用户名: 密码: 验证码:
农家种红蚰麦抗白粉病基因的微卫星定位及白粉菌诱导的差异表达谱分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由禾谷类白粉菌Blumeria graminis(DC.)E.O.Speer f. sp.tritici Em.Marchal引起的小麦白粉病是一种世界性病害,在各主要产麦国均有发生。种植抗病品种是防治该病害的有效、安全的手段。由于小麦白粉病菌具有生理小种多,变异速度快的特点,导致生产上种植的小麦品种抗性容易丧失。因此不断鉴定新的抗白粉病基因,深入研究小麦抗白粉病的分子机理是控制该病害的基础性工作。
     农家小麦品种中蕴含着丰富的抗病资源,对于发现抗白粉病品种,寻找新的抗病基因具有重要的利用价值。红蚰麦是一农家品种,具有优良的白粉病抗性,遗传分析表明其携带一对显性抗白粉病基因。本文通过SSR标记的方法对该基因进行了染色体定位。同时利用Affymetrix基因芯片结合实时定量PCR验证,分析了红蚰麦/豫麦13F3代纯合抗病家系、感病家系白粉菌诱导条件下的基因表达谱。并根据基因芯片的结果选择一个在抗病家系中诱导后高上调表达的探针进行了电子克隆和表达分析。主要的研究内容和研究结果如下:
     1.抗白粉病基因Pmhym的标记定位
     根据集团分离分析法在红蚰麦与感病亲本豫麦13的F3代纯合家系中建立抗、感病DNA池。选取位于21条染色体上的250对SSR引物在双亲以及DNA池间进行初筛,筛选出的能扩增出一致性差异片段的引物用F2代群体验证。用软件Mapmaker3.0软件分析结果,最终找到了3个与红蚰麦中抗白粉病基因Pmhym(暂命名)连锁的标记,标记排序如下Xwmc526-31.6cM-Xgwm577-25.6cM-Pmhym-14.3cM-Xwmc232,由于这三个标记都位于7BL染色体上,于是将红蚰麦携带的抗白粉病基因定位在7BL染色体臂上。
     2.利用基因芯片筛选白粉菌诱导条件下差异表达基因。
     分别以F3 4个纯合抗病家系构建抗病池,4个感病家系构建(?)病池。对两份材料同时设置两种接种处理:未接菌、接菌24h。样品的cRNA与Affymetrix 900493芯片进行杂交,获得的数据均一化处理后,设置了抗病诱导前后、感病诱导前后、诱导后抗病和感病,三组比较。挑选比较后表达倍数有差异的探针序列合成了22对引物,对基因芯片的结果进行了定量PCR验证,结果表明芯片的数据具有可重复性。
     以实验组杂交信号为P,change p-value<0.001且ratio值≥2或≤0.5为标准筛选差异表达基因。筛选到2728个在抗病株系诱导前后差异表达的基因,其中已知功能的408个基因中抗病/防御类基因占39.71%。2631个基因在感病诱导前后差异表达,其中已知功能的442个基因中抗病/防御类基因占37.33%,说明病原菌诱导了植物的抗病代谢途径。
     通过抗病诱导表达谱和感病诱导表达谱的比较分析、抗病诱导比感病诱导上调表达序列的分析获得了抗病特异诱导转录本,感病特异诱导转录本,以及基础防御转录本以及抗病增强表达转录本。通过差异基因的比较分析推测水杨酸、茉莉酸和乙烯途径协同作用参与了小麦对白粉菌的抗病过程;而感病株系中脱落酸途径可能与以上的三个途径存在拮抗作用,参与了植物-病原物的亲和互作反应。在抗病株系中或活性氧的代谢比感病株系中强,参与了植物的抗病反应过程。许多抗病/防御类基因、信号传导基因上调表达,这些基因可能也参与了抗病反应。
     3.一个小麦类萌发素蛋白基因的克隆、表达分析
     选取在抗病株系诱导后高上调表达的探针Ta.169.1.S1_x_at,进行电子延伸后合成引物扩增经白粉菌诱导的cDNA模板。结果获得了一个长855 bp,具有完整ORF框的类萌发素蛋白基因,根据ORF框翻译的蛋白序列,在NCBI上进行BLAST分析,表明该片段属于Cupin2超家族成员,有15个相似性在50-64%之间的蛋白序列。用MEGA 4.0软件构建的遗传进化树分析同源关系,本试验中获得的小麦类萌发素蛋白与已知的类萌发素蛋白分属于不同的进化分支,可能是一个新的基因,命名为TaGLP5。序列已提交至Genbank,登录号为FJ594470。用白粉病同时接种抗病、感病株系,发现该基因在感、抗植株中受白粉菌诱导后都上调表达。但上调的模式、程度不同,且在接种24 h内抗病植株中的表达量较感病植株中高。由于病原菌与植物互作的前24 h是决定病原菌能否在植物中定殖的关键时期,推测TaGLP5可能参与了红蚰麦对白粉菌早期的抗病防御反应。
Wheat powdery mildew caused by Blumeria graminis f. sp. tritici is a devastating disease in wheat growing countries worldwide. Resistance cultivars offer the most effective and safe approach to control the disease. However, the use of single or few Pm genes eventually leads to a rapid development of correponding virulence genes in the pathogen, resulting in breakdown of cultivars'resistance. Thus, it is foundational to identify novel Pm genes and dissect resistance mechanism for the control of wheat powdery mildew.
     Wheat landrace may contain rich resistance genes, which is very valuable to explore resistant cultivars and identify new resistance genes against powdery mildew. Hongyoumai, one wheat landrace, bears good resistance to powdery mildew. Genetic analysis revealed that it carried one dominant Pm gene. In the present thesis, SSR markers were employed to locate Pmhym gene. Meanwhile, Affymetrix genechip analyses were employed for expression profiling in response to Blumeria graminis f. sp. tritici infection in homologous resistant and susceptible F3 progeny derived from Hongyoumai and Yumai13, respectively, along with verification of differentially expressed genes using real time quantitative RT-PCR (qRT-PCR) analyses. Based on the genechip results, one up-regulated target gene in resistance progeny was further in silico cloned and characterized. The main contents and results were as follows:
     1. Chromosome location of Pmhym gene
     Bulked segregate analysis (BSA) was used to establish the resistant and susceptible gene pools from F3 homologous progeny of Hongyoumai×Yumai13.250 pairs of primers were employed to screen the two parents and two pools. Primers which can amplify the same polymorphic bands between parents and pools will be further selected to detect an F2 population. Mapmaker/EXP (VERTION3.0b) analysis was then applied, and the results revealed three markers identified to be linked to Pmhym, the order of which was:Xwmc526-31.6cM - Xgwm577 - 25.6cM - Pmhym - 14.3cM - Xwmc232. Three markers were found to be located on the long arm of 7B chromosome, which indicated that gene Pmhym might be also located on chromosome 7BL.
     2. Identification of differential expressed genes induced by Blumeria graminis using genechip.
     Four F3 homologous resistant progeny of Hongyoumai×Yuma13 were selected as the resistance pool, with four susceptible progeny as the susceptible pool. Two treatments were set for both of the two pools:uninoculated,24 h after inoculation by Blumeria graminis. Data obtained from hybridization of cRNAs of the samples crossed with Affymetrix wheat genechip were normalized, and three groups were categorized including pre- and post-induction of the resistant, pre- and post-induction of the susceptible, and post-induction of the resistant and susceptible, respectively. Base on the differentially expressed genes,22 primer sets were designed and used for qRT-PCR validation. The qRT-PCR confirmed the reliability and reproducibility of the data revealed by genechip.
     The gene measure up to the following criterions:P (present) hybridization sigal in tester, change p-value<0.001 and ratio≥2 or≤0.5, it will be considered as differentially expression. 2728 differential genes were identified between uninoculated and infected 24 h in resistant plants,39.71 percent genes are disease/defense ones in 408 genes with known function.2631 differential genes were identified between uninoculated and infected 24 h in susceptible plants,37.33 percent genes are disease/defense ones in 442 genes with known function. It indicated that metabolisms related to resistance were induced by Blumeria graminis.
     Comparison of resistance- and susceptibility-related expression profiling in resistant and susceptible wheat infected by Bgt, indicated that three categories of induced transcripts were obtained including resistance-specific, susceptibility-specific and basal defense transcripts. It was found that SA (salicylic acid), JA (jasmonate) and ET (ethylene) signaling pathways related genes were differentially expressed, thus implied that the three signaling pathways might be involved in the wheat defense response against Bgt infection. In the susceptible plants, genes involved in ABA (Abscisic acid) signaling pathway might be inhibitive to the abovementioned three pathways, thus resulting in susceptible reaction. The number of genes involved in ROS (Reactive oxygen species) metabolism was more in the resistant plants, indicating possible involvement in resistance reaction. And genes involved in disease/defense, signal transduction were generally up-regulated, suggesting their implication in defense response.
     3. Cloning of a wheat germin-like protein gene
     One probes Ta.169.1.S1_x_at up-regulated in the inoculated resistant plants was selected for in silicon extension. Primers were then designed based on in silico cloned sequence to amplify cDNA of the corresponding gene. One germin-like protein encoded gene named TaGLP5 (855 bp) with a full open reading frame was obtained, and deposited in GenBank with accession of FJ594470. BLASTX analysis demonstrated that the encoded TaGLP5 protein belonged to a Cupin2 superfamily, with 15 homologous sequences (50-63%). The analyses of multiple alignment and phylogenetic tree indicated that TaGLP5 belongs to different branches from known germin-like protein. TaGLP5 was located on chromosome 5A with a PCR-based method using a set of Nulli-tetrasomic lines of "Chinese Spring". qRT-PCR analysis showed that TaGLP5 transcript was induced in response to Bgt infection, with higher expression in resistant plants than in the susceptible pre-24 h inoculation. It was speculated that TaGLP5 might be involved in wheat defense response against Bgt.
引文
[1]刘金元,刘大钧.小麦白粉病抗性基因研究进展[J].植物病理学报,2000,30(4):289-295.
    [2]程顺和,高德荣,张伯桥,等.小麦抗白粉病的遗传改良及多系品系的配制[J].麦类作物学报,2003,23(2):34-38.
    [3]刘胜毅,许泽永,何礼远.植物与病原菌互作和抗病性的分子机制[J].中国农业科学,1999,132(增刊):94-102.
    [4]Koller W. Role of cutinase in the penetration of apple leaves by Venturia inaequlis[J]. Phytopathol, 1991,181:1375-1379.
    [5]Dangl J L, Jones J D G. Plant pathogens and integrated defence responses to infection[J]. Nature, 2001,411(6839):826-833.
    [6]Belkhadir Y, Subramaniam R, Dangl J L. Plant disease resistance protein signaling:NBS-LRR proteins and their partners[J]. Current Opinion in Plant Biology,2004,7(4):391-399.
    [7]Zhou T, Wang Y, Chen J Q, et al. Genome-wide identification of NBS genes in japonica rice reveals significant expansion of divergent non-TIR NBS-LRR genes[J]. Molecular Genetics and Genomics, 2004,271(4):402-415.
    [8]Johal G S, Briggs S P. Reductase-Activity Encoded by the Hm1 Disease Resistance Gene in Maize[J]. Science,1992,258(5084):985-987.
    [9]Buschges R, Hollricher K, Panstruga R, et al. The barley mlo gene:A novel control element of plant pathogen resistance[J]. Cell,1997,88(5):695-705.
    [10]Spielmeyer W, Singh R P, McFadden H, et al. Fine scale genetic and physical mapping using interstitial deletion mutants of Lr34/Yr18:a disease resistance locus effective against multiple pathogens in wheat[J]. Theoretical and Applied Genetics,2008,116(4):481-490.
    [11]Lillemo M, Asalf B, Singh R P, et al. The adult plant rust resistance loci Lr34/Yr18 and Lr46/Yr29 are important determinants of partial resistance to powdery mildew in bread wheat line Saar[J]. Theoretical and Applied Genetics,2008,116(8):1155-1166.
    [12]Sodkiewicz W, Strzembicka A, Apolinarska B. Chromosomal location in triticale of leaf rust resistance genes introduced from Triticum monococcum[J]. Plant Breeding,2008,127(4):364-367.
    [13]Huang L B S, Li W, Fellers JP, Trick HN, Gill BS. Map-based cloning of leaf rust resistance gene Lr21 from the large and polyploid genome of bread wheat[J]. Genetics,2003,164:655-664.
    [14]Hsam S L K, Huang X Q, Zeller F J. Chromosomal location of genes for resistance to powdery mildew in common wheat (Triticum aestivum L. em Thell.) 6. Alleles at the Pm5 locus[J]. Theoretical and Applied Genetics,2001,102(1):127-133.
    [15]Schneider D, Heun M, Fischbeck G. Inheritance of the powdery mildew resistance gene Pm9 in relation to Pm1 and Pm2 of wheat[J].Plant Breeding,1991,107:161-164.
    [16]Rong J K, Millet E, Manisterski J, et al. A new powdery mildew resistance gene:Introgression from wild emmer into common wheat and RFLP-based mapping[J]. Euphytica,2000,115(2):121-126.
    [17]Singrun C, Hsam S L K, Zeller F J, et al. Localization of a novel recessive powdery mildew resistance gene from common wheat line RD30 in the terminal region of chromosome 7AL[J]. Theoretical and Applied Genetics,2004,109(1):210-214.
    [18]Sun X L, Liu D, Zhang H Q, et al. Identification and mapping of two new genes conferring resistance to powdery mildew from Aegilops tauschii (Coss.) Schmal[J]. Journal of Integrative Plant Biology,2006,48(10):1204-1209.
    [19]Xu H X, Yao G Q, Xiong L, et al. Identification and mapping of pm2026:a recessive powdery mildew resistance gene in an einkorn (Triticum monococcum L.) accession[J]. Theoretical and Applied Genetics,2008,117(4):471-477.
    [20]Yahiaoui N, Srichumpa P, Dudler R, et al. Genome analysis at different ploidy levels allows cloning of the powdery mildew resistance gene Pm3b from hexaploid wheat[J]. Plant Journal,2004,37(4): 528-538.
    [21]Yahiaoui N, Brunner S, Keller B. Rapid generation of new powdery mildew resistance genes after wheat domestication[J]. Plant Journal,2006,47(1):85-98.
    [22]Srichumpa P, Brunner S, Keller B, et al. Allelic series of four powdery mildew resistance genes at the Pm3 locus in hexaploid bread wheat[J]. Plant Physiology,2005,139(2):885-895.
    [23]姚景侠.分子标记及其在麦类遗传育种研究中的应用[M].南京:南京出版社,1999.
    [24]周奕华,陈正华.分子标记在植物学中的应用及前景[J].武汉植物学研究,1999,17(1):75-86.
    [25]周延清,DNA分子标记技术在植物研究中应用2005,化学工业出版社:北京.
    [26]王小梅,杨秀荣.DNA分子标记研究进展[J].天津农学院学报,2000,7(1):21-24.
    [27]Roder M, Plaschke J, Konig S. Abundance, variability and chromosomal location of microsatellites in wheat[J]. Mol Gen Genet.,1995,248:163-167.
    [28]Paran I, Michelmore R W. Development of Reliable Pcr-Based Markers Linked to Downy Mildew Resistance Genes in Lettuce[J]. Theoretical and Applied Genetics,1993,85(8):985-993.
    [29]Mingeot D, Chantret N, Baret P V, et al. Mapping QTL involved in adult plant resistance to powdery mildew in the winter wheat line RE714 in two susceptible genetic backgrounds[J]. Plant Breeding, 2002,121(2):133-140.
    [30]Chao S, Sharp P, Worland A, et al. RFLP-based genetic maps of wheat homoeologous group 7 chromosomes[J]. Theoretical and Applied Genetics,1989,78:495-504.
    [31]Liu Y, Mori N, Tsunewaki K. Restriction fragment length polymorphism (RFLP) analysis in wheat. Ⅰ. Genomic DNA library construction and RFLP analysis in common wheat[J]. Mol. Gen. Genet., 1990,65:367-380.
    [32]D G M, Proeeedings of the eighth international wheat genetics symposium.1995, China Agricultural Seientech:Beijing China. p.29-30.
    [33]Devos K M, Gale M D. The use of random amplified polymorphic DNA marker in wheat[J]. Theoretical and Applied Genetics,1992,84:567-572.
    [34]孙晓丽.小麦抗白粉病基因的分子标记及白粉菌引发的细胞程序性死亡的相关研究[J].中国农科院博士学位论文,2006:23~29.
    [35]Huang X Q, Hsam S L K, Zeller F J, et al. Molecular mapping of the wheat powdery mildew resistance gene Pm24 and marker validation for molecular breeding[J]. Theoretical and Applied Genetics,2000,101(3):407-414.
    [36]Jarve K, Peusha H O, Tsymbalova J, et al. Chromosome location of a T. timopheevii-derived powdery mildew resistance gene transformed to common wheat[J]. Genome,2000,43:377-381.
    [37]Liu Z Y, Sun Q X, NiZF, et al. Molecular characterization of a novel powdery mildew resistance gene Pm30 in wheat originating from wild emmer[J]. Euphytica,2002,123(1):21-29.
    [38]Xie C J, Sun Q X, Ni Z F, et al. Chromosomal location of a Triticum dicoccoides-derived powdery mildew resistance gene in common wheat by using microsatellite markers[J]. Theoretical and Applied Genetics,2003,106(2):341-345.
    [39J Chantret N, Sourdille P, Roder M, et al. Location and mapping of the powdery mildew resistance gene MIRE and detection of a resistance QTL by bulked segregant analysis (BSA) with microsatellites in wheat[J]. Theoretical and Applied Genetics,2000,100(8):1217-1224.
    [40]王竹林,王德森,何中虎,等.小麦品种百农64慢白粉病抗性QTL的定位[J].中国农业科学2006,39(10):1956-1961.
    [41]Li W L, Faris J D, Chittoor J M, et al. Genomic mapping of defense response genes in wheat[J]. Theoretical and Applied Genetics,1999,98:226-233.
    [42]Yun D J, Zhao Y, Pardo J M, et al. Stress proteins on the yeast cell surface determine resistance to osmotin, a plant antifungal protein[J]. Proceedings of the National Academy of Sciences of the United States of America,1997,94(13):7082-7087.
    [43]王钧,金巧玲.植物系统获得性抗性的信号转导[J].生命科学,1998,10(2):7-13.
    [44]Van Loon L C, Van Strien E A. The families of pathogenesis-related proteins, their activities, and comparative analysis of PR-1 type proteins[J]. Physiological and Molecular Plant Pathology,1999, 55(2):85-97.
    [45]余叔文,汤章城,植物生理与分子生物学.1998,科学出版社:北京.p.784-803.
    [46]Ward E R, Uknes S J, Wiliams S C, et al. Coordinate gene activity in response to agents that induce systemic acquired resistance[J]. Plant Cell,1991,3:1085-1094.
    [47]Uknes S, Mauchmani B, Moyer M, et al. Acquired-Resistance in Arabidopsis[J]. Plant Cell,1992, 4(6):645-656.
    [48]del Rio L A, Corpas F J, Sandalio L M, et al. Reactive oxygen species, antioxidant systems and nitric oxide in peroxisomes[J]. Journal of Experimental Botany,2002,53(372):1255-1272.
    [491 Neill S J, Desikan R, Clarke A, et al. Hydrogen peroxide and nitric oxide as signalling molecules in plants[J]. Journal of Experimental Botany,2002,53(372):1237-1247.
    [50]寓宽平.水杨酸及受体与植物细胞的信号传递[J].湖北农业科学,1995(2):64~66.
    [51]徐建明,朱云林,王伟中,等.外源诱导植物获得抗病性的研究进展[J].江苏农业科学,2001(4):7~10.
    [52]王金生.植物抗病的分子机制[J].植物病理学报,1995,25(4):289~295.
    [53]范志金,刘秀峰,刘凤丽,等.水杨酸在诱导系统获得抗性中的信号传到作用[J].科技与开发,2004(6):257~260.
    [54]沈文飚,徐朗莱,叶茂炳.水杨酸诱导植物抗病性的新进展[J].生物化学与生物物理进展,1996,26(3):237~240.
    [55]Sembdner G, Parthier B. The Biochemistry and the Physiological and Molecular Actions of Jasmonates[J]. Annual Review of Plant Physiology and Plant Molecular Biology,1993,44: 569-589.
    [56]Beeker W, Apel K. Isolation and characterization of a cDNA encoding a naval jasmonate-induced protein of barley(Hordem vulgare L.)[J]. Plant Molecular Biology,1992,19:1065-1067.
    [57]Xu Y, Chang P F L, Liu D, et al. Plant Defense Genes Are Synergistically Induced by Ethylene and Methyl Jasmonate[J]. Plant Cell,1994,6(8):1077-1085.
    [58]Penninckx I A M A, Eggermont K, Terras F R G, et al. Pathogen-induced systemic activation of a plant defensin gene in Arabidopsis follows a salicylic acid-independent pathway[J]. Plant Cell, 1996,8(12):2309-2323.
    [59]Chaudhry B, Mulleruri F, Cameronmills V, et al. The Barley 60-Kda Jasmonate-Induced Protein (Jip60)Is a Novel Ribosome-Inactivating Protein[J]. Plant Journal,1994,6(6):815-824.
    [60]McConn M, Creelman R A, Bell E, et al. Jasmonate is essential for insect defense Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America, 1997,94(10):5473-5477.
    [61]Rojo E, Titarenko E, Leon J, et al. Reversible protein phosphorylation regulates jasmonic acid-dependent and-independent wound signal transduction pathways in Arabidopsis thaliana[J]. Plant Journal,1998,13(2):153-165.
    [62]Cohen Y, Gisi U, Niderman T. Local and Systemic Protection against Phytophthora-Infestans Induced in Potato and Tomato Plants by Jasmonic Acid and Jasmonic Methyl-Ester[J]. Phytopathology,1993,83(10):1054-1062.
    [63]Sivasankar S, Sheldrick B, Rothstein S J. Expression of allene oxide synthase determines defense gene activation in tomato[J]. Plant Physiology,2000,122(4):1335-1342.
    [64]Wu J S, Chong K. The molecular biology research on the action of jasmonates[J]. Chin. Bull. of Bot.,2002,19:164-170 (in Chinese).
    [65]Kloek A P, Verbsky M L, Sharma S B, et al. Resistance to Pseudomonas syringae conferred by an Arabidopsis thaliana coronatine-insensitive (coil) mutation occurs through two distinct mechanisms[J]. Plant Journal,2001,26(5):509-522.
    [66]Howe G A. Cyclopentenone signals for plant defense:Remodeling the jasmonic acid response[J]. Proceedings of the National Academy of Sciences of the United States of America, 2001,98(22):12317-12319.
    [67]Lorenzo O, Solano R. Molecular players regulating the jasmonate signalling network[J]. Current Opinion in Plant Biology,2005,8(5):532-540.
    [68]Kepinski S, Leyser O. The Arabidopsis F-box protein TIR1 is an auxin receptor[J]. Nature,2005, 435(7041):446-451.
    [69]王维荣,裴真明,欧阳光察.几种因子对黄瓜幼苗几丁质酶的诱导作用[J].植物生理学通讯,1994,30(4):263-266.
    [70]Aloni R, Wolf A, Feigenbaum P, et al. The Never ripe mutant provides evidence that tumor-induced ethylene controls the morphogenesis of Agrobacterium tumefaciens-induced crown galls on tomato stems[J]. Plant Physiology,1998,117(3):841-849.
    [71]Chen N, Goodwin P H, Hsiang T. The role of ethylene during the infection of Nicotiana tabacum by Colletotrichum destructivum[J]. Journal of Experimental Botany,2003,54(392):2449-2456.
    [72]Dong H P, Peng J L, Bao Z L, et al. Downstream divergence of the ethylene signaling pathway for harpin-stimulated Arabidopsis growth and insect defense[J]. Plant Physiology,2004,136(3): 3628-3638.
    [73]Tang D Z, Christiansen K M, Innes R W. Regulation of plant disease resistance, stress responses, cell death, and ethylene signaling in Arabidopsis by the EDR1 protein kinase[J]. Plant Physiology, 2005,138(2):1018-1026.
    [74]朱美君,王学臣,陈珈.植物的编程性细胞死亡[J].植物生理学通讯,1999,35(8):353-358.
    [75]王高鸿,王辉,黄久常.乙烯利诱导玉米根皮层通气组织的形成与程序化细胞死亡的关系[J].华中师范大学学报(自然科学版),2000,34(4):463-467.
    [76]Lund S T, Stall R E, Klee H J. Ethylene regulates the susceptible response to pathogen infection in tomato[J]. Plant Cell,1998,10(3):371-382.
    [77]刘亚光,李海英,杨庆凯.乙烯利对大豆抗性生化物质的诱导作用[J].哈尔滨工业大学学报,2004,36(8):1014-1016.
    [78]姜国勇,杨仁崔.番茄Tm-22基因是一个受外源乙烯调节的抗病基因[J].病毒学报,2004,20(4):359-363.
    [79]郭丽红,王定康,杨晓虹,等.外源乙烯利对干旱胁迫过程中玉米幼苗某些抗逆生理指标的影响[J].云南大学学报(自然科学版),2004,6(4):352-356.
    [80]Hua J, Meyerowitz E M. Ethylene responses are negatively regulated by a receptor gene family in Arabidopsis thaliana[J]. Cell,1998,94(2):261-271.
    [81]Chang C, Shockey J A. The ethylene-response pathway:signal perception to gene regulation[J]. Current Opinion in Plant Biology,1999,2(5):352-358.
    [82]Kieber J J, Rothenberg M, Roman G, et al. Ctrl, a Negative Regulator of the Ethylene Response Pathway in Arabidopsis, Encodes a Member of the Raf Family of Protein-Kinases[J]. Cell,1993, 72(3):427-441.
    [83]Bleecker A B, Kende H. Ethylene:A gaseous signal molecule in plants[J]. Annual Review of Cell and Developmental Biology,2000,16:1-+.
    [84]Gao Z Y, Chen Y F, Randlett M D, et al. Localization of the Raf-like kinase CTR1 to the endoplasmic reticulum of Arabidopsis through participation in ethylene receptor signaling complexes[J]. Journal of Biological Chemistry,2003,278(36):34725-34732.
    [85]Cancel J D, Larsen P B. Loss-of-function mutations in the ethylene receptor ETR1 cause enhanced sensitivity and exaggerated response to ethylene in Arabidopsis[J]. Plant Physiology,2002,129(4): 1557-1567.
    [86]Whitelaw C A, Lyssenko N N, Chen L W, et al. Delayed abscission and shorter internodes correlate with a reduction in the ethylene receptor LeETR1 transcript in transgenic tomato[J]. Plant Physiology,2002,128(3):978-987.
    [87]Yang H Q, Ying T J, Xiang Q L, et al. Genetic transformation of tomato with antisense gene of LeETR1[J]. Chinese cell Biol., 2003,25:120-124 (in Chinese).
    [88]Tieman D V, Taylor M G, Ciardi J A, et al. The tomato ethylene receptors NR and LeETR4 are negative regulators of ethylene response and exhibit functional compensation within a multigene family [J]. Proceedings of the National Academy of Sciences of the United States of America,2000, 97(10):5663-5668.
    [89]Chang C R. Ethylene signaling:the MAPK module has finally landed[J]. Trends in Plant Science, 2003,8(8):365-368.
    [90]Alonso J M, Hirayama T, Roman G, et al. EIN2, a bifunctional transducer of ethylene and stress responses in Arabidopsis[J]. Science,1999,284(5423):2148-2152.
    [91]Roman G, Lubarsky B, Kieber J J, et al. Genetic-Analysis of Ethylene Signal-Transduction in Arabidopsis-Thaliana-5 Novel Mutant Loci Integrated into a Stress-Response Pathway[J]. Genetics,1995,139(3):1393-1409.
    [92]Ohmetakagi M, Shinshi H. Ethylene-Inducible DNA-Binding Proteins That Interact with an Ethylene-Responsive Element[J]. Plant Cell,1995,7(2):173-182.
    [93]Hao D Y, Ohme-Takagi M, Sarai A. Unique mode of GCC box recognition by the DNA-binding domain of ethylene-responsive element-binding factor (ERF domain) in plant[J]. Journal of Biological Chemistry,1998,273(41):26857-26861.
    [94]Zhou J M, Tang X Y, Martin G B. The Pto kinase conferring resistance to tomato bacterial speck disease interacts with proteins that bind a cis-element of pathogenesis-related genes[J]. Embo Journal,1997,16(11):3207-3218.
    [95]Thara V K, Tang X Y, GuYQ, et al. Pseudomonas syringae pv tomato induces the expression of tomato EREBP-like genes Pti4 and Pti5 independent of ethylene, salicylate and jasmonate[J]. Plant Journal,1999,20(4):475-483.
    [96]Gu Y Q, Yang C, Thara V K, et al. Pti4 is induced by ethylene and salicylic acid, and its product is phosphorylated by the Pto kinase[J]. Plant Cell,2000,12(5):771-785.
    [97]Gu Y Q, Wildermuth M C, Chakravarthy S, et al. Tomato transcription factors Pti4, Pti5, and Pti6 activate defense responses when expressed in Arabidopsis[J]. Plant Cell,2002,14(4):817-831.
    [98]Wu K Q, Tian L N, Hollingworth J, et al. Functional analysis of tomato Pti4 in Arabidopsis[J]. Plant Physiology,2002,128(1):30-37.
    [99]Park J M, Park C J, Lee S B, et al. Overexpression of the tobacco Tsil gene encoding an EREBP/AP2-Type transcription factor enhances resistance against pathogen attack and osmotic stress in tobacco[J]. Plant Cell,2001,13(5):1035-1046.
    [100]Berrocal-Lobo M, Molina A, Solano R. Constitutive expression of ETHYLENE-RESPONSE-FACTOR1 in Arabidopsis confers resistance to several necrotrophic fungi[J]. Plant Journal,2002,29(1):23-32.
    [101]Fischer U, Droge-Laser W. Overexpression of NtERF5, a new member of the tobacco ethylene response transcription factor family enhances resistance to Tobacco mosaic virus[J]. Molecular Plant-Microbe Interactions,2004,17(10):1162-1171.
    [102]Yi S Y, Kim J H, Joung Y H, et al. The pepper transcription factor CaPF1 confers pathogen and freezing Tolerance in Arabidopsis[J]. Plant Physiology,2004,136(1):2862-2874.
    [103]Guo Z J, Chen X J, Wu X L, et al. Overexpression of the AP2/EREBP transcription factor OPBP1 enhances disease resistance and salt tolerance in tobacco[J]. Plant Molecular Biology,2004,55(4): 607-618.
    [104]Pena-Cortes H, Albrecht T, Prat S, et al. Aspirin Prevents Wound-Induced Gene-Expression in Tomato Leaves by Blocking Jasmonic Acid Biosynthesis[J]. Planta,1993,191(1):123-128.
    [105]Doares S H, Narvaezvasquez J, Conconi A, et al. Salicylic-Acid Inhibits Synthesis of Proteinase-Inhibitors in Tomato Leaves Induced by Systemin and Jasmonic Acid[J]. Plant Physiology,1995,108(4):1741-1746.
    [106]Harms K, Ramirez I, Pena-Cortes H. Inhibition of wound-induced accumulation of allene oxide synthase transcripts in flax leaves by aspirin and salicylic acid[J]. Plant Physiology,1998,118(3): 1057-1065.
    [107]Stout M J, Fidantsef A L, Duffey S S, et al. Signal interactions in pathogen and insect attack: systemic plant-mediated interactions between pathogens and herbivores of the tomato, Lycopersicon esculentum[J]. Physiological and Molecular Plant Pathology,1999,54(3-4): 115-130.
    [108]Vidal S, deLeon I P, Denecke J, et al. Salicylic acid and the plant pathogen Erwinia carotovora induce defense genes via antagonistic pathways[J]. Plant Journal,1997,11(1):115-123.
    [109]Cipollini D, Enright S, Traw M B, et al. Salicylic acid inhibits jasmonic acid-induced resistance of Arabidopsis thaliana to Spodoptera exigua[J]. Molecular Ecology,2004,13(6):1643-1653.
    [110]Schweizer P, Buchala A, Silverman P, et al. Jasmonate-inducible genes are activated in rice by pathogen attack without a concomitant increase in endogenous jasmonic acid levels[J]. Plant Physiology,1997,114(1):79-88.
    [111]Lawton K A, Potter S L, Uknes S, et al. Acquired-Resistance Signal-Transduction in Arabidopsis Is Ethylene Independent[J]. Plant Cell,1994,6(5):581-588.
    [112]Bowling S A, Clarke J D, Liu Y D, et al. The cpr5 mutant of Arabidopsis expresses both NPR1-dependent and NPR1-independent resistance[J]. Plant Cell,1997,9(9):1573-1584.
    [113]Clarke J D, Liu Y D, Klessig D F, et al. Uncoupling PR gene expression from NPR1 and bacterial resistance:Characterization of the dominant Arabidopsis cpr6-1 mutant[J]. Plant Cell,1998,10(4): 557-569.
    [114]Pieterse C M J, van Loon L C. Salicylic acid-independent plant defence pathways[J]. Trends in Plant Science,1999,4(2):52-58.
    [115]Li S, Assmann S M, Albert R. Predicting essential components of signal transduction networks:A dynamic model of guard cell abscisic acid signaling[J]. Plos Biology,2006,4(10):1732-1748.
    [116]刘丹,姜中珠,陈祥伟.水分胁迫下脱落酸的产生、作用机制及应用研究进展[J].东北林业大学学报,2003,31(1):34-38.
    [117]杨洪强,接玉玲,李林光.脱落酸信号转导研究进展[J].植物学通报,2001,18(4):427-435.
    [118]余光辉,李玲,曾福华.水分胁迫的基因表达和信号转导(综述)[J].亚热带植物科学,2002,31(1):57-62.
    [119]姜立智,梁宗锁.干旱胁迫对植物基因的诱导及基因产物的变化[J].干旱地区农业研究,2001,19(3):87-92.
    [120]颜华,贾良辉,王根轩.植物水分胁迫诱导蛋白的研究进展[J].生命的化学,2002,2(2):165-168.
    [121]曾华宗,罗利军.植物抗旱、耐盐基因概述[J].植物遗传资源学报,2003(3):270-273.
    [122]Pena-Cortes H, Prat S, Atzorn R, et al. Abscisic acid-deficient plants do not accumulate proteinase inhibitor Ⅱ following systemin treatment[J]. Planta,1996,198(3):447-451.
    [123]Anderson J P, Badruzsaufari E, Schenk P M, et al. Antagonistic interaction between abscisic acid and jasmonate-ethylene signaling pathways modulates defense gene expression and disease resistance in Arabidopsis[J]. Plant Cell,2004,16(12):3460-3479.
    [124]Ghassemian M, Nambara E, Cutler S, et al. Regulation of abscisic acid signaling by the ethylene response pathway in arabidopsis[J]. Plant Cell,2000,12(7):1117-1126.
    [125]Veronese P, Chen X, Bluhm B, et al. The BOS loci of Arabidopsis are required for resistance to Botrytis cinerea infection[J]. Plant Journal,2004,40(4):558-574.
    [126]Mengiste T, Chen X, Salmeron J, et al. The BOTRYTIS SUSCEPTIBLE1 gene encodes an R2R3MYB transcription factor protein that is required for biotic and abiotic stress responses in Arabidopsis[J]. Plant Cell,2003,15(11):2551-2565.
    [127]Hatey F, Tosser-Klopp G, Clouscard-Martinato C, et al. Expressed sequence tags for genes:a review[J]. Genetics Selection Evolution,1998,30(6):521-541.
    [128]Hillier L D, Lennon G, Becker M, et al. Generation and analysis of 280,000 human expressed sequence tags[J]. Genome Res,1996,6(9):807-28.
    [129]Medzhitov R, Preston-Hurlburt P, Janeway C A, Jr.. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity [J]. Nature,1997,388(6640):394-7.
    [130]Lemaitre B, Nicolas E, Michaut L, et al. The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults[J]. Cell,1996, 86(6):973-83.
    [131]Her C, Doggett N A. Cloning, structural characterization, and chromosomal localization of the human orthologue of Saccharomyces cerevisiae MSH5 gene[J]. Genomics,1998,52(1):50-61.
    [132]Bocker T, Barusevicius A, Snowden T, et al. hMSH 5:A human MutS homologue that forms a novel heterodimer with hMSH 4 and is expressed during spermatogenesis [J]. Cancer Research, 1999,59(4):816-822.
    [133]Skiba B, Ford R, Pang E C K. Construction of a cDNA library of Lathyrus sativus inoculated with Mycosphaerella pinodes and the expression of potential defence-related expressed sequence tags (ESTs)[J]. Physiological and Molecular Plant Pathology,2005,66(1-2):55-67.
    [134]Wang Z, Taramino G, Yang D, et al. Rice ESTs with disease-resistance gene-or defense-response gene-like sequences mapped to regions containing major resistance genes or QTLs[J]. Molecular Genetics and Genomics,2001,265(2):302-310.
    [135]Rauyaree P, Choi W, Fang E, et al. Genes expressed during early stages of rice infection with the rice blast fungus Magnaporthe grisea[J]. Molecular Plant Pathology,2001,2(6):347-354.
    [136]Yamamoto K, Sasaki T. Large-scale EST sequencing in rice[J]. Plant Molecular Biology,1997, 35(1-2):135-144.
    [137]Keon J, Antoniw J, Rudd J, et al. Analysis of expressed sequence tags from the wheat leaf blotch pathogen Mycosphaerella graminicola (anamorph Septoria tritici)[J]. Fungal Genetics and Biology,2005,42(5):376-389.
    [138]Luo M, Kong X Y, Jiang T, et al. Analysis of resistance to powdery mildew in wheat based on expressed sequence tags (EST) technique[J]. Acta Botanica Sinica,2002,44(5):567-572.
    [139]Milla M A R, Butler E, Huete A R, et al. Expressed sequence tag-based gene expression analysis under aluminum stress in Rye[J]. Plant Physiology,2002,130(4):1706-1716.
    [140]Bassani M, Neumann P M, Gepstein S. Differential expression profiles of growth-related genes in the elongation zone of maize primary roots[J]. Plant Molecular Biology,2004,56(3):367-380.
    [141]Hofte H, Desprez T, Amselem J, et al. An Inventory of 1152 Expressed Sequence Tags Obtained by Partial Sequencing of Cdnas from Arabidopsis-Thaliana[J]. Plant Journal,1993,4(6): 1051-1061.
    [142]Coram T E, Pang E C K. Isolation and analysis of candidate ascochyta blight defence genes in chickpea. Part I. Generation and analysis of an expressed sequence tag (EST) library[J]. Physiological and Molecular Plant Pathology,2005,66(5):192-200.
    [143]Coram T E, Pang E C K. Isolation and analysis of candidate ascochyta blight defence genes in chickpea. Part Ⅱ. Microarray expression analysis of putative defence-related ESTs[J]. Physiological and Molecular Plant Pathology,2005,66(5):201-210.
    [144]Verica J A, Maximova S N, Strem M D, et al. Isolation of ESTs from cacao (Theobroma cacao L.) leaves treated with inducers of the defense response[J]. Plant Cell Reports,2004,23(6): 404-413.
    [145]Roberts J K, Pryor A. Isolation of a Flax (Linum-Usitatissimum) Gene Induced during Susceptible Infection by Flax Rust (Melampsora-Lini)[J]. Plant Journal,1995,8(1):1-8.
    [146]马旭.基因芯片技术及其研究现状和应用前景[J].中国医疗器械信息,2002,8(1):4-7.
    [147]潘继红,韩金祥.基因芯片的制备方法[J].生命的化学,2002,22(3):290-295.
    [148]Fodor S P A. Light-Directed, Spatially Addressable Parallel Chemical Synthesis[J]. Abstracts of Papers of the American Chemical Society,1991,202:90-Medi.
    [149]McGall G, Labadie J, Brock P, et al. Light-directed synthesis of high-density oligonucleotide arrays using semiconductor photoresists[J]. Proceedings of the National Academy of Sciences of the United States of America,1996,93(24):13555-13560.
    [150]Proudnikov D, Timofeev E, Mirzabekov A. Immobilization of DNA in polyacrylamide gel for the manufacture of DNA and DNA-oligonucleotide microchips[J]. Analytical Biochemistry,1998, 259(1):34-41.
    [151]Upson J J, Stoyanova R, Cooper H S, et al. Optimized procedures for microarray analysis of histological specimens processed by laser capture microdissection[J]. Journal of Cellular Physiology,2004,201(3):366-373.
    [152]Edwards K, Logan J, Saunder N, Real-time PCR:an essential guide.2004, Horizon Bioscience: London.
    [153]Bustin S A, Benes V, Nolan T, et al. Quantitative real-time RT-PCR-a perspective[J]. Journal of Molecular Endocrinology,2005,34(3):597-601.
    [154]Ginzinger D G. Gene quantification using real-time quantitative PCR:An emerging technology hits the mainstream[J]. Experimental Hematology,2002,30(6):503-512.
    [155]Mackay I M, Arden K E, Nitsche A. Real-time PCR in virology[J]. Nucleic Acids Research, 2002,30(6):1292-1305.
    [156]Deprez R H L, Fijnvandraat A C, Ruijter J M, et al. Sensitivity and accuracy of quantitative real-time polymerase chain reaction using SYBR green I depends on cDNA synthesis conditions[J]. Analytical Biochemistry,2002,307(1):63-69.
    [157]Edwards K, Logan J, Saunder N, Real-time PCR:an essential guide:London.
    [158]Bustin S A. Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays[J]. Journal of Molecular Endocrinology,2000,25(2):169-193.
    [159 Holland P M, Abramson R D, Watson R, et al. Detection of Specific Polymerase Chain-Reaction Product by Utilizing the 5'-]3' Exonuclease Activity of Thermus-Aquaticus DNA-Polymerase[J]. Clinical Chemistry,1992,38(3):462-463.
    [160]Bustin S A. Quantification of mRNA using real-time reverse transcription PCR (RT-PCR):trends and problems[J]. Journal of Molecular Endocrinology,2002,29(1):
    [161]Dheda K, Huggett J F, Bustin S A, et al. Validation of housekeeping genes for normalizing RNA expression in real-time PCR[J]. Biotechniques,2004,37(1):112-37:112-114,116,118.
    [162]Schmittgen T D, Zakrajsek B A. Effect of experimental treatment on housekeeping gene expression:validation by real-time, quantitative RT-PCR[J]. Journal of Biochemical and Biophysical Methods,2000,46(1-2):69-81.
    [163]Li vak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(-Delta Delta C)method[J]. Methods,2001,25(4):402-408.
    [164]陈颖,徐宝梁,苏宁.实时荧光定量PCR技术检测转基因大豆方法的建立[J].食品与发酵工业,2003,29(8):65-69.
    [165]Radonic A, Thulke S, Mackay I M, et al. Guideline to reference gene selection for quantitative real-time PCR[J]. Biochemical and Biophysical Research Communications,2004,313(4): 856-862.
    [166]Thellin O, Zorzi W, Lakaye B, et al. Housekeeping genes as internal standards:use and limits[J]. Journal of Biotechnology,1999,75(2-3):291-295.
    [167]Sturzenbaum S R, Kille P. Control genes in quantitative molecular biological techniques:the variability of invariance[J]. Comparative Biochemistry and Physiology B-Biochemistry& Molecular Biology,2001,130(3):281-289.
    [168]Winer J, Jung C K S, Shackel I, et al. Development and validation of real-time quantitative reverse transcriptase-polymerase chain reaction for monitoring gene expression in cardiac myocytes in vitro[J]. Analytical Biochemistry,1999,270(1):41-49.
    [169]Nicot N, Hausman J F, Hoffmann L, et al. Housekeeping gene selection for real-time RT-PCR normalization in potato during biotic and abiotic stress[J]. Journal of Experimental Botany,2005, 56(421):2907-2914.
    [170]孙淑斌,李宝珍,胡江,等.水稻低丰度表达基因OsAMT1; 3实时荧光定量PCR方法的建立及其应用[J].中国水稻科学,2006,20(1):8-12.
    [171]Volkov R A, Panchuk I I, Schoffl F. Heat-stress-dependency and developmental modulation of gene expression:the potential of house-keeping genes as internal standards in mRNA expression profiling using real-time RT-PCR[J]. Journal of Experimental Botany,2003,54(391):2343-2349.
    [172]Liss B. Improved quantitative real-time RT-PCR for expression profiling of individual cells[J]. Nucleic Acids Research,2002,30(17):
    [173]Ohdan T, Francisco P B, Sawada T, et al. Expression profiling of genes involved in starch synthesis in sink and source organs of rice[J]. Journal of Experimental Botany,2005,56(422): 3229-3244.
    [174]Kingsnorth C S, Kingsnorth A J, Lyons P A, et al. Real-time analysis of Polymyxa betae GST expression in infected sugar beet[J]. Molecular Plant Pathology,2003,4(3):171-176.
    [175]吴茂森,田峰,齐放军,等.水稻与白叶枯病菌互作的基因表达谱分析与差异性表达基因的识别[J].中国农业科学,2007,40(2):277-282.
    [176]Bohm J, Hahn A, Schubert R, et al. Real-time quantitative PCR:DNA determination in isolated spores of the mycorrhizal fungus Glomus mosseae and monitoring of Phytophora infestans and Phytophthora citricola in their respective host plants[J]. Journal of Phytopathology-Phytopathologische Zeitschrift,1999,147(7-8):409-416.
    [177]Lees A K, Cullen D W, Sullivan L, et al. Development of conventional and quantitative real-time PCR assays for the detection and identification of Rhizoctonia solani AG-3 in potato and soil[J]. Plant Pathology,2002,51(3):293-302.
    [178]Qi M, Yang Y N. Quantification of Magnaporthe grisea during infection of rice plants using real-time polymerase chain reaction and northern blot/phosphoimaging analyses[J]. Phytopathology,2002,92(8):870-876.
    [179]Mayer Z, Bagnara A, Farber P, et al. Quantification of the copy number of nor-1, a gene of the aflatoxin biosynthetic pathway by real-time PCR, and its correlation to the cfu of Aspergillus flavus in foods[J]. International Journal of Food Microbiology,2003,82(2):143-151.
    [1801 Schnerr H, Niessen L, Vogel R F. Real time detection of the tri5 gene in Fusarium species by LightCycler (TM)-PCR using SYBR((R))Green Ⅰ for continuous fluorescence monitoring[J]. International Journal of Food Microbiology,2001,71(1):53-61.
    [181]Schweigkofler W, O'Donnell K, Garbelotto M. Detection and quantification of airborne conidia of Fusarium circinatum, the causal agent of pine pitch canker, from two California sites by using a real-time PCR approach combined with a simple spore trapping method[J]. Applied and Environmental Microbiology,2004,70(6):3512-3520.
    [182]Gachon C, Saindrenan P. Real-time PCR monitoring of fungal development in Arabidopsis thaliana infected by Alternaria brassicicola and Botrytis cinerea[J]. Plant Physiology and Biochemistry,2004,42(5):367-371.
    [183]Brouwer M, Lievens B, Van Hemelrijck W, et al. Quantification of disease progression of several microbial pathogens on Arabidopsis thaliana using real-time fluorescence PCR[J]. Ferns Microbiology Letters,2003,228(2):241-248.
    [184]吴静,吴茂森,何晨阳.实时定量PCR的原理及其在植物病理学研究中的应用[J].植物保护,2007,33(6):123-128.
    [185]Roberts C A, Dietzgen R G, Heelan L A, et al. Real-time RT-PCR fluorescent detection of tomato spotted wilt virus[J]. Journal of Virological Methods,2000,88(1):1-8.
    [186]Eun A J C, Seoh M L, Wong S M. Simultaneous quantitation of two orchid viruses by the TaqMan (R) real-time RT-PCR[J]. Journal of Virological Methods,2000,87(1-2):151-160.
    [187]Gupta P K, Balyan H S, Sharma P C, et al. Microsatellite in plants:a new class of molecula(?) markers[J]. Current Science,1996,70:45-54.
    [188]Tautz D, Renz M. Simple sequences are ubiquitous repetitive components of eukaryoti(?) genomes[J]. Nucleic Acids Research,1984,12:4127-4138.
    [189]Miranda L M, Murphy J P, Marshall D, et al. Pm34:a new powdery mildew resistance gene transferred from Aegilops tauschii Coss. to common wheat (Triticum aestivum L.)[J]. Theoretical and Applied Genetics,2006,113(8):1497-1504.
    [190]Miranda L M, Murphy J P, Marshall D, et al. Chromosomal location of Pm35, a novel Aegilops tauschii derived powdery mildew resistance gene introgressed into common wheat (Triticurr aestivum L.)[J]. Theoretical and Applied Genetics,2007,114(8):1451-1456.
    [191]Xie C J, Ni Z F, Sun Q X, et al. Molecular tagging of a major powdery mildew resistance gene MIG in wheat derived from wild Emmer by using microsatellite marker (in Chinese)[J]. Acta Genetica Sinica(遗传学报),2001,28(11):1034-1039.
    [192]Zhu Z D, Zhou R H, Kong X Y, et al. Microsatellite markers linked to 2 powdery mildew resistance genes introgressed from Triticum carthlicum accession PS5 into common wheat[J]. Genome,2005,48(4):585-590.
    [193]Perugini L D, Murphy J P, Marshall D, et al. Pm37, a new broadly effective powdery mildew resistance gene from Triticum timopheevii[J]. Theoretical and Applied Genetics,2008,116(3): 417-425.
    [194]Wang X F, Zhang Z S, Liu H Y, et al. Evaluation of resistance and slow-mildewing of some wheat varieties on Henan Province[J]. Acta Agriculturae Universitatis Henanensis(河南农业大学学报),1996,30(2):160-163.
    [195]Xu H X. Development of molecular markers linked to five genes for the powdery mildew resistance in wheat (in Chinese)[D].河南大学硕士论文,2004.
    [196]盛宝钦,段霞瑜,周益林.栽培防病措施对防治小麦白粉病的重要作用[J].植物保护学报,1998,25(3):218-222.
    [197]Rogers S O, Bendich A J. Extraction of DNA from milligram amounts of fresh, herbarium and mummified plant tissues[J]. Plant Molecular Biology,1985,5:69-76.
    [198]Micheli M R, Bova R, Pascale E, et al. Reproducible DNA-Fingerprinting with the Random Amplified Polymorphic DNA (Rapd) Method[J]. Nucleic Acids Research,1994,22(10): 1921-1922.
    [199]Lander E S, Green P, Abrahamson J, et al. MAPMAKER:An interactive computer package for constructing primary genetic linkage maps of experimental and natural populations (vol 1 pg 174, 1987)[J]. Genomics,2009,93(4):398-398.
    [200]Kosambi D D. The estimation of map distances from recombination values[J]. Ann. Eugen.,1994, 12:172-175.
    [201]Nematollahi G, Mohler V, Wenzel G, et al. Microsatellite mapping of powdery mildew resistance allele Pm5d from common wheat line IGV1-455[J]. Euphytica,2008,159(3):307-313.
    [202]Han J, Lee H, Nguyen N Y, et al. Novel multiple 5'-amino-modified primer for DNA microarrays[J]. Genomics,2005,86(2):252-258.
    [203]Veerasingham S J, Sellers K W, Raizada M K. Functional genomics as an emerging strategy for the investigation of central mechanisms in experimental hypertension[J]. Progress in Biophysics& Molecular Biology,2004,84(2-3):107-123.
    [204]Bevan M, Bancroft I, Bent E, et al. Analysis of 1.9 Mb of contiguous sequence from chromosome 4 of Arabidopsis thaliana[J]. Nature,1998,391(6666):485-488.
    [205]Mauch-Mani B, Slusarenko A J. Production of salicylic acid precursors is a major function of phenylalanine ammonia-lyase in the resistance of arabidopsis to Peronospora parasitica[J]. Plant Cell,1996,8(2):203-212.
    [206]Razem F A, El-Kereamy A, Abrams S R, et al. The RNA-binding protein FCA is an abscisic acid receptor[J]. Nature,2006,439(7074):290-294.
    [207]Mohr P G, Cahill D M. Suppression by ABA of salicylic acid and lignin accumulation and the expression of multiple genes, in Arabidopsis infected with Pseudomonas syringae pv. tomato[J]. Functional& Integrative Genomics,2007,7(3):181-191.
    [208]Li A L, Wang M L, Zhou R H, et al. Comparative analysis of early H2O2 accumulation in compatible and incompatible wheat-powdery mildew interactions[J]. Plant Pathology,2005, 54(3):308-316.
    [209]Luo M, Kong X-Y, Huo N-X, et al. ESTs analysis of resistance to powdery mildew in wheat a primary infected stage[J]. Acta Genet Sin,2002,29(6):525-530 (in Chinese with English abstract)
    [210]Cao A-Z, Li Q, Chen Y-P, et al. Screening resistance-related genes to powdery mildew in Haynaldia villosa using barley genechip and studying its mechanism of resistance[J]. Acta Agron Sin,2006,32(10):1444-1452 (in Chinese with English abstract).
    [211]Sang J R, Zhang A, Lin F, et al. Cross-talk between calcium-calmodulin and nitric oxide in abscisic acid signaling in leaves of maize plants[J]. Cell Research,2008,18(5):577-588.
    [212]Coursol S, Fan L M, Le Stunff H, et al. Sphingolipid signalling in Arabidopsis guard cells involves heterotrimeric G proteins[J]. Nature,2003,423(6940):651-654.
    [213]Zheng C, Wan L, Cao D, et al. The model's establishment of the single cell (HepG2) clones over expressed ARL-1 gene[J]. Liver Disease Journal of Zhonghua,2002,10(6):465-466.
    [214]Alosi M C, Melroy D L, Park R B. The Regulation of Gelation of Phloem Exudate from Cucurbita Fruit by Dilution, Glutathione, and Glutathione Reductase[J]. Plant Physiology,1988,86: 1089-1094
    [215]Walz C, Juenger M, Schad M, et al. Evidence for the presence and activity of a complete antioxidant defence system in mature sieve tubes[J]. Plant Journal,2002,31(2):189-197.
    [216]Machida Y, Nishihama R, Kitakura S. Progress in studies of plant homologs of mitogen-activated protein (MAP) kinase and potential upstream components in kinase cascades[J]. Critical Reviews in Plant Sciences,1997,16(6):481-496.
    [217]Olson P D, Varner J E. Hydrogen-Peroxide and Lignification[J]. Plant Journal,1993,4(5): 887-892.
    [218]黄俊斌,周发松.H2O2参与大麦对白粉菌的防卫反应[J].华中农业大学学报,1998,17(5):435-441.
    [219]Croft K P C, Juttner F, Slusarenko A J. Volatile Products of the Lipoxygenase Pathway Evolved from Phaseolus-Vulgaris (L) Leaves Inoculated with Pseudomonas-Syringae Pv-Phaseolicola[J]. Plant Physiology,1993,101(1):13-24.
    [220]Levine A, Tenhaken R, Dixon R, et al. H2O2:from the Oxidative Burst Orchestrates the Plant Hypersensitive Disease Resistance Response[J]. Cell,1994,79(4):583-593.
    [221]Selitrennikoff C P. Antifungal proteins[J]. Applied and Environmental Microbiology,2001,67(7): 2883-2894.
    [222]Klarzynski O, Plesse B, Joubert J M, et al. Linear beta-1,3 glucans are elicitors of defense responses in tobacco[J]. Plant Physiology,2000,124(3):1027-1037.
    [223]Frye C A, Tang D Z, Innes R W. Negative regulation of defense responses in plants by a conserved MAPKK kinase[J]. Proceedings of the National Academy of Sciences of the United States of America,2001,98(1):373-378.
    [224]古瑜,贾吉温,孙德岭,等.植物抗病机制的研究进展[J].天津农业科学,2008,14(4):45-48.
    [225]彭琦,阮颖,张源,等.小麦Germin蛋白的研究现状[J].作物研究,2006,5:568-571.
    [226]Dunwell J M. Cupins:A new superfamily of functionally diverse proteins that include germins and plant storage proteins[J]. Biotechnology& Genetic Engineering Reviews, Vol.15,1998,15:1-32.
    [227]Dunwell J M, Khuri S, Gane P J. Microbial relatives of the seed storage proteins of higher plants: Conservation of structure and diversification of function during evolution of the cupin superfamily[J]. Microbiology and Molecular Biology Reviews,2000,64(1):153-+.
    [228]Schweizer P, Christoffel A, Dudler R. Transient expression of members of the germin-like gene family in epidermal cells of wheat confers disease resistance[J]. Plant Journal,1999,20(5): 540-552.
    [229]陈军营,孙佩,王德勤,等.一种改良的克隆小麦GLP3基因启动子的TAIL-PCR技术[J].植物生理学通讯,2007,43(4):754-758.
    [230]Liu G S, Greenshields D L, Sammynaiken R, et al. Targeted alterations in iron homeostasis underlie plant defense responses[J]. Journal of Cell Science,2007,120(4):596-605.
    [231]Gill R W, Sanseau P. Rapid in silico cloning of genes using expressed sequence tags (ESTs)[J]. Biotechnology annual review,2000,5:25-44.
    [232]Kozak M. An analysis of 5'-coding region sequence from 699 vertebrate messenger RNAs[J]. Nucleicides Acids Research,1987,15:8125-8148.
    [233]张德礼,孙晓静,凌伦奖,等.人类SR蛋白超家族新成员-SFRS12(SRrp508)的基因克隆和特性分析[J].遗传学报,2002,29(5):377-383.
    [234]Han W L, Ding P G, XuMX, et al. Identification of eight genes encoding chemokine-like factor superfamily members 1-8 (CKLFSF1-8) by in silico cloning and experimental validation[J]. Genomics,2003,81(6):609-617.
    [235]吴华玲,倪中福,姚颖垠,等.15个普通小麦WRKY基因的克隆与表达分析[J].自然科学进展,2008,18(4):378-388.
    [236]黄新杰,郭军,屈志鹏,等.小麦TaLSD1锌指蛋白基因的电子克隆及序列分析[J].西北植物学报,2007,27(11):2147-2152.
    [237]张毅,张岗,董艳玲,等.条锈菌诱导的小麦MBF1转录辅激活因子基因的克隆及其特征分析[J].作物学报,2009,35(1):11-17.
    [238]Woo E J, Dunwell J, Goodenough P W. Germin is a manganese containing homohexamer with oxalate oxidase and superocide dimutase activities[J]. Natural Structural Biology,2000,7: 1036-1040.
    [239]Bernier F, Berna A. Germins and germin-like proteins:Plant do-all proteins. But what do they do exactly?[J]. Plant Physiology and Biochemistry,2001,39(7-8):545-554.
    [240]Wei Y D, Zhang Z G, Andersen C H, et al. An epidermis/papilla-specific oxalate oxidase-like protein in the defence response of barley attacked by the powdery mildew fungus[J]. Plant Molecular Biology,1998,36(1):101-112.
    [241]Lane B G, Bernier F, Dratewka-Kos E, et al. Homologies between members of the germin gene family in hexaploid wheat and similarities between these wheat germins and certain Physarum spherulins[J]. Journal of Biological Chemistry,1991,266:10461-10469.
    [242]冯洁,Makoto T.水稻抗稻瘟病防御系统中草酸氧化酶的鉴定[J].农业生物技术学报,2004,12(3):312-315.
    [243]Vallelian-Bindschedler L, Mosinger E, Metraux J P, et al. Structure, expression and localization of a germin-like protein in barley (Hordeum vulgare L.) that is insolubilized in stressed leaves[J]. Plant Molecular Biology,1998,37(2):297-308.
    [244]曹爱忠,王秀娥,王苏玲,等.受白粉菌诱导表达的簇毛麦草酸氧化酶基因(Hv-OxOLP)的克隆和分析[J].麦类作物学报,2006,26(5):27-32.
    [245]黄俊斌,周发松,Thordal-Christensen H,等.草酸氧化酶基因在受白粉菌侵染大麦叶片中的诱导表达[J].华中农业大学学报,1998,17(4):324-330.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700