低和体内降解性差等缺陷。因此,人们常将HAP和有机物复合以改善性能,复合生物材料结合了HAP的生物特性与有机基质的易加工性、机械性能及降解性。
     但是HAP在与其它有机物复合时还存在一些问题:HAP属极性分子,具有亲水特性,在和有机基质复合时两相界面结合强度下降,导致复合物力学强度下降;纳米级HAP由于相互间的范德华力和氢键等作用力会聚集形成微米颗粒,这会降低复合物生物性质表达。
     最常用的方法是HAP纳米粒子表面改性,通过HAP的表面改性不仅可以提高颗粒的分散度和胶体稳定性,还可以提高与有机基质之间的相互作用,从而增强复合物的力学强度。本文通过四种不同的方法对HAP纳米粒子改性,并研究了改性对复合物性质的影响。
     本论文主要研究内容和结论概括如下:
     (1)制备羟基磷灰石(HAP):采用化学沉淀法制备了羟基磷灰石纳米粒子,并研究了HAP纳米粒子的基本性质。
     (2)开环反应(Ring opening polymerization):利用HAP表面的羟基直接引发己内酯(CL)的开环反应,得到表面接枝聚己内酯(PCL)的改性HAP(g-HAP),对比了HAP和g-HAP的性质,研究了两者对复合支架力学性能、热性能和孔隙率等影响。
     (3)原子转移自由基反应(ATRP)和开环反应:先通过ATRP反应在HAP表面接枝了聚甲基丙烯酸羟乙酯(PHEMA),再利用PHEMA所带的羟基官能团开环反应在HAP表面接枝了梳状PCL,在HAP表面增加羟基的数目可以有效方便的增加接枝聚合物的含量,随着PCL含量的增加,悬浮稳定性和支架的力学性能增加的更明显。
     (4)反向原子转移自由基反应(reverse ATRP):通过反应使HAP表面的羟基官能团转变为过氧化官能团,这些官能团可以引发甲基丙烯酸甲酯的reverse ATRP反应接枝一部分PMMA,末端残余的Br官能团可以继续引发MMA的ATRP反应。Reverse ATRP动力学研究表明在HAP表面反应是可控活性聚合。透射电子显微镜(TEM)表明随着接枝PMMA含量的增加,改性粒子在有机溶剂中的分散性增加,同时,复合物的压缩模量也随之升高。
     (5)原子转移自由基反应:通过反应使HAP表面羟基变为溴官能团,这些官能团可以引发ATRP反应在HAP表面接枝上聚甲基丙烯酸甲酯(PMMA),得到PMMA-g-HAP (M-HAP).接触角测试表明接枝PMMA后,HAP表面由吸水性转变为疏水性,悬浮稳定性测试表明改性粒子在有机溶剂和水溶液中的分散性都得到提高。通过对蛋白质吸附和释放的研究,发现良好的分散性有利于蛋白质的吸附。
Hydroxyapatite (HAP or HA) nanoparticles, which have excellent biocompatibility, osteoconductivity and strong interaction with bone tissue, are recognized as one of the bone repairing materials. However, the poor mechanical properties and biodegradability limited their applications. Thus, the composites combining the bioactivity of HAP fillers and mechanical property of polymer matrix are extensively studied.
     During this process, there are also some difficulties to solve. HAP has a strong tendency to agglomerate due to the inter-particle van der Waals interaction and hydrogen bonding. The interfacial adhesion between HAP filler and polymer matrix is very weak, which will induce the early failure at the interface and make the composites useless.
     The most commonly used method is surface modification of HAP. Surface modification of hydroxyapatite not only prevents the HAP particles from aggregating but also enhances the compatibility with polymer matrix. In the present paper, HAP nanoparticles are surface modified with four different methods.
     The main contents and conclusions in the dissertation are divided into the following parts.
     (1) Synthesis HAP nanoparticles:HAP nanoparticles were prepared by the chemical precipitation and charactered by FTIR, XRD, BET and TEM.
     (2) Ring opening polymerization:HAP was surface grafted with poly(ε-caprolactone) (PCL) through directly ring opening polymerization. The obtained PCL-g-HAP (g-HAP) was compared with HAP. With g-HAP and HAP addition, the mechanical properties, thermal properties and porosities of composite scaffolds were also discussed.
     (3) Atom transfer radical polymerization (ATRP) and ring opening polymerization:HAP was surface firstly grafted with poly(2-hydroxyethyl methacrylate) (PHEMA) through ATRP method. Then the comb PCL was grafted onto HAP surface through ring opening polymerization. The additional hydroxyl groups could be effective and convenient for the high grafting amount. The dispersibility of surface-grafted HAP was significantly improved as the amount of grafted PCL increased. At the same time, the improvement on the mechanical properties of composite scaffold was more obviously.
     (4) Reverse atom transfer radical polymerization (Reverse ATRP):HAP nanoparticles were firstly surface-grafted with PMMA via reverse atom transfer radical polymerization (reverse ATRP), and the surface-grafted HAP was used for subsequent atom transfer radical polymerization (ATRP) of additional methyl methacrylate (MMA). The kinetic studies of reverse ATRP revealed that this was a linear increase in ln([M]o/[M]) with polymerization time. Transmission electron microscopy (TEM) indicated that the surface-grafted HAP could be dispersed in chloroform more uniformLy than HAP nanoparticles, and the dispersibility of surface-grafted HAP was significantly improved as the amount of grafted PMMA increased. Since the PMMA grafted on the HAP surface enhanced the interfacial adhesion between HAP and matrix, the compressive strength of HAP/PMMA composites were improved at the same time.
     (5) ATRP:The hydroxyl groups of HAP were firstly modified to bromine groups. Then through these groups, ATRP was utilized to graft poly(methyl methacrylate) on the HAP. The structure and properties of the PMMA-g-HAP particles (M-HAP) were investigated by thermogravimetric analysis (TGA), transmission electron microscopy (TEM), differential scanning calorimeter measurements (DSC), and contact angle analyses. The contact angle analyses indicated that grafting PMMA onto the HAP surface dramatically increased the hydrophobicity of the surface. Moreover, M-HAP showed excellent dispersibility in both aqueous solution and organic solvent. Through the study of protein adsorption and release, the excellent dispersibility of HAP particles had good effects on the protein adsorption.
引文
[1]王小红,马建标,王亦农等.骨修复材料的研究进展,生物医学工程学杂志,2001,18(4):647~652.
    [2]O Schultz, M Sittinger, T Haeupl et al. Emerging strategies of bone and joint repair. Arthritis Res.,2000,2(6):433~436.
    [3]D E Williams. On the mechanisms of biocompatibility. Biomaterials,2008,29(20): 2941~2953.
    [4]N G Tobin, L M Richard, J K Stephen et al. In vitro characterization and biomechanical optimization of a biodegradable particulate composite bone cement. J. Biomed. Mater. Res., 1998;22:1071~1082.
    [5]J Y Rho, K S Liisa, P Zioupos. Mechanical properties and the hierarchical structure of bone, Med.Eng. Phys.,1998,20:92~102.
    [6]赵峰.仿生羟基磷灰石/壳聚糖-明胶网络复合材料的骨组织工程学研究.天津大学博士学位论文,2001.
    [7]刘江.医用生物材料的研制与应用,金属功能材料,2004,14(6):38~42.
    [8]钟锐,邱凯,万昌秀.骨组织工程支架材料生物陶瓷的研究进展.医疗卫生装备,2005,26(4):26~30.
    [9]Vitale C. Macroporous glass-ceramic materials with bioactive properties. J. Mater. Sci.: Mater. Med.,2004,15:209~217.
    [10]M D Grynpas, R M Pilliar, R A Kandel et al. Porous calcium polyphosphate scaffolds for bone substitute applications in vivo studies. Biomaterials,2002,23:2063~2070.
    [11]Q Zhao, G X Cheng. Preparation of biodegradable poly(3-hydroxybutyrate) and poly(ethylene glycol) multiblock copolymers. J. Mater. Sci.,2003,22:3829~3831.
    [12]田丰,成国祥,刘长军等.骨组织损伤修复生物医用材料的研究进展.医疗卫生装备,2005,26(2):22~25.
    [13]M Mizuno, M Shindo, Kobayashi et al. Osteogenesis by bone marrow stromal cells maintained on type I collagen matrix gels in vivo. Bone,1997,20:101~107.
    [14]T Kasuga, Y Ota, M Nogami et al. Preparation and mechanical properties of polylactic acid composites containing hydroxyapatite. Biomaterials,2001,22(1):19~23.
    [15]李志宏,武继民,李瑞欣等.纳米羟基磷灰石及其复合材料的研究进展.医疗卫生装备,2007,28(4):30~31.
    [16]刘海峰,常津,姚康德等.不同透明质酸的浓度对明胶-透明质酸薄膜性能的影响.中国生物医学工程学报,2008,27(4):603~610.
    [17]C C P M Verheyen, J R de Wijn, C A van Blitterswijk et al. Hydroxyapatite/poly(L-lactide) composites:an animal study on push-out strengths and interface histology. J Biomed. Mater. Res.,1993,27(4):433-444.
    [18]Y Shikinami, M Okuno. Bioresorbable devices made of forged composites of hydroxyapatite particles and poly-L-lactide:Part Ⅰ. Basic characteristics. Biomaterials,1999, 20(9):859~877.
    [19]A Tschakaloff, H W Losken, J Lalikos et al. Experimental studies of DL-polylactic acid biodegradable plates and screws in rabbits:computed tomography and molecular weight loss. Journal of Craniofacial Surgery,1993,4:223~227.
    [20]T Yamamuro, T Matsusue, A Uchida et al. Bioabsorbable osteosynthetic implants of ultra high strength poly-L-lactide:A clinical study. International Orthopaedics,1994,18: 332~340.
    [21]R Suuronen. Biodegradable fracture-fixation devices in maxillofacial surgery. Journal of Oral and Maxillofacial Surgery,1993,22:50~57.
    [22]鲜思平.纳米相经基磷灰石/胶原复合材料研究进展.国外医学生物医学工程分册,2005,28(5):298~301.
    [23]N Roveri, G Falini, M C Sidoti. Biologically inspired growth of hydroxyapatite nanocrystals inside self-assembled collagen fibers. Mater. Sci. Eng.,2003,23:441~446.
    [24]M Kikuchi, S Itoh, S Ichinose et al. Self-organization mechanism in a bone-like hydroxyapatite/collagen nanocomposite synthesized in vitro and its biological reaction in vivo. Biomtaterials,2001,22(13):1705~1711.
    [25]M Kikuchi, H N Matsumoto, T Yamada et al. Glutaraldehyde crosslinked hydroxyapatite/collagen self-organized nanocomposites. Biomaterials,2004,25:63~69.
    [26]冯庆玲,崔福斋,张伟.纳米羟基磷灰石/胶原骨修复材料.中国医学科学院学报,2002,24(2):124~128.
    [27]王振林,闫玉华,万涛.羟基磷灰石/胶原类骨仿生复合材料的制备及表征.复合材料学报,2005,22(2):83~86.
    [28]A John, H Liu, Y Ikada et al. A trial to prepare biodegradable collagen-hydroxyapatite composites for bone repair. J. Biomater. Sci. Polymer Edn.,2001,12(6):689~705.
    [29]M C Chang, J Tanaka. XPS study for the microstructure development of hydroxyapatite-collagen nanocomposites cross-linked using glutaraldehyde. Biomaterials, 2002,23:3879~3885.
    [30]殷海荣,林社宝.羟基磷灰石明胶复合材料的研究进展.陶瓷,2009,4:38-41.
    [31]殷海荣,李阳,林社宝等.羟基磷灰石/明胶复合材料的制备与表征.材料导报,2008,22(9),122~124.
    [32]S H Teng, L J Chen, Y C Guo et al. Formation of nano-hydroxyapatite in gelatin droplets and the resulting porous composite microspheres. J. Inorganic Biochem.,2007,101:686~691.
    [33]叶金凤,陈庆华,张峰等.共滴定法制备羟基磷灰石/甲壳素复合材料.中国陶瓷,2007,43(8),18~21.
    [34]王红梅,陈庆华,潘兴华等.羟基磷灰石/β-磷酸三钙/甲壳素复合多孔支架材料的制备及生物相容性研究.组织工程与重建外科杂志,2006,2(1),21~25.
    [35]Z G Ge, S Baguenard, Y L Lee et al. Hydroxyapatite-chitin materials as potential tissue engineered bone substitutes. Biomaterials,2004,25:1049~1058.
    [36]徐挺,何狄,周银银等.羟基磷灰石/壳聚糖生物复合材料的制备研究进展.生物骨科材料与临床研究,2008,5(1),44~49.
    [37]吕彩霞,姚子华.羟基磷灰石/壳聚糖复合材料研究进展.化工进展,2006,25(7):755~759.
    [38]张利,李玉宝,杨爱萍等.骨组织工程用纳米羟基磷灰石/壳聚糖多孔支架材料的制备及性能表征.功能材料,2005,2(36):314~318.
    [39]张利,李玉宝,魏杰等.纳米羟基磷灰石/壳聚糖复合骨修复材料的共沉淀法制备及其性能表征.功能材料,2005,3(36):441~444.
    [40]卢晓英,王秀红,屈树新等,纳米羟基磷灰石/壳聚糖杂化材料的制备.无机材料学报,2008,23(2):332~336.
    [41]李保强,胡巧玲,钱秀珍等.原位沉析法制备可吸收壳聚糖/羟基磷灰石棒材.高分子学报,2002,6:828~833.
    [42]W Tachaboonyakiat, T Serizawa, M Akashi. Hydroxyapatite formation on/in biodegradable chitosan hydrogels by an alternate sosking process. Polymer Journal,2001, 33(2):177~181.
    [43]M M Beppu, C C Santana. PAA influence on chitosan membrane calcification. Mater. Sci. Eng. C,2003,23(5):651~658.
    [44]G B Wei, Peter X Ma. Structure and properties of nano-hydroxyapatite/polymer composite scaffolds for bone tissue engineering. Biomaterials,2004,25:4749~4757.
    [45]赵敏丽,隋刚,杨小平等.电纺丝PLLA/HA复合纤维支架的制备及体外降解性能研究.中国生物医学工程学报,2006,25(4),476~480.
    [46]李亚军,阮建明.聚乳酸/羟基磷灰石复合型多孔状可降解生物材料.粉末冶金材料科学与工程,2002,7(1):75~81.
    [47]陈清宇,翁杰.纳米羟基磷灰石/聚乳酸复合材料力学性能.化工新型材料,2007,35(10):80~81.
    [48]S Ishii, J Tamura, T Furukawa et al. Long-term study of high-strength hydroxyapatite/poly(L-lactide) composite rods for the internal fixation of bone fractures:A 2-4-year follow-up study in rabbits. J. Biomed. Mater. Res. Part B:Appl. Biomater.,2003, 66B(2):539~547.
    [49]张士杰,裴庆国,潘可风等PLGA/HA支架材料生物相容性的动物实验研究.口腔颌面外科杂志,2007,17(1):40~45.
    [50]C R Kothapalli, M T Shaw, M Wei. Biodegradable HA-PLA3-D porous scaffolds:effect of nano-sized filler content on scaffold properties. Acta Biomater.,2005,1:653~662.
    [51]Y F Yang, J Zhao, Y H Zhao et al. Formation of porous PLGA scaffolds by a combining method of thermally induced phase separation and porogen leaching. J. Appl. Polym. Sci., 2008,109:1232~1241.
    [52]S S Kim, M S Park, O Jeon et al. Poly(lactide-co-glycolide)/hydroxyapatite composite scaffolds for bone tissue engineering. Biomaterials,2006,27,1399-1409.
    [53]J Y Hao, Y Liu, S B Zhou. Investigation of nanocomposites based on semi-interpenetrating network of [L-poly(ε-caprolactone)]/[net-poly(s-caprolactone)] and hydroxyapatite nanocrystals. Biomaterials,2003,24,1531~1539.
    [54]戴炜枫,何月英,黄浩燕等.官能团化聚己内酯的合成与表征.高分子学报,2009,4:358~362.
    [55]W F Dai, J Y Zhu, M D Lang et al. Synthesis, characterization and degradability of the comb-type poly(4-hydroxyl-ε-caprolactone-co-ε-caprolactone)-g-poly(L-lactide). Eur. Polym. J.,2009,45:1659~1667.
    [56]J L Yan, Y Zhang, M D Lang et al. Novel poly(s-caprolactone)s bearing amino groups: Synthesis, characterization and biotinylation. React. Funct. Polym.,2010,70:400~407.
    [57]J Y Hao, M L Yuan, X M Deng. Biodegradable and biocompatible nanocomposites of poly(ε-caprolactone) with hydroxyapatite nanocrystals:thermal and mechanical properties. J. Appl. Polym. Sic.,2002,86,676-683.
    [58]H W Kim. Biomedical nanocomposites of hydroxyapatite/polycaprolactone obtained by surfactant mediation. J. Biomed. Mater. Res.,2007,83 A,169~177.
    [59]F Causa, P A Netti, L Ambrosio et al. Poly-s-caprolactone/hydroxyapatite composites for bone regeneration:in vitro characterization and human osteoblast response. J. Biomed. Mater. Res.,2006,76A,151~162.
    [60]H W Kim, J C Knowles, H E Kim. Hydroxyapatite/poly(ε-caprolactone) composite coatings on hydroxyapatite porous bone scaffold for drug delivery. Biomateials,2004,25: 1279~1287.
    [61]邓迟,杨晓兵,鲁雄等.羟基磷灰石/聚己内酯复合材料的溶液共混与力学性能研究.表面技术,2008,37(2):14~16.
    [62]徐艺展,何丹,肖秀峰等.羟基磷灰石/聚己内酯生物复合材料的制备及其生物活性.华东理工大学学报(自然科学版),2006,32(6):709~713.
    [63]吕凯歌,张丽红,裴庆国等.多孔支架材料PLGA/HA生物相容性的实验研究.口腔颌面外科杂志,2007,17(2):114~117.
    [64]王珍萍,黄苏萍,周科朝.原位矿化法制备羟基磷灰石/高密度聚乙烯复合材料,2006,11(6):363~366.
    [65]王乙迪,李冬梅,秦毅等.羟基磷灰石与聚乙烯复合材料的组织相容性和骨传导性实验研究.眼科,2008,17(6):386~389.
    [66]吴其胜.纳米HAP改性PMMA骨水泥力学性能的研究.材料科学与工程学报,2005,23(6):863~866.
    [67]A M Moursi, A V Winnard, L W Phillip et al. Enhanced osteoblast response to a polymethylmethacrylate-hydroxyapatite composite. Biomaterials,2002,23(1):133~144.
    [68]M J Dalby, L Di Silvio, E J Harper et al. Increasing hydroxyapatite incorporation into poly(methylmethacrylate) cement increases osteoblast adhesion and response. Biomaterials, 2002,23,569~576.
    [69]J C Zhang, J Liao, A C Mo et al. Characterization and human gingival fibroblasts biocompatibility of hydroxyapatite/PMMA nanocomposites for provisional dental implant restoration. Appl. Surf. Sci.,2008,255:328~330.
    [70]A Sogal, S F Hulbert. Mechanical properties of a composite bone cement: polymethyl-methacrylate and hydroxyapatite. Bioceramics,1992,5:213~224.
    [71]T G Tihan, M D Ionita, R G Popescu et al. Effect of hydrophilic-hydrophobic balance on biocompatibility of poly(methyl methacrylate) (PMMA)-hydroxyapatite (HA) composites. Mater. Chem. Phys.,2009,118,265~269.
    [72]C A Garcia-Gonzalez, A M Lopez-Periago, C Domingo et al. Composite fibrous biomaterials for tissue engineering obtained using a supercritical CO2 antisolvent process. Acta Biomater.,2009,5,1094~1103.
    [73]M K Singh, T Shokuhfar, H Garmestani et al. Hydroxyapatite modified with carbon-nanotube-reinforced poly(methyl methacrylate):a nanocomposite material for biomedical applications. Adv. Funct. Mater.,2007,18,694~700.
    [74]S Beck, A Boger. Evaluation of the particle release if porous PMMA cements during curing. Acta Biomater.,2009,5,2503~2507.
    [75]王学江,李玉宝.羟基磷灰石纳米针晶与聚酰胺仿生复合生物材料研究.高技术通讯,2001,5:1-5.
    [76]张利,李玉宝,王学江.纳米羟基磷灰石/聚酰胺多孔支架材料的制备及性能研究.功能材料,2004,6:43~46.
    [77]张翔,李玉宝,左奕等.纳米羟基磷灰石/聚酰胺66仿生复合材料的费等温结晶动力学研究.功能材料,2004,4(36):639~642.
    [78]彭雪林,李玉宝,王学江等.医用纳米羟基磷灰石/聚酰胺66复合材料体外浸泡行为研究.功能材料,2004,2(35):253~256.
    [79]F L Xu, Y B Li, X J Wang et al. Preparation and characterization of nano-hydroxyapatite/poly(vinyl alcohol) hydrogel biocomposite. J. Mater. Sci.,2004,39: 5669~5672.
    [80]Y S Pan, D S Xiong, F Gao. Viscoelastic behavior of nano-hydroxyapatite reinforced poly(vinyl alcohol) gel biocomposites as an articular cartilage. J. Mater. Sci.:Mater. Med., 2008,19:1963~1969.
    [81]刘青,郑裕东,王迎军等.溶胶法原位复合聚乙烯醇/羟基磷灰石水凝胶的结构与性能研究.化工新型材料,2005,33(11):56~59.
    [82]郑裕东,王迎军,吴刚等.生物活性聚乙烯醇/羟基磷灰石复合水凝胶的结构与性能.材料科学与工程,2002,20(2):170~172.
    [83]沈艳秋,张德坤,葛世荣PVA/HA复合水凝胶的结构和摩擦学性能.材料研究学报, 2008,22(3):257~261.
    [84]Q Liu, J R de Wijn, C A van Blitterswijk. A study on the grafting reaction of isocyanates with hydroxyapatite particles. J. Biomed. Mater. Res.,1998,40:358~364.
    [85]D N Misra. Adsorption of zirconyl salts and their acids on hydroxyapatite:use of the salts as coupling agents to dental polymer composites. J. Dent. Res.,1985,12:1405~1408.
    [86]C M Vaz, R L Reis, A M Cunha. Use of coupling agents to enhance the interfacial interactions in starch-EVOH/hydroxylapatite composites. Biomaterials,2002,23:629~635.
    [87]J L Zhao, T Fu, Y Han et al. Reinforcing hydroxyapatite/thermosetting epoxy composite with 3-D carbon fiber fabric through RTM processing. Mater. Lett.,2004,58:163~168.
    [88]X Fan, J Chen, J M Ruan et al. Preparation and Properties of Poly(lactide-co-glycolide)/Bone Meals Composite Materials. Polym. Plast. Technol. Eng., 2009,48:658~664.
    [89]T Furuzono, K Sonoda, J Tanaka. A hydroxyapatite coating covalently linked onto a silicone implant material. J. Biomed. Mater. Res.,2001,56:9-16.
    [90]S M Zhang, S P Li, Y H Yan et al. Surface Modification of Hydroxyapatite by Using y-aminopropyl Silane. Journal of Wuhan University of Technology-Mater. Sci. Ed.,2001, 16(3):37~38.
    [91]M C Durrieu, S Pallu, F Guillemot et al. Grafting RGD containing peptides onto hydroxyapatite to promote osteoblastic cells adhesion. J. Mater. Sci.:Mater. Med.,2004,15: 779~786.
    [92]T Furozono, P L Wang, A Korematsu et al. Physical and biological evaluations of sintered hydroxyapatite/silicone composite with covalent bonding for a percutaneous implant material. J. Biomed. Mater. Res., Part B,2003,65B:217~226.
    [93]O G da Silva, E C da Silva Filho, M G da Fonseca et al. Hydroxyapatite organofunctionalized with silylating agents to heavy cation removal. J. Colloid Interface Sci., 2006,302:485-491.
    [94]廖建国,王学江,左奕等.硅烷偶联剂对纳米羟基磷灰石表面改性的研究.无机材料学报,2008,23(1):145~149.
    [95]C Damia, P Sharrock. Bioactive coatings obtained at room temperature with hydroxyapatite and polysiloxanes. Mater. Lett.,2006,60:3192~3196.
    [96]J M Oliveira, T Miyazaki, M A Lopes et al. Bonelike/PLGA hybrid materials for bone regeneration:Preparation route and physicochemical characterization. J. Mater. Sci.:Mater. Med.,2005,16:253-259.
    [97]A M P Dupraz, J R de Wijn, S A T v d Meer et al. Characterization of silane-treated hydroxyapatite powders for use as filler in biodegradable composites. J. Biomed. Mater. Res., 1996,30:231~238.
    [98]A M P Dupraz, S A T v d Meer, J R de Wijn. Biocompatibility screening of silane-treated hydroxyapatite powders, for use as filler in resorbable composites. J. Mater. Sci.:Mater. Med., 1996,7:731~738.
    [99]C Santos, R L Clarke, M Braden et al. Water absorption characteristics of dental composites incorporating hydroxyapatite filler. Biomaterials,2002,23:1897~1904.
    [100]张斌,朱武,黄苏萍等.偶联改性纳米HAP/HDPE挤出复合生物材料的力学性能和微观结构.功能材料,2007,11(38):1912~1915.
    [101]高伟,陈寰贝,张文云等.表面改性羟基磷灰石晶须填料增强牙科复合树脂.广西轻工业,2009,3(124):28~43.
    [102]M Wang, S Deb, W Bonfield. Chemically coupled hydroxyapatite-polyethylene composites:processing and characterization. Mater. Lett.,2000,44:119~124.
    [103]M Wang, Bonfield W. Chemically coupled hydroxyapatite-polyethylene composites: structure and properties. Biomaterials,2001,22:1311~1320.
    [104]X J Wang, G J Song, T Lou. Fabrication and characterization of nano-composite scaffold of PLLA/silane modified hydroxyapatite. Med. Eng. Phys.,2010,32:391~397.
    [105]H Tanaka, T Watanabe, M Chikazawa et al. Surface structure and properties of calcium hydroxyapatite modified by hexamethyldisilazane. J. Colloid Interface Sci.,1998,206: 205~211.
    [106]J Q Wen, Y B Li, Y Zuo et al. Preparation and characterization of nano-hydroxypatite/silicone rubber composite. Mater. Lett.,2008,62:3307~3309.
    [107]C L Yang, K Cheng, W J Weng et al. OTS modified HA and its toughening effect on PLLA/HA porous composite. J. Mater. Sci.:Mater. Med.,2009,20:667~672.
    [108]S C D'Andrea, A Y Fadeev. Covalent surface modification of calcium hydroxyapatite using n-alkyl- and n-fluoroalkylphosphonic acids. Langmuir,2003,19:7904~7910.
    [109]H Tanaka, M Futaoka, R Hino. Surface modification of calcium hydroxyapatite with pyrophosphoric acid. J. Colloid Interface Sci.,2004,269:358~363.
    [110]H Tanaka, M Futaoka, R Hino et al. Structure of synthetic calcium hydroxyapatite particles modified with pyrophosphoric acid. J. Colloid Interface Sci.,2005,283:609~612.
    [111]K Kandori, S Tsuyama, H Tanaka et al. Protein adsorption characteristics of calcium hydroxyapatites modified with pyrophosphoric acids. Colloids Surf., B,2007,58:98~104.
    [112]N Pramanik, S Mohapatra, P Bhargava et al. Chemical synthesis and characterization of hydroxyapatite (HAp)-poly (ethylene co vinyl alcohol) (EVA) nanocomposite using a phosphonic acid coupling agent for orthopedic applications. Mater. Sci. Eng., C,2009,29: 228~236.
    [113]N Torres, S Oh, M Appleford et al. Stability of antibacterial self-assembled monolayers on hydroxyapatite. Acta Biomater.,2010,6:3242~3255.
    [114]L E Hammari, A Laghzizil, A Saoiabi et al. Chemical modification of porous calcium hydroxyapatite surfaces by grafting phenylphosphonic and phenylphosphite acids. Colloids Surf., A,2006,289:84~88.
    [115]A Aissa, M Debbabi, M Gruselle et al. Covalent modification of calcium hydroxyapatite surface by grafting phenyl phosphonate moieties. J. Solid State Chem.,2007,180: 2273~2278.
    [116]L E Hammari, H Marroun, A Laghzizil et al. Organically modified porous hydroxyapatites:A comparison between alkylphosphonate grafting and citrate chelation. J. Solid State Chem.,2008,181:848~854.
    [117]罗庆平,李晓东,尹光福等.磷酸单酯偶联剂对羟基磷灰石的表面改性研究.四川大学学报(工程科学版),2003,35(4):45~48.
    [118]G H Nacollas, R Tang, R J Phipps et al. Novel insights into actions of bisphosphonates on bone:differences in interactions with hydroxyapatite. Bone,2006,38:617~627.
    [119]E Luo, H Jing, S C Wei et al. The bisphosphonate clodronate modifying hydroxyapatite bioceramics for bone scaffold. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2005,20:98~101.
    [120]罗恩,胡静,李维华等.羟基磷灰石经氯磷酸二钠表面改性后表面润湿性的变化.中国组织工程研究与临床康复,2008,12(10):1856~1858.
    [121]张晓辉,胡静,王雪梅等.氯磷酸二钠表面改性羟基磷灰石对成骨细胞的影响.中国组织工程研究与临床康复,2008,12(32):6221~6224.
    [122]刘显,胡静,包崇云等.羟基磷灰石经氯磷酸二钠表面改性对成骨细胞的影响.临床医学工程,2009,16(5):1~3.
    [123]宋国栋,包崇云,胡静等.氯磷酸二钠表面改性羟基磷灰石对骨髓间充质干细胞多向分化的影响.医学研究杂志,2008,37(11):42~45.
    [124]L B Nicholas, O C Wilson Jr. Surface modification of hydroxyapatite. Part Ⅰ. Dodecyl alcohol. Biomaterials,2003,24:3671~3679.
    [125]L Borum, O C Wilson Jr. Surface modification of hydroxyapatite. Part Ⅱ. Silica. Biomaterials,2003,24:3681-3688.
    [126]Q Liu, J R de Wijn, C A van Blitterswijk. Covalent bonding of PMMA, PBMA, and poly(HEMA) to hydroxyapatite particles. J. Biomed. Mater. Res.,1998,40:257~263.
    [127]Q Liu, J R de Wijn, K de Groot et al. Surface modification of nano-apatite by grafting organic polymer. Biomaterials,1998,19:1067~1072.
    [128]Q Liu, J R de Wijn, C A van Blitterswijk. Composite biomaterials with chemical bonding between hydroxyapatite filler particles and PEG/PBT copolymer matrix. J. Biomed. Mater. Res.,1998,40:490~497.
    [129]A Matsuda, T Furuzono, D Walsh et al. Surface modification of a porous hydroxyapatite to promote bonded polymer coatings. J. Mater. Sci.:Mater. Med.,2003,14:973~978.
    [130]C X Zhao, W D Zhang. Preparation of waterborne polyurethane nanocomposites: Polymerization from functionalized hydroxyapatite. Eur. Polym. J.,2008,44:1988-1995.
    [131]X H Gong, X L Xie, C Y Tang et al. Enhanced mechanical and wear performance of PS and HIPS composites by surface modification of hydroxyapatite via in situ polymerization and copolymerization. Composite,2007,14:335~350.
    [132]J C Wei, P He, A X Liu et al. Surface Modification of Hydroxyapatite Nanoparticles with Thermal-Responsive PNIPAM by ATRP. Macromol. Biosci.,2009,9:1237~1246.
    [133]J C Wei, A X Liu, L Chen et al. The Surface Modification of Hydroxyapatite Nanoparticles by the Ring Opening Polymerization of g-Benzyl-L-glutamate N-carboxyanhydride. Macromol. Biosci.,2009,9:631~638.
    [134]C L Yang, K Cheng, W J Weng et al. Immobilization of RGD peptide on HA coating through a chemical bonding approach. J. Mater. Sci.:Mater. Med.,2009,20:2349~2352.
    [135]Z K Hong, X Y Qiu, J R Sun et al. Grafting polymerization of L-lactide on the surface of hydroxyapatite nano-crystals. Polymer,2004,45:6699~6706.
    [136]Z K Hong, P B Zhang, C L He et al. Nano-composite of poly(L-lactide) and surface grafted hydroxyapatite:Mechanical properties and biocompatibility. Biomaterials,2005,26: 6296~6304.
    [137]X L Xu, X S Chen, A X Liu et al. Electrospun poly(L-lactide)-grafted hydroxyapatite/poly(L-lactide) nanocomposite fibers. Eur. Polym. J.,2007,43:3187~3196.
    [138]Z K Hong, P B Zhang, A X Liu et al. Composites of poly(lactide-co-glycolide) and the surface modified carbonated hydroxyapatite nanoparticles. J. Biomed. Mater. Res.,2007,81 A, 515~522.
    [139]P B Zhang, Z K Hong, T Yu et al. In vivo mineralization and osteogenesis of nanocomposite scaffold of poly (lactide-co-glycolide) and hydroxyapatite surface-grafted with poly(L-lactide). Biomaterials,2009,30:58-70.
    [140]X Y Qiu, Z K Hong, J L Hu et al. Hydroxyapatite surface modified by L-lactic acid and its subsequent grafting polymerization of L-lactide. Biomacromolecules,2005,6:1193~1199.
    [141]J Li, X L Lu, Y F Zheng. Effect of surface modified hydroxyapatite on the tensile property improvement of HA/PLA composite. Appl. Surf. Sci.,2008,255:494~497.
    [142]M C Azevedo, R L Reis. Development and properties of polycaprolactone/hydroxyapatite composite biomaterials. J. Mater. Sci.:Mater. Med.,2003, 14:103-107.
    [143]H J Lee, H W Choi, K J Kim et al. Modification of hydroxyapatite nanosurfaces for enhanced colloidal stability and improved interfacial adhesion in nanocomposites. Chem. Mater.,2006,18:5111~5118.
    [144]H J Lee, S E Kim, H W Choi et al. The effect of surface-modified nano-hydroxyapatite on biocompatibility of poly(ε-caprolactone)/hydroxyapatite nanocomposites. Eur. Polym. J., 2007,43:1602~1608.
    [145]C Wang, X G Ge, K K Yang et al. Preparation and characterization of biodegradable poly(p-dioxanone)/hydroxyapatite nanocomposites. Soft Mater.,2009,7:116~131.
    [146]L Zeng, H B Wang, G X Fu et al. A new approach for synthesis of the comb-shaped poly (s-caprolactone) brushes on the surface of nano-hydroxyapatite by combination of ATRP and ROP. J. Colloid Interface Sci.,2010,352:36-42.
    [147]R Murugan, K Pandurangarao. Graft polymerization of glycidylmethacrylate onto coralline hydroxyapatite. J. Biomater. Sci., Polym. Ed.,2003,14:457~468.
    [148]R Murugan, S Ramakrishna. Coupling of therapeutic molecules onto surface modified coralline hydroxyapatite. Biomaterials,2004,25:3073~3080.
    [149]H W Choi, H J Lee, K J Kim et al. Surface modification of hydroxyapatite nanocrystals by grafting polymers containing phosphonic acid groups. J. Colloid Interface Sci.,2006,304: 277~281.
    [150]S E Kim, H W Choi, H J Lee et al. Designing a highly bioactive 3D bone-regenerative scaffold by surface immobilization of nano-hydroxyapatite. J. Mater. Chem.,2008,18: 4994~5001.
    [151]X H Gong, C Y Tang, H C Hu et al. Improved mechanical properties of HIPS/hydroxyapatite composites by surface modification of hydroxyapatite via in-situ polymerization of styrene. J. Mater. Sci.:Mater. Med.,2004,15:1141~1146.
    [152]龚兴厚,胡庆军,解孝林.羟基磷灰石表面接枝聚苯乙烯的研究.高分子材料科学与工程,2007,23(1):76~79.
    [153]H L Nichols, N Zhang, J Zhang et al. Coating nanothickness degradable films on nanocrystalline hydroxyapatite particles to improve the bonding strength between nanohydroxyapatite and degradable polymer matrix. J. Biomed. Mater. Res.,2007,82A: 373~382.
    [154]S C Lee, H W Choi, H J Lee et al. In-situ synthesis of reactive hydroxyapatite nano-crystals for a novel approach of surface grafting polymerization. J. Mater. Chem.,2007, 17:174~180.
    [155]Q Liu, J R de Wijn, C A van Blitterswijk. Nano-apatite/polymer composites:mechanical and physicochemical characteristics. Biomaterials,1997,18:1263~1270.
    [156]黄斌,高峻,雷景新等.光引发甲基丙烯酸聚合改性羟基磷灰石表面的研究.化学研究与应用,2007,19(3):327~329.
    [157]黄斌,高峻,陈晓峰等.羟基磷灰石表面光引发甲基丙烯酸聚合有机化改性的研究.塑料应用,2008,36(1):14~24.
    [158]X Y Qiu, L Chen, J L Hu et al. Nano-composite of poly(L-lactide) and surface grafted hydroxyapatite:Mechanical properties and biocompatibility. J. Polym. Sci., Part. A:Polym. Chem.,2005,43:5177~5185.
    [159]X Y Qiu, Y D Han, X L Zhuang et al. Preparation of nano-hydroxyapatite/poly(L-lactide) biocomposite microspheres. J. Nanopart. Res.,2007,9: 901~908.
    [160]于婷,刘娅,王宇等.改性纳米羟基磷灰石/PLGA复合材料的制备及生物活性.高等学校化学学报,2009,30(7):1439-1444.
    [161]黄艳霞,陈楚,任杰等.聚乳酸-羟基乙酸/改性纳米羟基磷灰石复合多孔支架材料的研制.功能材料,2007,4(38):629~632.
    [162]Y Cui, Y Liu, Y Cui et al. The nanocomposite scaffold of poly(lactide-co-glycolide) and hydroxyapatite surface-grafted with L-lactic acid oligomer for bone repair. Acta Biomater., 2009,5:2680~2692.
    [163]H Tanaka, T Watanabe, M Chikazawa et al. TPD, FTIR, and Molecular Adsorption Studies of Calcium Hydroxyapatite Surface Modified with Hexanoic and Decanoic Acids. J. Colloid Interface Sci.,1999,214:31~37.
    [164]C F Li, G C Li, S G Liu et al. Spherical hydroxyapatite with colloidal stability prepared in aqueous solutions containing polymer/surfactant pair. Colloids Surf., A,2010,366:27~33.
    [165]Y B Li, W J Weng. Surface modification of hydroxyapatite by stearic acid: characterization and in vitro behaviors. J. Mater. Sci.:Mater. Med.,2008,19:19~25.
    [166]廖建国,张利,左奕等.硬脂酸改性纳米羟基磷灰石表面性能的研究.无机化学学报,2009,25(7):1267~1273.
    [167]M F Chen, J J Tan, Y Y Lian et al. Preparation of Gelatin coated hydroxyapatite nanorods and the stability of its aqueous colloidal. Appl. Surf. Sci.,2008,254:2730~2735.
    [168]O C Wilson Jr, J R Hull. Surface modification of nanophase hydroxyapatite with chitosan. Mater. Sci. Eng. C,2008,28:434~437.
    [169]B Rai, L Grondahl, M Trau. Combining chemistry and biology to create colloidally stable bionanohydroxyapatite particles:Toward load-bearing bone applications. Langmuir, 2008,24:7744~7749.
    [170]B Rai, W Noohom, P H Kithva et al. Bionanohydroxyapatite/poly(3-hydroxybutyrate-co-3-hydroxyvalerate) composites with improved particle dispersion and superior mechanical properties. Chem. Mater.,2008,20:2802~2808.
    [171]T Hattofi, Y Lwadate. Hydrothermal preparation of calcium hydroxyapatite powders. J. Am. Ceram. Soc.,1990,73(6):1803~1805.
    [172]廖其龙,徐光亮,尹光福等.纳米羟基磷灰石的水热合成.功能材料,2002,33(3):338~340.
    [173]郭广生,王颖,王志华等.化学沉淀法制备羟基磷灰石纳米粒子.化学通报,2004,11:830~834.
    [174]王志强,马铁成,韩趁涛等.湿法合成纳米羟基磷灰石粉末的研究.无机盐工业,2001,33(1):3-5.
    [175]冯杰,曹洁明,邓少高等.纳米羟基磷灰石合成的两种新方法.化工新型材料,2005,33(1):27~29.
    [176]袁媛,刘昌胜.溶胶-凝胶法制备纳米羟基磷灰石.中国医学科学院学报,2002,24(2):129~133.
    [177]韩颖超,王欣宇,李世普等.自燃烧法合成纳米HAP粉末.硅酸盐学报,2002,30(3):387-389.
    [178]黄立业,徐可为.纳米针状羟基磷灰石涂层的制备及其性能的研究.硅酸盐学报,1999,27(3):351~356.
    [179]M Shirkhanzadeh. Direct formation of nanophase hydroxyapatite on cathodically polarized electrodes. J. Mater. Sci. Mater. Med.,1998,9(2):67~72.
    [180]H Y Yu, H W Matthew, P H Wooley et al. Effect of porosity and pore size on microstructures and mechanical properties of poly-ε-caprolactone-hydroxyapatite composites. J. Biomed. Mater. Res., Part B:Appl. Biomater.,2008,86B:541~547.
    [181]Z K Hong, R L Reis, J F Mano. Preparation and in vitro characterization of scaffolds of poly(L-lactic acid) containing bioactive glass ceramic nanoparticles. Acta biomaterilia,2008, 4:1297~1306.
    [182]R Y Zhang, P X Ma. Poly(a-hydroxyl acids)/hydroxyapatite porous composites for bone-tissue engineering. I. Preparation and morphology. J. Biomed. Mater. Res.,1999,44: 446-455.
    [183]X F Xiao, R F Liu, Q Y Huang. Preparation and characterization of nano-hydroxyapatite/polymer composite scaffolds. J. Mater. Sci.:Mater. Med.,2008,19: 3429~3435.
    [184]Y H Koh, I K Jun, H E Kim. Fabrication of poly(s-caprolactone)/hydroxyapatite scaffold using rapid direct deposition. Mater. Lett.,2006,60:1184~1187.
    [185]H Y Zhao, X L Kang, L Liu. Comb-coil polymer brushes on the surface of silica nanoparticles. Macromolecules,2005,38,10619~10622.
    [186]Y F Yang, D X Wu, C X Li et al. Poly(L-lactide) comb polymer brushes on the surface of clay layers. Polymer,2006,47:7374-7381.
    [187]Y P Wang, X W Pei, K Yuan. Reverse ATRP grafting from silica surface to prepare well-defined organic/inorganic hybrid nanocomposite. Mater. Lett.,2005,59:520~523.
    [188]Y P Wang, X W Pei, X Y He et al. Synthesis of well-defined, polymer-grafted silica nanoparticles via reverse ATRP. Eur. Polym. J.,2005,41:1326~1332.
    [189]Y P Wang, X W Pei, X Y He et al. Synthesis and characterization of surface-initiated polymer brush prepared by reverse atom transfer radical polymerization. Eur. Polym. J.,2005, 41:737-741.
    [190]Z Q Lei, S X Wen. Synthesis and decoloration capacity of well-defined and PMMA-grafted palygorskite nanocomposites. Eur. Polym. J.,2008,44:2845~2849.
    [191]L P Wang, Y P Wang, X W Pei et al. Synthesis of poly(methyl methacrylate)-b-poly(N-isopropylacrylamide) (PMMA-b-PNIPAM) amphiphilic diblock copolymer brushes on halloysite substrate via reverse ATRP. React. Funct. Polym.,2008,68: 649~655.
    [192]S H Qin, D Q Qin, W T Ford et al. Polymer brushes on single-walled carbon nanotubes by atom transfer radical polymerization of n-butyl methacrylate. J. Am. Chem. Soc.,2004, 126:170~176.
    [193]K Ohno, T Morinaga, K Koh et al. Synthesis of monodisperse silica particles coated with well-defined, high-density polymer brushes by surface-initiated atom transfer radical polymerization. Macromolecules,2005,38:2137~2142.
    [194]E Boanini, P Torricelli, M Gazzano et al. Nanocomposites of hydroxyapatite with aspartic acid and glutamic acid and their interaction with osteoblast-like cells. Biomaterials, 2006,27:4428~4433.
    [195]T von Werne, T E Pattern. Preparation of structurally well-defined polymer-nanoparticle hybrids with controlled/living radical polymerizations. J. Am. Chem. Soc.,1999,121: 7409~7410.
    [196]Y B Sun, X B Ding, Z H Zheng et al. Surface initiated ATRP in the synthesis of iron oxide/polystyrene core/shell nanoparticles. Eur. Polym. J.,2007,43:762~772.
    [197]D X Li, Y Cui, K W Wang et al. Thermosensitive nanostructures comprising gold nanoparticles grafted with block copolymers. Adv. Funct. Mater.,2007,17:3134~3140.
    [198]L J An, S L Fan, C Zhou. Synthesis of silica@a-Fe2O3 nanospheres by surface-initiated ATRP. Eur. Polym. J.,2008,44:2005~2009.
    [199]L L Zhou, W Z Yuan, J Y Yuan et al. Preparation of double-responsive SiO2-g-PDMAEMA nanoparticles via ATRP. Mater. Lett.,2008,62:1372~1375.
    [200]T Wu, Y F Zhang, X F Wang et al. Thermoresponsive poly(N-isopropylacrylamide) brushes of controlled thickness via surface-initiated atom transfer radical polymerization. Chem. Mater.,2008,20,101~109.
    [201]Z P Yang, C J Zhang. Adsorption/desorption behavior of protein on nanosized hydroxyapatite coatings:a quartz crystal microbalance study. Appl. Surf. Sci.,2009,255: 4569~4574.
    [202]T Y Liu, S Y Chen, D M Liu et al. On the study of BSA-loaded calcium-deficient hydroxyapatite nano-carriers for controlled drug delivery. J. Controlled Release,2005,107: 112~121.
    [203]林英光,杨卓如,程江.纳米掺锶羟基磷灰石的制备及其吸附性能研究.化学与生物工程,2006,23:13~16.
    [204]K Kandori, S Oda, M Fukusumi et al. Synthesis of positively charged calcium hydroxyapatite nano-crystals and their adsorption behavior of proteins. Colloids Surf., B, 2009,73:140~145.
    [205]T Kawasaki. Fundamental study of hydroxyapatite high performance liquid chromatography. J. Chromatogr.,1990,515:125~128.
    [206]沈卫,顾燕芳,刘昌胜等.羟基磷灰石的表面特性.硅酸盐通报,1996,1:45~51.
    [207]K Tomoda, H Ariizumi, T Nakaji et al. Hydroxyapatite particles as drug carriers for proteins. Colloids Surf., B,2010,76:226~235.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700