用户名: 密码: 验证码:
基于array-CGH的成人先天性心脏病的遗传学分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
先天性心脏病(congenital heart disease,CHD),简称先心病,是目前流行最为广泛的先天性生理缺陷之一,是一类严重危害婴幼儿健康的先天畸形。过去几十年中,我国由于经济等方面因素,诸多婴幼儿不能得到有效的救治,但一部分患者仍可有较长的生存期。其是否存在基因学共性很值得我们的关注。阵列-比较基因组杂交技术(Array comparative genome hybridization, array-CGH)是一种新兴的分子遗传学技术,主要用于与已知的对照基因组DNA相比较,从而识别样本基因组DNA的拷贝数异常
     目的:通过对56例患者进行array-CGH的检测,试图发现其基因学特点,并试图发现成年先心病患者的基因学共性或与小儿先心病患者的基因学差异。
     方法:通过筛选2009至2011年于我院心血管诊疗中心确证为先天性心脏病的成年患者56人,进行array-CGH遗传学诊断技术的检测,并应用SignalMap软件对结果进行有效分析。
     结果:1.在所有的56例成人先天性心脏病患者中共发现18例患者出现了染色体畸变。其中有7例患者只出现了拷贝数异常增多,8例患者在出现了拷贝数异常减少,另有3例患者在不同的染色体上分别出现了拷贝数异常增多和减少的情况。所涉及基因并无明显的共同点。2.其中8号患者与19号患者分别为室间隔缺损与艾伯斯坦氏异常的患者,并分别出现了22q11.21区域的染色体异常缺失和复制。其余基因并未见报道与先天性心脏病相关。
     结论:1、本研究对56名成人先天性心脏病患者进行array-CGH的检测,并发现其中17例患者存在着不同染色体畸变。其中异常复制者7例,异常缺失者8例,另有3例同时存在异常复制与缺失的情况。2、本研究中共2例患者出现了明确的与先天性心脏畸形相关的遗传学变异,都为22q11.21区域的变异,但不同的是8号患者为较常见的22q11缺失,而19号患者为22q11的异常复制。其余患者虽有一定的染色体畸变,但其变异区域既往皆无报道提示无先天性心脏病相关。3、本研究中患者明确与先天性心脏病的相关的遗传学变异类型与既往报道的先心病基因异常无明显差别。且56例患者中未见明确的基因学共性。故考虑成人先天性心脏病与小儿先天性心脏病的遗传学变异无明显差异,且本研究中的患者群体无明显遗传学共性。
Congenital heart diseases (CHD) are the most prevalent type of inborn defect, An actual fact is, numerous CHD patients in China hardly achieved any medical treatment due to the financial condition or other reasons, fortunately, many of which has survived at least till their adulthood. Array comparative genome hybridization (CGH) is a molecular cytogenetic technique dedicated to the identification of DNA copy number changes in a test genome relative to a reference genome.
     Purpose:Array-CGH was performed to recognize the genotype of the 56 adult patients, and try to discover the similarity of genetics character of the adult CHD patients, or the difference with the non-adult CHD patients' genetype.
     Method:Patients were recruited prospectively (from 2009 to 2011)at the Cardiovascular Department of First hospital attached to Jilin University. And array-CGH was performed, and a suitable analysis was done using the SignalMap software.
     Result:(1)Among the all 56 adult CHD,18 were found with a chromosome aberration.7 of all the patients were detect as a chromosome duplication,8 of which were detect with a chromosome deletion, the other 3 were combined with both deletion and duplication. But the related gene has nothing in common.(2)Patient No.8 were dected as VSD and found an deletion at 22q 11.21. Patient No.19 were dected as Ebstein's anomal and found an duplication at 22q 11.21. Other chromosome aberration dected from the group hardly related to CHD according to the literature.
     Conclusion:(1)Array Comparative Genomic Hybridization were performed on 56 adult congenital heart disease patients.17 of which show the different type of chromosome aberration. Among which 7 were chromosome duplication,8 of which were detect with a chromosome deletion, the other 3 were combined with both deletion and duplication.(2)Among all the chromosome aberration,2 of the were found as an aberrationo related to the CHD. Patient No.8, an Ventricular septal defect sufferer, were the deletion of chromosome 22q11, which is the common 22q11 deletion syndrome. And the other patient, patient No.19, the Ebstein's anomal sufferer, was dected with an chromosome 22q11 duplication. Other patients with chromosome aberration was also found, but the gene related to CHD according the literature were hardly found among those genes.(3)Through the research, we did not find the genotype of the adult CHD patients any thing different with the non-adult CHD sufferers. And we did not find anything in common among the 56 patient's genetics character. To sum up, No difference of genotype were existed between the adult CHD patients and the non-adult CHD patients, and nothing common were detected from all the 56 adult CHD patients based on array-CGH.
引文
[1]Brickner ME, Hillis LD, Lange RA. Congenital heart disease in adults First of two parts. N Engl J Med 2000;342:256-63.
    [2]Brickner ME, Hillis LD, Lange RA. Congenital heart disease in adults Second of two parts. N Engl J Med 2000;342:334-42.
    [3]刘小清,李河,麦劲壮,高向民.先天性心脏病流行病学研究概况.岭南心血管病杂志2009;15:163-166.
    [4]J.I. Hoffman and S. Kaplan, The incidence of congenital heart disease, J Am Coll Cardiol 2002;39:1890-1900.
    [5]S Abadir, P Khairy. Electrophysiology and Adult Congenital Heart Disease:Advances and Options. Progress in Cardiovascular Diseases 53 (2011) 281-292
    [6]Grown-up congenital heart (GUCH) disease:current needs and provision of service for adolescents and adults with congenital heart disease in the UK. Heart 2002; 88 (Suppl 1):i1-i14.
    [7]M.A. Gatzoulis, S. Hechter and S.C. Siu et al. Outpatient clinics for adults with congenital heart disease:increasing workload and evolving patterns of referral. Heart 1999; 81:57-61.
    [8]Botto LD, Correa A. decreasing the burden of congenital heart disease: an epidemiologic evaluation of risk factors and survival. Prog Pediatr Cardiol 2003;18:111-21.
    [9]Huang JB, Liu YL, et al. Molecular mechanisms of congenital heart disease. Cardiovascular Pathology 2010; 19:e183-e193
    [10]Olesen C, Agergaard P. et al.22q11 deletion Syndrome. Ugeskr Laeger.2010 Mar 29; 173(13):1038-46. Review. Danish
    [11]Li QY, Newbury-Ecob RA, Terrett JA, Wilson DI, Curtis AR, Yi CH et al. Holt-Oram syndrome is caused by mutations in TBX5, a member of the Brachyury (T) gene family. Nat Genet 1997; 15:21-29.
    [12]Basson CT, Bachinsky DR, Lin RC, Levi T, Elkins JA, Soults J et al. Mutations in human TBX5 (corrected) cause limb and cardiac malformation in Holt-Oram syndrome. Nat Genet 1997; 15:30-35.
    [13]陈金兰,杨一峰等.Noonan综合征1例附文献复习.中南大学学报(医学版)2009,34(12):p1261-65.
    [14]Kodo K, Nishizawa T, Furutani M et al. GATA6 mutations cause human cardiac outflow tract defects by disrupting semaphorin-plexin signaling. Proc Natl Acad Sci U S A 2009:106:13933-13938.
    [15]F Erdogan, L A Larsen, L Zhang, et al. High frequency of submicroscopic genomic aberrations detected by tiling path array comparative genome hybridisation in patients with isolated congenital heart disease. J Med Genet 2008 45:704-709
    [16]Miller DT, Adam MP, Aradhya S. et al. Consensus statement: chromosomal microarray is a first-tier clinical diagnostic test for individuals with developmental disabilities or congenital anomalies. Am J Hum Genet. 2010;86:749-764.
    [17]DiGeorge AM. Discussions on a new concept of the cellular basis of immunology. J Pediatr.1965;67:907.
    [18]McDonald-McGinn,Donna M,et al. Chromosome 22q11.2 deletion syndrome(DiGeorge Syndrome/Velocardiofacial Syndrome). Medicine (Baltimore) 2011 Jan;90(1):1-18
    [19]Jerome LA, Papaioannou VE. DiGeorge syndrome phenotype in mice mutant for the T-box gene, Tbx1. Nat Genet.2001;27:286Y291.
    [20]Lindsay EA, Vitelli F, et al.Tbx1 haploinsufficieny in the DiGeorge syndrome regioncauses aortic arch defects in mice. Nature.2001;410:97Y101.
    [21]Merscher S, Funke B, et al.TBX1 is responsible for cardiovascular defects in velo-cardio-facial/DiGeorge syndrome. Cell.2001;104:619Y629.
    [22]Guris DL, Fantes J, et al.Mice lacking the homologue of the human 22q11.2 gene CRKL phenocopy neurocristopathies of DiGeorge syndrome. Nat Genet.2001;27:293Y298.
    [23]Malaquias AC, Ferreira LV,.et al. Noonan syndrome:from phenotype to growth hormone therapy. Arq Bras Endocrinol Metabol.2008 Jul; 52(5):800-8.
    [24]Jamieson CR, van der Burg I, et al. Mapping a gene for Noonan syndrome to the long arm of chromosome 12. Nat Genet,1994;8(4):357-360.
    [25]Jorge A, Malaquias A, et al. Noonan syndrome and related disorders: a review of clinical features and mutations in genes of the RAS/MAPK pathway. Horm Res.2009;71(4):185-93.
    [26]Holt M, Oram S. Familial heart disease with skeletal malformations. Br Heart J 1960;22:236-242.
    [27]Basson CT, Cowley GS, Solomon SD, Weissman B, Poznanski AK, Traill TA et al. The clinical and genetic spectrum of the Holt-Oram syndrome (heart-hand syndrome). N Engl J Med 1994;330:885-891.
    [28]Basson CT, Bachinsky DR, Lin RC, Levi T, Elkins JA, Soults J et al. Mutations in humanTBX5 (corrected) cause limb and cardiac malformation in Holt-Oram syndrome. NatGenet 1997; 15:30-35.
    [29]Durocher D, Nemer M. Combinatorial interactions regulating cardiac transcription. Dev Genet 1998:22:250-262.
    [30]Mackay JP, Crossley M. Zinc fingers are sticking together. Trends Biochem Sci 1998:23:1-4.
    [31]Kodo K, Nishizawa T, Furutani M et al. GATA6 mutations cause human cardiac outflow tract defects by disrupting semaphorin-plexin signaling. Proc Natl Acad Sci U S A 2009:106:13933-13938.
    [32]Xin M, Davis CA, Molkentin JD et al. A threshold of GATA4 and GATA6 expression is required for cardiovascular development. Proc Natl Acad Sci U S A 2006:103:11189-11194.
    [33]Gutierrez-Roelens I, Sluysmans T, Gewillig M et al. Progressive AV-block and anomalous venous return among cardiac anomalies associated with two novel missense mutations in the CSX/NKX2-5 gene. Hum Mutat 2002:20:75-76.
    [34]Benson DW, Silberbach GM, Kavanaugh-McHugh A et al.Mutations in the cardiac transcription factor NKX2.5 affectdiverse cardiac developmental pathways. J Clin Invest 1999:104:1567-1573.
    [35]Goldmuntz E, Geiger E, Benson DW. NKX2.5 mutations in patients with tetralogy of fallot. Circulation 2001:104:2565-2568.
    [36]McElhinney DB, Geiger E, Blinder J et al. NKX2.5 mutations in patients with congenital heart disease. J Am Coll Cardiol 2003:42:1650-1655.
    [37]Jay PY, Harris BS, Maguire CT et al. Nkx2-5 mutation causes anatomic hypoplasia of the cardiac conduction system. J Clin Invest 2004:113: 1130-1137.
    [38]Budde BS, Binner P, Waldmuller S et al. Noncompaction of the ventricular myocardium is associated with a de novo mutation in the beta-myosin heavy chain gene. PLoS ONE 2007:2:e1362.
    [39]Geisterfer-Lowrance AA, Christe M, Conner DA et al. A mouse model of familial hypertrophic cardiomyopathy. Science 1996:272:731-734.
    [40]Krantz ID, Smith R, Colliton RP et al. Jagged1 mutations in patients ascertained with isolated congenital heart defects.Am J Med Genet 1999:84: 56-60.
    [41]Eldadah ZA, Hamosh A, Biery NJ et al. Familial tetralogy of fallot caused by mutation in the jagged1 gene. Hum Mol Genet 2001:10:163-169.
    [42]Rauch A, Devriendt K, Koch A et al. Assessment of association TBX1 gene and manifestations of congenital heart defects in 22q11.2 deletion patients. J Med Genet 2004:41:e40.
    [43]Basson CT, Bachinsky DR, Lin RC et al. Mutations in human TBX5 [corrected] cause limb and cardiac malformation in Holt-Oram syndrome. Nat Genet 1997:15:30-35.
    [44]Basson CT, Cowley GS, Solomon SD et al. The clinical and genetic spectrum of the Holt-Oram syndrome (heart-hand syndrome). N Engl J Med 1994:330:885-891.
    [49]Shaffer LG, Lupski JR. Molecular mechanisms for constitutional chromosomal rearrangements in humans. Annu Rev Genet2000;34:297-329.
    [50]Feuk L, Carson AR, Scherer SW. Structural variation in the human genome. Nat Rev Genet 2006;7:85-97.
    [51]Saitta SC, Harris SE, Gaeth AP, et al. Aberrant interchromosomal exchanges are the predominant cause of the 22q11.2 deletion. Hum Mol Genet 2004; 13:417-428.
    [52]McDonald-McGinn,Donna M,et al. Chromosome 22q11.2 deletion syndrome(DiGeorge Syndrome/Velocardiofacial Syndrome). Medicine (Baltimore) 2011 Jan;90(1):1-18.
    [53]Olesen C, Agergarrd P, et al.22q11 Deletion syndrome. Ugeskr Laeger.2010 March 29; 172(13):1038-46.
    [54]Momma K. Cardiovascular anomalies associated with chromosome 22q11.2 deletion syndrome. Am J Cardiol.2010 Junl;105(11):1617-24.
    [55]Firth HV.22q11.2Duplication. Gene Reviews.2009.
    [56]Ou Z, Berg JS, Yonath H, Enciso VB, Miller DT, Picker J, et al. Microduplications of 22q11.2 are frequently inherited and are associated with variable phenotypes. Genet Med.2008; 10:267-77.
    [57]Siddiqui AM, Everman DB, et al. Microcephaly and congenital grouped pigmentation of the retinal pigment epithelium associated with submicroscopic deletions of 13q33.3-q34 and 11p15.4. Ophthalmic Genetics. 2009,30 (3):136-141.
    [58]Damaj L, Lorch M, et al. Chromosome 11p15 Paternal Isodisomy in Focal Forms of Neonatal Hyperinsulinism. J. Clin. Endocrinol. Metab.2008 93:4941-4947.
    [59]Pezzolesi MG, Poznik GD, et al. An intergenic region on chromosome 13q33.3 is associated with the susceptibility to kidney disease in type 1 and 2 diabetes. Kidney International,2011,10:1038.
    [60]Doldan A, Chandramouli A, et al. Loss of the eukaryotic initiation factor 3f in melanoma. MOLECULAR CARCINOGENESIS.2008,47:806-813
    [61]Doldan A, Chandramouli A, et al. Loss of the eukaryotic initiation factor 3f in pancreatic cancer. MOLECULAR CARCIN OGENESIS. 2008,47:235-244.
    [62]Salah Z, Ageilan R, et al. WWOX gene and product:tumor suppression through specific prtein interactions. Future Oncol.2010 Feb;6(2):249-59.
    [63]Saez ME,Gonzalez-Perez A, et al. WWOX gene is associated with HDL cholesterol and triglyceride levels. BMC Med Genet.2010 Oct 14;11:148.
    [64]Lessard CJ, Adrianto I, et al.Identification of a systemic lupus erythematosus susceptibility locus at 11p13 between PDHX and CD44 in a multiethnic study. Am J Hum Genet.2011 Jan 7;88(1):83-91.
    [65]El Chehadeh-Djebbar S, Callier P,17q21.31 microdeletion in a patient with pituitary stalk interruption syndrome. Eur J Med Genet.2011 Mar 30.
    [66]Wright EB, Donnai D, et al. Cutaneous features in 17q21.31 deletion syndrome:a differential diagnosis for cardio-facio-cutaneous syndrome. Clin Dysmorphol.2011 Jan;20(1):15-20.
    [67]Dubourg C, Sanlaville D, et al. Clinical and molecular characterization of 17q21.31 microdeletion syndrome in 14 French patients with mental retardation. Eur J Med Genet.2011;54(2):144-51.
    [68]Rovelet-Lecrux A, Hannequin D, et al. Frontotemporal dementia phenotype associated with MAPT gene duplication. J Alzheimers Dis. 2010;21(3):897-902.
    [69]Reid E, Morrison N, et al.Familial Wolf-Hirschhorn syndrome resulting from a cryptic translocation:a clinical and molecular study. J Med Genet.1996,33:197-202.
    [70]Bergemann AD, Cole F, Hirschhorn K. The etiology of Wolf-Hirschhorn syndrome. Trends in Genetics 2005,21(3):188-195.
    [71]Close J, Game L, et al. Genome annotation of a 1.5 Mb region of human chromosome 6q23 encompassing a quantitative trait locus for fetal hemoglobin expression in adults. BMC Genomics 2004,5:33.
    [72]Marlier A, Gilbert T. et al. Expression of retinoic acid-synthesizing and- metabolizing enzymes during nephrogenesis in the rat. Gene Expression Patterns 2004; 5:179-185
    [73]Absalon S, Blisnick T, et al. Intraflagellar Transport and Functional Analysis of Genes Required for Flagellum Formation in Trypanosomes. Molecular Biology of the Cell.2008; 19:929-944.
    [74]Otto EA, Ramaswami G, et al. Mutation analysis of 18 nephronophthisis associated ciliopathy disease genes using a DNA pooling and next generation sequencing strategy. J Med Genet 2011;48:105e116
    [75]Hashemi J, Worrall C,et al. Molecular Characterization of Acquired Tolerance of Tumor Cells to Picropodophyllin (PPP). PLoS one 2011 14;6(3):e14757.
    [76]Koivisto PA, Koivisto H, et al. A de novo deletion of chromosome 15(q15.2q21.2) in a dysmorphic, mentally retarded child with congenital scalp defect. Clin Dysmorphol.1999,8(2):139-41.
    [77]Formiga LD, Poenaru L, et al. Interstitial deletion of chromosome 15: two cases. Hum Genet.1988 Dec;80(4):401-4.
    [78]Papadopoulou E, Sismani C, et al. Phenotype-Genotype Correlation of a Patient With a "Balanced" Translocation 9;15 and Cryptic 9q34 Duplication and 15q21 q25 Deletion. Am J Med Genet A.2010 Jun; 152A(6):1515-22.
    [79]Lalani SR, Sahoo T, et al. Coarctation of the aorta and mild to moderate developmental delay in a child with a de novo deletion of chromosome 15(q21.1q22.2). BMC Med Genet.2006; 7:8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700