用户名: 密码: 验证码:
家族性急性髓系白血病相关新基因的SNP基因芯片筛选及其FAMLF新基因表达分析与真核表达系统的建立
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
白血病是血液系统最常见的恶性肿瘤,白血病的发生发展与相关基因结构及功能的异常密切相关,探讨白血病高发家系特异性新基因变化与白血病发生发展的关系,有助于为白血病的特异性诊断与基因治疗提供有价值的科学根据。【目的】1.筛选、克隆出家族性急性髓系白血病致病相关基因,在分子水平上探讨家族性急性髓系白血病发生、发展的机制。2.在前期研究的基础上构建FAMLF蛋白真核表达系统,为今后进一步研究其蛋白质的结构及功能研究奠定基础。【方法】1.采用定位克隆策略,应用目前最先进的500K SNP基因芯片对一个急性白血病高发家系里的患者、高危个体、正常同胞和非血缘亲属进行全基因组基因分型。2.应用生物信息学分析等技术,结合相应的遗传学统计分析软件进行连锁分析、单倍型作图、拷贝数分析,定位出致病基因所在染色体区域;3.确定目标染色体区域内的候选基因;4.结合RT-PCR检测、筛选鉴定出在候选染色体区域内表达水平异常的致病相关新基因;5.用RT-PCR检测FAMLF在家系内外正常人、患者mRNA水平的表达情况;6.用生物基因工程技术构建FAMLF的真核表达系统。【结果】1.获得8位家系成员的全基因组的基因分型结果;2.对基因分型结果进行连锁分析与单倍型作图,获得了LOD值≥1.5并单倍型共享的SNP对应的基因共有21条;3.对基因分型结果进行拷贝数分析,获得拷贝数增加或减少SNP对应的基因共56条;4.对于拷贝数异常的SNP所对应的基因进行RT-PCR验证,获得结果与拷贝数分析的结果相一致;5.在23例急性髓系白血病患者与77例正常健康人对照实验中,FAMLF在急性髓系白血病病人中高表达,而在正常对照组低表达,该基因在77例正常人之中的表达是近似呈负偏态分布;6.成功地构建出FAMLF基因毕赤酵母真核表达系统并表达出FAMLF蛋白质。【结论】1.成功获得该家系连锁LOD≥1.5及单倍型共享的基因。2.成功获得该家系患者拷贝数异常的基因。3.SNP基因芯片技术是孟德尔遗传疾病致病基因定位的有效方法之一。4.SNP拷贝数分析可以发现拷贝数异常的基因。5.FAMLF在大部分急性髓系白血病病人中高表达,在正常人中低表达。6.成功地构建出FAMLF真核表达系统并表达出FAMLF蛋白。
Acute leukemia is a common hematological malignancy. Generation and development of leukemia are closely associated with abnormality of structure and function of the related gene. This project is to define the novel leukemia associated genes of leukemia-high density family and to provide scientific proof for diagnosis and therapy for leukemia patients in a gene level. This research is contributed to the exploration of the pathogenesy of leukemia, the drug development for leukemia, and the improvement in the recovery rate of leukemia.【Objective】1.To screen and clone the familial acute myelogenous leukemia pathopoiesis relative genes and to explain the molecular mechanisms of the disease at the gene level. 2.To construction eukaryotic expression system base on our previous research for the functional study in future.【Method】1. With a positional cloning strategy,we performed the genetype analysis for the leukemic patients, high-risk individuals and healthy siblings from the familiar leukemia by using advanced 500k SNP microarrays. 2.A bioinformatics-based analysis with the associated statistical genetic software was applied to carry out linkage, haplotype, and copy number analysis to identify the chromosomal translocations link to familiar leukemia. 3.The candidate genes located in the target chromatin domain were identified. 4.The novel leukemia-associated gene in a chromatin domain with copy munbers change were identified integration of RT-PCR data. 5. Differential expression in familial acute myelogenous leukemia patient sample and health control were detect with one-step semi-quantitative reverse transcriptase-PCR (RT-PCR). 6.With engineered technique, the eukaryotic expression of FAMLF was constructed.【Results】1.Eight family members’genetyping of whole genome was obtained. 2.Through the linkage analysis and haplotype mapping, 21 genes with LOD higer than 1.5 and same sharing haplotype were found. 3.After copy number analysis, 56 genes with copy number change were defined. 4.RT-PCR expresson analysis confirmed with copy number analysis. 5.FAMLF was expressed high in 23 patients compared to 77 healthy control, and the expression level shows negative skewness distribution in healthy populations. 6. The eukaryotic expression system of FAMLF was constructed successfully.【Conclusion】1.Genes of linkage LOD more than 1.5 with sharing haplotype were acquired. 2. Genes with copy number change were obtained. 3.SNP array technology is one of the effective approach to position Mendelian inheritance genes. 4. Copy numbers analysis of SNP can be used to find genes with copy number change. 5.The expression of FAMLF is high in partly leukemic patients compared to that of healthy controls. 6. FAMLF eucaryon expression system was constructed successfully.
引文
[1] Gunz FW, Gunz JP, Veale AM, et al. Familial leukaemia: a study of 909 families. Scand J Haematol. 1975, 15:117-131.
    [2] Gunz FW, Gunz JP, Vincent PC, et al. Thirteen cases of leukemia in a family. J Natl Cancer Inst. 1978, 60:1243-1250.
    [3] 梁玉英, 叶榆生, 卓光生, 等. 一个白血病高发家系的研究. 中华医学杂志, 1991, 71:428-430.
    [4] 何立珍,唐南洪,吕联煌. 一个急性髓系白血病家系成员的染色体脆性部位观察. 中华医学遗传学杂志. 1993, 10:359-360.
    [5] 何立珍,张萍容,吕联煌. 一个白血病家系成员的 SCE、Tc 及 AgNOR 观察. 福建医学院学报. 1993,27298-300.
    [6] He LZ, Lu LH, Chen ZZ. Genetic mechanism of leukemia predisposition in a family with 7 cases of acute myeloid leukemia. Cancer Genet Cytogenet. 1994, 76:65-69.
    [7] 冯宝章, 雷健玲, 林泽嬉, 等. 一个急性髓系白血病家系的遗传学调查. 中华血液学杂志, 1991, 12:304-307.
    [8] Feng Baozhang, Lei Jianling, Lin Zexi, et al. Genetic Studies on a Famiky with Acute Myelogenous Leukemia. Cancer Genet Cytogent, 1999, 112:134-137.
    [9] Dyer MJ. The pathogenetic role of oncogenes deregulated by chromosomal translocation in B-cell malignancies. Int J Hematol. 2003, 77:315-320.
    [10] Alcalay M, Orleth A, Sebastiani C, et al. Common themes in the pathogenesis of acute myeloid leukemia. Oncogene. 2001, 20:5680-5694.
    [11] Rowley JD. The role of chromosome translocations in leukemogenesis. Semin Hematol. 1999, 36:59-72.
    [12] Golub TR. The genetics of AML: an update. In: Schechter GP, exec, ed. Hematology, 1999:American Society of Hematology Education program book:102-111.
    [13] 詹启敏.分子肿瘤学.人民卫生出版社.2005,42-47.
    [14] [美]本杰明·卢因编著,余龙、江松敏、赵寿元主译.基因Ⅷ.科学出版社.2005,1042-1045.
    [15] Glazier AM, Nadeau JH, Aitman TJ. Finding Genes That Underlie Complex Traits. Science, 2002, 298: 2345-2349.
    [16] Cowell JK, Hawthorn L. The application of microarray technology to the analysis of the cancer genome. Curr Mol Med. 2007, 7(1):103-120.
    [17] Chiang AP, Beck JS, Yen HJ, et al. Homozygosity mapping with SNP arrays identifies TRIM32, an E3 ubiquitin ligase, as a Bardet–Biedl syndrome gene (BBS11). PNAS, 2006, 103(16):6287-6292.
    [18] R. Straussberg,L. Basel-Vanagaite, Kivity, An autosomal recessive cerebellar ataxia syndrome with upward gaze palsy, neuropathy, and seizures NEUROLOGY 2005;64:142–144
    [19] Outi Vierimaa、 Marianthi Georgitsi, et al. Pituitary Adenoma Predisposition Caused by Germline Mutations in the AIP Gene. Science. 2006 May 26;312( 5777):1228-1230
    [20] Strauss KA, Puffenberger EG, Huentelman MJ, et al. Recessive Symptomatic Focal Epilepsy and Mutant Contactin-Associated Protein-like 2. N Engl J Med, 2006, 354: 1370-1377.
    [21] Sellick GS, Garrett C, Houlston RS. A Novel Gene for Neonatal Diabetes Maps to Chromosome 10p12.1-p13. DIABETES, 2003, 52:2636-2638.
    [22] Sellick GS, Longman C, Brockington M, et al. Localisation of merosin-positive congenital muscular dystrophy to chromosome 4p16.3. Hum Genet, 2005, 117: 207–212.
    [23] Gissen P, Johnson CA, Morgan NV, et al. Mutations in VPS33B, encoding a regulator of SNARE-dependent membrane fusion, cause arthrogryposis-renal dysfunction-cholestasis (ARC) syndrome. Nature Genetics, 2004 ,36 (4): 400-404.
    [24] Papassotiropoulos A, Stephan DA, Huentelman MJ, et al. Common Kibra alleles are associated with human memory performance. Science, 2006, 314 (5798) : 475-478.
    [25] Pearson JV, Huentelman MJ, Halperlin RF, et al. Identification of the genetic basis for complex disorders by use of pooling-based genomewide single-nucleotide-polymorphism association studies. Am J Hum Genet, 2007, 80(1): 126-139.
    [26] Tago, K.; Nakamura, T.; Nishita, M.; Hyodo, J.; Nagai, S.; Murata, Y.; Adachi, S.; Ohwada, S.; Morishita, Y.; Shibuya, H.; Akiyama, T. Inhibition of Wnt signaling by ICAT, a novel beta-catenin-interacting protein. Genes Dev. 14: 1741-1749, 2000.
    [27] Graham, T. A.; Clements, W. K.; Kimelman, D.; Xu, W. The crystal structure of the beta-catenin/ICAT complex reveals the inhibitory mechanism of ICAT. Molec. Cell 10: 563-571, 2002.
    [28] Daniels, D. L.; Weis, W. I. ICAT inhibits beta-catenin binding to Tcf/Lef-family transcription factors and the general coactivator p300 using independent structural modules. Molec. Cell 10: 573-584, 2002.
    [29] Granovsky, M.; Fata, J.; Pawling, J.; Muller, W. J.; Khokha, R.; Dennis, J. W. Suppression of tumor growth and metastasis in Mgat5-deficient mice. Nature Med. 6: 306-12, 2000.
    [30] Demetriou, M.; Granovsky, M.; Quaggin, S.; Dennis, J. W. Negative regulation of T-cell activation and autoimmunity by Mgat5 N-glycosylation. Nature 409: 733-739, 2001.
    [31]Partridge, E. A.; Le Roy, C.; Di Guglielmo, G. M.; Pawling, J.; Cheung, P.; Granovsky, M.; Nabi, I. R.; Wrana, J. L.; Dennis, J. W. Regulation of cytokine receptors by Golgi N-glycan processing and endocytosis. Science 306: 120-124, 2004.
    [32] Katoh, M.; Katoh, M. Identification and characterization of ARHGAP24 and ARHGAP25 genes in silico. Int. J. Molec. Med. 14: 333-338, 2004.
    [33] Lavelin, I.; Geiger, B. Characterization of a novel GTPase-activating protein associated with focal adhesions and the actin cytoskeleton. J. Biol. Chem. 280: 7178-7185, 2005.
    [34] Ohta, Y.; Hartwig, J. H.; Stossel, T. P. FilGAP, a Rho- and ROCK-regulated GAP for Rac binds filamin A to control actin remodelling. Nature Cell Biol. 8: 803-814, 2006.
    [35] Bellefroid, E. J.; Poncelet, D. A.; Lecocq, P. J.; Revelant, O.; Martial, J. A. : The evolutionarily conserved Kruppel-associated box domain defines a subfamily of eukaryotic multifingered proteins. Proc. Nat. Acad. Sci. 88: 3608-3612, 1991.
    [36] Bellefroid, E. J.; Marine, J. C.; Ried, T.; Lecocq, P. J.; Riviere, M.; Amemiya, C.; Poncelet, D. A.; Coulie, P. G.; de Jong, P.; Szpirer, C.; Ward, D. C.; Martial, J. A. Clustered organization of homologous KRAB zinc-finger genes with enhanced expression in human T lymphoid cells. EMBO J. 12: 1363-1374, 1993.
    [37] Zhengyu Liu and Rory A. Fisher J. Biol. Chem. RGS6 Interacts with DMAP1 and DNMT1 and Inhibits DMAP1 Transcriptional Repressor Activity. Vol. 279, Issue 14, 14120-14128, April 2, 2004
    [38] Zhengyu Liu, Tapan K. Chatterjee, and Rory A. Fisher. RGS6 Interacts with SCG10 and Promotes Neuronal Differentiation J. Biol. Chem., Vol. 277, Issue 40, 37832-37839, October 4, 2002
    [39] Bruce A. Posner, Alfred G. Gilman, and Bruce A. Harris.Purification of complexes with G 5 and assessment of their effects on G protein-mediated signaling pathways. J Biol Chem, Vol. 274, Issue 43, 31087-31093, October 22, 1999
    [40] Wang, Z.; Shen, D.; Parsons, D. W.; Bardelli, A.; Sager, J.; Szabo, S.; Ptak, J.; Silliman, N.; Peters, B. A.; van der Heijden, M. S.; Parmigiani, G.; Yan, H.; Wang, T.-L.; Riggins, G.; Powell, S. M.; Willson, J. K. V.; Markowitz, S.; Kinzler, K. W.; Vogelstein, B.; Velculescu, V. E. Mutational analysis of the tyrosine phosphatome in colorectal cancers. Science 304: 1164-1166, 2004.
    [41] Grachtchouk, M.; Mo, R.; Yu, S.; Zhang, X.; Sasaki, H.; Hui, C.; Dlugosz, A. A. Basal cell carcinomas in mice overexpressing Gli2 in skin. (Letter) Nature Genet. 24: 216-217, 2000.
    [42] Ruppert, J. M.; Kinzler, K. W.; Wong, A. J.; Bigner, S. H.; Kao, F.-T.; Law, M. L.; Seuanez, H. N.; O'Brien, S. J.; Vogelstein, B. The GLI-Kruppel family of human genes. Molec. Cell. Biol. 8: 3104-3113, 1988.
    [43] Boel, P.; Wildmann, C.; Sensi, M. L.; Brasseur, R.; Renauld, J.-C.; Coulie, P.; Boon, T.; van der Bruggen, P. BAGE: a new gene encoding an antigen recognized on human melanomas by cytolytic T lymphocytes. Immunity 2: 167-175, 1995.
    [44] De Plaen, E.; Arden, K.; Traversari, C.; Gaforio, J. J.; Szikora, J.-P.; De Smet, C.; Brasseur, F.; van der Bruggen, P.; Lethe, B.; Lurquin, C.; Brasseur, R.; Chomez, P.; De Backer, O.; Cavenee, W.; Boon, T. Structure, chromosomal localization, and expression of 12 genes of the MAGE family. Immunogenetics 40: 360-369, 1994.
    [45] Shimizu, K.; Okada, M.; Nagai, K.; Fukada, Y. Suprachiasmatic nucleus circadian oscillatory protein, a novel binding partner of K-Ras in the membrane rafts, negatively regulates MAPK pathway. J. Biol. Chem. 278: 14920-14925, 2003.
    [46] Gao, T.; Furnari, F.; Newton, A. C. PHLPP: a phosphatase that directly dephosphorylates Akt, promotes apoptosis, and suppresses tumor growth. Molec. Cell 18: 13-24, 2005.
    [47] Brognard, J.; Sierecki, E.; Gao, T.; Newton, A. C. PHLPP and a second isoform, PHLPp2, differentially attenuate the amplitude of Akt signaling by regulating distinct Akt isoforms. Molec. Cell 25: 917-931, 2007.
    [48] Chen, H.; Rossier, C.; Morris, M. A.; Scott, H. S.; Gos, A.; Bairoch, A.; Antonarakis, S. E. A testis-specific gene, TPTE, encodes a putative transmembrane tyrosine phosphatase and maps to the pericentromeric region of human chromosomes 21 and 13, and to chromosomes 15, 22, and Y. Hum. Genet. 105: 399-409, 1999.
    [49] Bao, S.; Shen, X.; Shen, K.; Liu, Y.; Wang, X.-F. The mammalian Rad24 homologous to yeast Saccharomyces cerevisiae Rad24 and Schizosaccharomyces pombe Rad17 is involved in DNA damage checkpoint. Cell Growth Diff. 9: 961-967, 1998.
    [50] von Deimling, F.; Scharf, J. M.; Liehr, T.; Rothe, M.; Kelter, A.-R.; Albers, P.; Dietrich, W. F.; Kunkel, L. M.; Wernert, N.; Wirth, B. Human and mouse RAD17 genes: identification, localization, genomic structure and histological expression pattern in normal testis and seminoma. Hum. Genet. 105: 17-27, 1999.
    [51] Bao, S.; Tibbetts, R. S.; Brumbaugh, K. M.; Fang, Y.; Richardson, D. A.; Ali, A.; Chen, S. M.; Abraham, R. T.; Wang, X.-F. ATR/ATM-mediated phosphorylation of human Rad17 is required for genotoxic stress responses. Nature 411: 969-974, 2001.
    [52] Wang, X.; Zou, L.; Lu, T.; Bao, S.; Hurov, K. E.; Hittelman, W. N.; Elledge, S. J.; Li, L. Rad17 phosphorylation is required for claspin recruitment and Chk1 activation in response to replication stress. Molec. Cell 23: 331-341, 2006.
    [53] Fisher, R. P.; Morgan, D. O. A novel cyclin associates with MO15/CDK7 to form the CDK-activating kinase. Cell 78: 713-724, 1994.
    [54] Shiekhattar, R.; Mermelstein, F.; Fisher, R. P.; Drapkin, R.; Dynlacht, B.; Wessling, H. C.; Morgan, D. O.; Reinberg. Cdk-activating kinase complex is a component of human transcription factor TFIIH. Nature 374: 283-287, 1995.
    [55] Akoulitchev, S.; Chuikov, S.; Reinberg, D. TFIIH is negatively regulated by cdk8-containing mediator complexes. Nature 407: 102-106, 2000.
    [56] Chen, J.; Larochelle, S.; Li, X.; Suter, B. : Xpd/Ercc2 regulates CAK activity and mitotic progression. Nature 424: 228-232, 2003
    [57] Larochelle, S.; Merrick, K. A.; Terret, M.-E.; Wohlbold, L.; Barboza, N. M.; Zhang, C.; Shokat, K. M.; Jallepalli, P. V.; Fisher, R. P. Requirements for Cdk7 in the assembly of Cdk1/cyclin B and activation of Cdk2 revealed by chemical genetics in human cells. Molec. Cell 25: 839-850,2007.
    [58] Rusch SL, Chen H, Izard JW,et al. Signal peptide hydrophobicity is finely tailored for function. J Cell Biochem,1994,55(2):209-217.
    [59] Dunker AK,Lawson JD, Brown CJ, et al. Intrinsically disordered protein. J Mol Graph Model,2001,19:26-59.
    [60] Kobe B, Kajava AV. The leucine-rich repeat as a protein recognition motif. Curr Opin Struct Biol,2001,11(6):725-32.
    [61] 胡叶青,刘元娇. Cx43、Skp2 在卵巢上皮性肿瘤组织中的表达及临床意义. 癌症, 2005,24(1): 104-109.
    1 夏家辉、刘德培.医学遗传学.人民卫生出版社.2004,198-285.
    2 Cowell JK, Hawthorn L. The application of microarray technology to the analysis of the cancer genome. Curr Mol Med. 2007, 7(1):103-120.
    3 (美) M.谢纳(Mark Schena). MICRAOARRAY ANALYSIS. 科学出版社. 2003, 4-126.]
    4 Glazier AM, Nadeau JH, Aitman TJ. Finding Genes That Underlie Complex Traits. Science, 2002, 298: 2345-2349.
    5 Vierimaa O, Georgitsi M, Lehtonen R, et al. Pituitary Adenoma Predisposition Caused by Germline Mutations in the AIP Gene. Science, 2006, 312:1228-1230.
    6 Garraway LA, Widlund HR, Rubin MA, et al. Integrative genomic analyses identify MITF as a lineage survival oncogene amplified in malignant melanoma. Nature, 2005, 436:117-122.
    7 Tsafrir D, Bacolod M, Selvanayagam Z, et al. Relationship of gene expression and chromosomal abnormalities in colorectal cancer. Cancer Res, 2006, 66 : 2129-2137.
    8 Klein RJ, Tin YP, Shi YF, et al. Complement factor H polymorphism in age-related macular degeneration. Science, 2005, 308: 385-389.
    9 Chiang AP, Beck JS, Yen HJ, et al. Homozygosity mapping with SNP arrays identifies TRIM32, an E3 ubiquitin ligase, as a Bardet–Biedl syndrome gene (BBS11). PNAS, 2006, 103(16):6287-6292.
    10 Strauss KA, Puffenberger EG, Huentelman MJ, et al. Recessive Symptomatic Focal Epilepsy and Mutant Contactin-Associated Protein-like 2. N Engl J Med, 2006, 354: 1370-1377.
    11 Sellick GS, Garrett C, Houlston RS. A Novel Gene for Neonatal Diabetes Maps to Chromosome 10p12.1-p13. DIABETES, 2003, 52:2636-2638.
    12 Sellick GS, Longman C, Brockington M, et al. Localisation of merosin-positive congenital muscular dystrophy to chromosome 4p16.3. Hum Genet, 2005, 117: 207–212.
    13 Gissen P, Johnson CA, Morgan NV, et al. Mutations in VPS33B, encoding a regulator ofSNARE-dependent membrane fusion, cause arthrogryposis-renal dysfunction-cholestasis (ARC) syndrome. Nature Genetics, 2004 ,36 (4): 400-404.
    14 Papassotiropoulos A, Stephan DA, Huentelman MJ, et al. Common Kibra alleles are associated with human memory performance. Science, 2006, 314 (5798) : 475-478.
    15 Pearson JV, Huentelman MJ, Halperlin RF, et al. Identification of the genetic basis for complex disorders by use of pooling-based genomewide single-nucleotide-polymorphism association studies. Am J Hum Genet, 2007, 80(1): 126-139.
    16 Feske S, Gwack Y, Prakriya M et al. A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function. Nature, 2006, 441(7090):179-185.
    17 Kalay E, Li Y, Uzumcu A,et al. Mutations in the lipoma HMGIC fusion partner-like 5 (LHFPL5) gene cause autosomal recessive nonsyndromic hearing loss. Hum Mutat, 2006 , 27(7):633-639.
    18 Herbert A, Gerry NP, McQueen MB, et al. A Common Genetic Variant Is Associated with Adult and Childhood Obesity. Science, 2006, 312(5771):279-283.
    19 Horvath A, Boikos1 S, Giatzakis1 C, et al. A genome-wide scan identifies mutations in the gene encoding phosphodiesterase 11A4 (PDE11A) in individuals with adrenocortical hyperplasia. Nature Genetics, 2006, 38: 794-800.
    20 Shriver MD, Mei R, Parra EJ, et al. Large-scale SNP analysis reveals clustered and continuous patterns of human genetic variation. Hum Genomics, 2005, 2(2):81-89.
    21 Baron CA, Tepper CG, Liu SY, et al. Genomic and functional profiling of duplicated chromosome 15 cell lines reveal regulatory alterations in UBE3A-associated ubiquitin-proteasome pathway processes. Hum Mol Genet, 2006, 15(6):853-69.
    22 Zhao XJ, Weir BA, LaFramboise T, et al. Homozygous Deletions and Chromosome Amplifications in Human Lung Carcinomas Revealed by Single Nucleotide Polymorphism Array Analysis[J]. Cancer Res, 2005, 65(13): 5561-5570.
    23 Minn AJ, Gupta GP, Siegel PM,et al. Genes that mediate breast cancer metastasis to lung[J]. Nature, 2005, 436:518-24.
    24 Golub TR, Slonim D.K, Tamayo P, et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science, 1999, 286(5439), 531-537.
    25 Hoque MO, Lee CC, Cairns P, et al. Genome-wide genetic characterization of bladder cancer: a comparison of high-density singlenucleotide polymorphism arrays and PCR-based microsatellite analysis. Cancer Research, 2003, 63: 2216-2222.
    26 Valk JW,Verhaak GW,Beijen MA,et al. Prognostically useful gene-expression profiles in acute myeloid leukemia. N Engl J Med, , 2004, 350(16): 1617-1628.
    27 Gunton JE, Kulkarni RN, Yim S, et al. Loss of ARNT/HIF1beta mediates altered gene expression and pancreatic-islet dysfunction in human type 2 diabetes. Cell, 2005, 122(3):337-349.
    28 Gavin MA, Rasmussen JP, Fontenot JD, et al. Foxp3-dependent programme of regulatory T-cell Differentiation. Nature, 2007, 445:771-775.
    29 Carroll JS, Shlrley Llu X, Brodsky AS, et al. Chromosome-wide Mapping of Estrogen Receptor Binding Reveals Long-range Regulation Requiring the Forkhead Protein FoxA1. Cell, 2005, 122:33-43.
    30 Cawley S, Bekiranov S, Ng HH, et al. Unbiased Mapping of Transcription Factor Binding Sites Along Human Chromosomes 21 and 22 Points to Widespread Regulation of Non-Coding RNAs. Cell, 2004 ,116(4):499-511.
    31 Cheng J, Kapranov P, Drenkow J, et al. Transcriptional Maps of 10 Human Chromosomes at 5-Nucleotide Resolution. Science, 2005, 308: 1149-1154.
    32 Lengronne A, Katou Y, Mori S, et al. Cohesin relocation from sites of chromosomal loading to places of convergent transcription. Nature, 2004, 430(6999): 573 - 578 .

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700