用户名: 密码: 验证码:
基于STL文件的曲面网格优化与代数多层网格法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
三维网格生成在科学与工程计算、逆向工程和几何造型等众多领域有着广泛的应用。曲面网格的质量是影响四面体网格质量的重要因素,为获得高质量的曲面网格一般需要进行网格优化处理。与平面网格优化不同,曲面网格优化更为复杂,它通常包括曲面网格特征线提取、曲面网格重分、曲面Delaunay和CVT网格的生成与优化等。现在虽然有许多相关的研究工作,但是还不太成熟,如还没有一种统一、有效的特征线提取方法;对于一般曲面网格,还没有一种普适的曲面Delaunay和CVT网格定义以及相应的网格生成算法等等。因此,如何利用基于STL文件的曲面网格特性,给出更有效、更健壮的特征线提取方法以及曲面Delaunay和CVT网格的生成算法是一项值得关注的研究工作。另外,曲面网格的质量还会影响四面体网格生成算法的复杂性,如一般需要进行边界还原等。因此,如何给出一种边界自动还原的四面体网格生成算法也是一项重要的研究工作。
     偏微分方程数值求解在科学工程计算与数值仿真中起着十分重要的作用,如何快速求解偏微分方程离散化系统是其中的瓶颈问题之一。代数多层网格(AMG)法是目前国际上求解偏微分方程离散化系统最有效的方法之一。四面体网格的质量与AMG法的效率密切相关,因此,针对四面体网格下的二阶椭圆边值问题离散化系统,设计高效AMG法(或基于AMG预条件子的Krylov子空间迭代法)是一项有意义的工作。
     本文针对上述问题进行了深入研究,获得了一批算法和理论结果,文章主要由以下四个部分组成:
     第一部分,比较系统地研究了基于STL文件的曲面网格特征线提取方法。首先,针对STL文件给出一种新的曲面网格快速重建算法;其次,针对由基本几何曲面所构成的组合曲面网格,提出一种建立基本几何曲面网格二面角阈值数据库的思想,给出了一种自适应获取特征线阈值的组合曲面网格特征线提取算法;然后,针对一般曲面网格,在基于特征线阈值的基础上,结合G1插值法、边长比值法、断点连接法,以及利用曲面网格分割的思想,给出了若干特征线提取算法。数值实验表明了新算法的有效性和健壮性,并且能获得更丰富的特征信息。
     第二部分,首先,针对已确定特征线的基于STL文件的曲面网格进行网格重分处理;然后,利用重分网格的特性,引入了新的更为简洁的曲面Delaunay和CVT网格的定义,并给出了相应的生成算法。数值实验表明,我们的新算法能够生成高质量的曲面CVT网格。
     第三部分,首先,利用曲面CVT网格,并结合已有的四面体网格生成技术,给出一种边界自动还原的四面体网格生成算法;接着,给出了一种四面体网格的并行生成算法,从而提高了生成四面体网格的效率。
     第四部分,首先,通过考察不同质量的四面体网格对AMG-PCG法的影响,发现新的高质量四面体网格能大幅度提高求解二阶椭圆边值问题的线性有限元方程的AMG-PCG法效率;接着,针对高次有限元方程,设计了一种基于辅助变分问题的新的并行AMG预条件子,并从理论上严格证明了该预条件子的条件数的一致有界性。数值实验验证了理论结果的正确性及相应预条件共轭梯度(PCG)法的高效性和健壮性。
Three-dimensional grid generation have been widely used in computing science and engineering, reverse engineering and geometric sculpts, and many other fields. The quality of surface mesh is an important factor for high-quality tetrahe-dral grid generation. In order to obtain high-quality surface mesh, usually it need mesh optimization. Different to the plane mesh optimization, the optimization of surface mesh is more complex. It usually includes feature line extraction for surface mesh, surface remeshing, the Delaunay and Centroidal Voronoi Tessellation (CVT) surface mesh generation and optimization, and so on. Although there are many related research works, there are not satisfied. For example, there is no unified and effective feature line extraction method; no universal definition of Delaunay and CVT surface mesh in general case, and its corresponding surface mesh generation algorithm, and so on. Therefore, how to make use of the surface mesh's characteristic based on STL file, and give a more effective and robust methods for feature line extraction, as well as the Delaunay and CVT surface mesh generation algorithms is an interesting and important in our research. In addition, the qualities of surface mesh also affect the complexity of tetrahedral grid generation algorithms, such as it needs boundary recovery, and so on. Therefore, how to give a tetrahedral grid generation algorithm for boundary recovering automatically is also an important research.
     Solving partial differential equations (PDEs) by numerical methods plays an important role in science and engineering computing, and numerical simulation. How to quickly solve the discretization system of PDEs is one of the bottlenecks. Algebraic multigrid (AMG) method is one of the most effective methods for solving the discretization system of PDEs in the world. The quality of tetrahedral grid is closely related to the efficiency of the AMG method. So, for the discretization system of the second-order elliptic boundary value problems under the tetrahedral grids, how to design a high-performance AMG method (or a Krylov subspace iteration method based on the preconditioner of AMG method) is a significant work.
     In this thesis, the above-mentioned issues have been deeply researched; we obtained a number of algorithms and theoretical results. This thesis is mainly composed of the following four parts:
     Part I, we systematically studied the feature line extraction methods for the surface mesh based on STL files. First, we gave a new surface mesh rapid reconstruction algorithm for STL file. Second, for the composite surface mesh which is composed of some basic geometric surfaces, we proposed an idea of establishing a basic geometric surface mesh dihedral angle threshold database, and gave a feature line extraction method for the composite surface mesh in which the dihedral angle obtained adaptively. Last, for the surface mesh in general case, we proposed many methods of feature line extraction based on the feature line threshold, combining with the methods of G1 interpolation, the ratio of the side of triangle, connecting the break point, as well as making use of the surface mesh segmentation. Numerical experiments show that the new methods are effective and robust, and we can get more information on the features.
     Part II, first, for the surface mesh based on STL file in which its feature lines have been extracted, we did the remeshing. Second, according to the characteristic of the remeshed surface mesh, we introduced a new and laconic definition of surface Delaunay and CVT mesh, and gave its corresponding surface mesh generation algorithm. Numerical experiments show that our new algorithm can generate high-quality surface CVT mesh.
     Part III, making use of the surface CVT mesh, and combining with the tetrahedral mesh generation technologies, we gave a new tetrahedral mesh generation algorithm in which the boundary recovered automatically. Then, we gave a parallel algorithm of tetrahedral grid generation, which can enhance the efficiency of the tetrahedral grids generation.
     Part IV, according to study the AMG-PCG method for the different quality of tetrahedral grids, we found that the new high-quality tetrahedral grid can be substantial increase the AMG-PCG method's efficiency in solving linear finite element equations for second-order elliptic boundary value problems. Second, for the high-order finite element equations, a new parallel AMG preconditioner based on the auxiliary variational problems was proposed. We theoretically proved the uniform bounded property for the condition numbers of the proposed preconditioner. Various numerical experiments support our theoretical results; show the high efficiency and robustness of the resulting preconditioned conjugate gradient (PCG) method.
引文
[1]Nagy M Szilvasi,Matyasi G.Analysis of STL files.Mathematical and Computer Modeling,2003,38(7):945-960.
    [2]Hayong S,Park J.C,Choi B.K,et al.Efficient topology construction from triangle soup.//Proceedings of the Geometric Modeling and Processing,Beijin,2004,359-364.
    [3]McMains S,Hellerstein Joseph M,Sequin Carlo H.Out-of-core build of a topological data structure from polygon soup.//Porceedings of the 6th ACM Symposium on Solid Modeling and Applications,Ann Arbor,Michigan,United States,2001,171-182.
    [4]张必强,刑渊,阮雪榆.面向网格简化的STL拓扑信息快速重建算法.上海交通大学学报,2004,38(1):39-42.
    [5]戴宁,廖文和,陈春美.STL数据快速拓扑重建关键算法.计算机辅助设计与图形学学报,2005,17(11):2447-2452.
    [6]王坚,周来水,张维中.基于三角片拼合的STL网格模型重建算法.计算机辅助设计与图形学学报,2006,18(11):1758-1764.
    [7]Ito Y,Nakahashi K.Direct surface triangulation using stereolithography(STL)data.AIAA Journal 2002,0001-1452,40(3):490-496.
    [8]Ito Y,Nakahashi K.Surface triangulation for polygonal models based on CAD data.International Journal for Numerical Methods in Fluids,2002,39:75-96.
    [9]Stereolithography Interface Specification.3D Systems,Inc.:CA,1989.
    [10]C.Bechet,J.C.Cuilliere,F.Trochu,Generation of a finite element mesh from stereolithography(STL) files.Computer Aided Design,2002,34:1-17.
    [11]P.J.Frey,About surface remeshing,Proceedings of 9th International Meshing Roundtable,New Orleans,Louisiana,USA,2000,123-156.
    [12]Cohen-Steiner D,Morvan J.Restricted delaunay triangulations and normal cycle.19th Annual ACM Symposium on Computational Geometry,2003,237-246.
    [13]Meyer M,Desbrun M,SchrSder P,Barr H.Discrete differential-geometry operators for triangulated 2-manifolds.International workshop on visualization and mathematics,Berlin,Germany,2002.
    [14] Taubin G. Estimating the tensor of curvature of a surface from a polyhedral approximation. Fifth international conference on computer vision, 1995, 902-907.
    
    [15] B.Hamann, Curvature approximation for triangulated surfaces, in Geometric Modelling, Computing suppl.8, Farm, Hagen, Noltmeier and Knodel eds., Springer, NY, 1993, 139-153.
    
    [16] P.J.Frey and H.Borouchaki, Surface mesh quality evaluation, Int. J. Num. Meth. Engng., 1999, 45:101-118.
    
    [17] Desheng Wang, Oubay Hassan, Kenneth Morgan and Nigel Weatherill, Enhanced remeshing from STL files with applications to surface grid generation.Commun. Numer. Meth. Engng, 2007, 23(3):227-239.
    
    [18] D.J.Walton and D.S.Meek, A triangular G1 patch from boundary curves, Comp. Aided Design, 1996, 28:113-123.
    
    [19] N. P. Weatherill and M. J. Marchant, O. Hassan, D. L. Marcum, Grid Adaption Using a Distribution of Sources Applied to Inviscid Compressible Flow Simula- tions.International Journal for Numerical Methods in Fluids, 1994, 19:739-764.
    
    [20] T.J.Baker, Identification and preservation of surface features, Proc.13th International Meshing Roundtable, Williamsburg, VA, Sandia National Laboratories, SAND # 2004-3765c, September 19-22, 2004, 299-310.
    
    [21] J.Canny, A computational approach to edge detection, IEEE Trans. Pattern Analysis and Machine Intelligence, 1986, PAMI-8(6):679-696, .
    
    [22] M.Garland and P.S.Heckbert, Surface simplification using quadric error metrics, Proc. SIGGRAPH 97, 1997, 209-216.
    
    [23] Bing-Yu Chen, Tomoyuki Nishita, An Efficient mesh simplification method with feature detection for unstructured meshes and web graphics, Proc of the Computer Graphics International,IEEE, 2003.
    
    [24] Y.Lee, S.Park, Y.Jun, W.C.Choi, A robust approach to edge detection of scanned point data, Int. J. Adv. Manuf. Technol., 2004, 23:263-271.
    
    [25] Yong Wu, Yuanjun He and Hongming Cai, QEM-based Mesh Simplification with Global Geometry Features Preserved.
    
    [26] M.Nomura and N.Hamada, Feature edge extraction from 3D triangular meshes using a thinning algorithm, 2001.
    [27]Stean Gumhold,Xinlong Wang,Rob Macleod,Feature extraction from point clouds.
    [28]H.Borouchald,P.J.Fery,Simplification of Surface Mesh Using Hausdorff Envelope.Computer methods in applied mechanics and engineering.2005.
    [29]Guo Yan-wen,Peng Qun-sheng,HU Guo-fei,Wang Jin,Smooth Feature Line Detection for Meshes.Journal of Zhejiang University SCIENCE,2005,6A(5):460-468.
    [30]Frederic Cazals,Jean-Charles Faugere,Marc Pouget,Fabrice Rouillier,The Implicit Structure of Ridges of a Smooth Parametric Surface.Computer Aided Geometric Design,2006,23:582-598.
    [31]I.Guskov,W.Sweldens and P.Schroider,Multiresolution signal processing for meshes,In SIGGRAPH 99,Proc.Computer Graphics Proceedings,Annual Conference Series.ACM SIGGRAPH,ACM Press,Aug.1999.
    [32]A.Hubeli,K.Meyer and M.Gross,Mesh edge detection,Technical Report 351,ETH Zurich,Institute of Computer Systems,Dec.2000.
    [33]A.Hubeli,M.Gross,Multiresolution feature extraction from unstructured meshes,Proc of IEEE Visualization,2001,287-294.
    [34]X.Jiao and M.T.Heath,Feature detection for surface meshes,Proc.Sth International Conference on Numerical Grid Generation,Honolulu,HI,June 2002.
    [35]刘胜兰,周儒荣,张丽艳.三角网格模型的特征线提取.计算机辅助设计与图形学学报,2003,15(4):444-448.
    [36]X.Jiao and P.J.Alexander,Parallel feature-preserving mesh smoothing,O.Gervasi et al.(Eds.),ICCSA 2005,LNCS 3483,2005,1180-1189.
    [37]H.Borouchaki,J.Villard,P.Laug,P.L.George,Surface Mesh Enhancement with Geometric Singularities Identification.Computer methods in applied mechanics and engineering,2005.
    [38]Serra J.Image analysis and methematical morphology,.London:Acdemic Press,1982.
    [39]R.Hoffman,A.K.Jain,Segmentation and classification of range images.IEEE Trans Pattern Anal Mach Intell,1987,9(5):608-620.
    [40]Schettini R.A segmentation algorithm for color images.Pattern Recogn Lett 1993,14:499-506.
    [41]Saarinen K.Color image segmentation by a watershed algorithm and region adjacency graph processing.IEEE Int Conf Image Process,Austin,TX,USA;1994,1021-1024.
    [42]Sapidis NS,Besl PJ.Direct construction of polynomial surfaces from dense range images through region growing.ACM Trans Graph,1995,14(2):171-200.
    [43]Leonardis A,Jaklie A,Solina F.Superquadrics for segmenting and modeling range data.IEEE Trans Pattern Anal Mach Intell,1997,19(11):1289-1295.
    [44]Garland M,Willmott A,Heckbert P.Hierarchical face clustering on polygonal surfaces.ACM Symp Interactive 3D Graph,2001,49-58.
    [45]Benko P,Varady T.Segmentation methods for smooth point regions of conventional engineering objects.Computer-Aided Design,2004,36(6):511-523.
    [46]Chaine R,Bouakaz S.Segmentation of 3-D surface trace points,using a hierarchical tree-based diffusion scheme.Fourth Asian conference on computer vision ACCV2000,Taiwan,2000,2:995-1002.
    [47]Chevalier L,jaillet F,baskurt A.A segmentation superquadric modeling of 3D objects.WSCG,Plzen-Bory,Czech Republic,2003,11(2):232-240.
    [48]Lavoue G,Dupont F,Baskurt A.Constant curvature region decomposition of 3Dmeshes by a mixed approach vertex-triangle.J WSCG 2004,12(2):245-252.
    [49]Lavoue G,Dupont F,Baskurt A.A new CAD mesh segmentation method,based on curvature tensor analysis.Computer-Aided Design,2005,37:975-987.
    [50]Mangan A,Whitaker R.Partitioning 3D surface meshes using watershed segmentation.IEEE Visual Computer Graph 1999,5(4):308-321.
    [51]Sun Y,Page D,Paik J,Koschan A,Abidi M.Triangle mesh-based edge detection and its application to surface segmentation and adaptive surface smoothing.IEEE Int Conf Image Process,NY,USA 2002,3:825-828.
    [52]Razdan A,Bae M.A hybrid approach to featue segmentation of triangle meshes.Computer-Aided Des,2003,35(9):783-789.
    [53]Zhang Y,Paik J,Koschan A,Abidi M,Gorsich D.A simple and efficient algorithm for part decomposition of 3D triangulated models based on curvature analysis.IEEE Int Conf Image Process,Rochester,NY,USA,2002,3:273-276.
    [54]Li I,Toon T,Tan T,Huang Z.Decomposing polygon meshes for interactive applications.Symp Interactive 3D 2001,35-42.
    [55]Katz S,Tal A.Hierarchical mesh decomposition using fuzzy clustering and cuts.ACM Trans Graph 2003,22(3):954-961.
    [56]方惠兰,王国瑾.三角网格曲面上离散曲率估算方法的比较与分析.计算机辅助设计与图形学学报,2005,17(11):2500-2507.
    [57]Schneider R,Kobbelt L.Gemetric fairing of irregular meshes for free-form surface dedign.Computer-Aided Geometric Design,2001,18(4):359-379.
    [58]Taubin G,Kobbelt L.Geometric signal processing on large polygonal meshes.In:Computer Graphics Proceedings,Annual Conference Series,ACM SIGGRAPH,Los Angeles,California,2001,Course 17.
    [59]Moreton H P,Sequin C H.Functional optimization for fair surface design.IN:Computer Graphics Proceedings,Annual Conference Series,ACM SIGGRAPH,Chicago,Illinois,1992,167-176.
    [60]Mayer U F.Numerical solutions for the surface diffusion flow in three space dimensions,http://www.math.utah.edu/mayer/math/Mayer07.pdf,2001.[61]Desbrun M,Meyer M,Schroder P,et al.Implicit fairing of irregular meshes using diffusion and curvature flow.In:Computer Graphics Proceedings,Annual Conference Series,ACM SIGGRAPH,LOS Angeles,California,1999,317-324.
    [62]Dyn N,Hormann K,Kim S J,et al.Optimizing 3D triangulations using discrete curvature analysis.In:Applied Mathematics Series Archive Mathematical Methods for Curves and Surfaces,Oslo,2000,135-146.
    [63]Gersho A,Gray R.Vector quantization and signal compression.Boston:Kluwer,1992.
    [64]P.J.Frey and H.Borouchaki,Geometric surface mesh optimization,Computing and Visualization in Science,1998,1:113-121.
    [65]R.Lohner,Regridding surface triangulation,Journal of Computational Physics,1996,126:1-10.
    [66]V.Suzazhsky,C.Gotsman,Explicit surface remeshing.Proceedings of the Eurographics Symposium on Geometry Processing,2003,17-28.
    [67]K.Hormann,U.Labsik,G.Greinor,Remeshing triangulated surfaces with optimal parameterizations.Computer Aided Design,2001,33:779-788.
    [68]A.Rassineux,P.Villon,J.M.Saviguat,O.Stab,Surface remeshing by local Hermite diffuse interpolation.International Journal for Numerical Methods in Engineering,2000,49:31-49.
    [69]P.J.Frey,Generation and adaptation of computational surface meshes from discrete anatomical data.International Journal for Numerical Methods in Engineering,2004,60:1047-1049.
    [70]H.L.De Cougny,Refinement and coarsening of surface meshes.Engineering with Computers,1998,14:214-222.
    [71]江军,舒适,黄云清,陈龙.求解二维三温辐射热传导方程组的一种网格自适应方法.计算物理,2007,24(1).
    [72]Surazhsky V.,Alliez P.,Gotsman C.Isotropic remeshing of surfaces:a local parameterization approach.In Proc.12th Internaltional Meshing Rountable,2003.
    [73]Qiang Du,Vance Faber,Max Gunzburger.Centroidal Voronoi Tessellations:Applications and Algorithms.SIAM Review 1999,41(4):637-676.
    [74]Qiang Du,Max D.Gunzburger,Lili Ju.Constrained Centroidal Voronoi Tessllations for Surfaces.SIAM J.SCI.COMPUT.2003,24(5):1488-1506.
    [75]P.Alliez,E.Colin de Verdiere,O.Devillers,and M.Isenburg.Isotropic surface remeshing.In Proceedings of Shape Modeling International,2003.
    [76]P.Alliez,M.Meyer,and M.Desbrun.Interactive geometry remeshing.ACM Transactions on Graphics,2002,21(3):347-354.SIGGRAPH conference proceedings.
    [77]Qiang Du,Desheng Wang.Constrained boundary recovery for three dimensional Delaunay triangulations.International Journal for Numerical Methods in Engineering.2004,61:1471-1500.
    [78]Qiang Du,Desheng Wang.Boundary recovery for three dimensional conforming Delaunay triangulation.Comput.Methods Appl.Mech.Engrg.2004,193:2547-2563.
    [79]王德生,组合网格法和非结构化网格自动生成,中国科学院博士学位研究生学位论文,2001.
    [80]Qiang Du,Tak-Win Wong.Numerical studies of MacQueen's k-means algorithm for cumputing the centroidal voronoi tessellations.Computers and Mathematics with Applications.2002,44:511-523.
    [81]J.C.Cavendish,Automatic Triangulation of Arbitrary Planar Domains for the Finite Element Method,Int.J.Numer.Methods Engrg.,1974,8:679-696.
    [82]P.L.George,E.Seveno,The Advancing-front Mesh Generation Method Revisited,Int.J.Numer.Methods Engrg.,1994,37:3605-3619.
    [83]W.J.Schroeder,M.s.Shepard,A Combined Octree/Delaunay Method for Fully Automatic 3-D Mesh Generation,Int.J.Numer.Methods,Engrg.1990,29:37-55.
    [84]B.Joe,R.B.Simpson,Triangular Meshes for Regions of Complicated Shape,Int.J.Numer.Methods Engrg.,1986,23:751-778.
    [85]D.F.Watson,Computing the N-Dimensional Delaunay Tessellation with Application to Voronoi polytopes,Comput.J.,1981,24:167-172.
    [86]B.Joe,Delaunay Versus Max-min Solid Angle Triangulation for Three-Dimensional Mesh Generation,Int.J.Numer.Methods Engrg.,1991,31:987-997.
    [87]H.Borouchaki,P.L.George,Aspects of 2-D Delauany Mesh Generation,Int.J.Numer.Methods Engrg.,1997,40:1957-1975.
    [88]Qiang Du,Desheng Wang.Tetrahedral mesh generation and optimization based on centroidal Voronoi tessellations.Int.J.Numer.Meth.Engng 2003,56:1355-1373.
    [89]Desheng Wang,Qiang Du.Mesh optimization based on the centroidal voronoi tessellation.International Journal of Numerical Analysis and Modeling.2005,Vol.2,pp.100-113.
    [90]Qiang Du and Desheng Wang.Anisotropic Centroidal Voronoi Tessellations and their Applications.SIAM.Journal on Scientific Computing.2005,26(3):737-761.
    [91]Qiang Du,Zhaohui Huang,Desheng Wang.Mesh and solver co-adaptation in finite element methods for anisotropic problems.Numerical Methods on Partial Differential Equations,2005,21(4):859-874.
    [92]R.Lohner and P.Parikh,Generation of three-dimensional unstructured grids by the advancing-front mehtod,Int.J.Numer.Methods Engrg.,1988,8:1135-1149.
    [93]S.H.Lo,Volume discretization into tetrahedra-I,Verification and orientation of boundary surfaces,Comput.Struct.,1991,39:493-500.
    [94]S.H.Lo,Volume discretization into tetrahedra-II,3D triangulation by advancing front approach,Comput.Struct.,1991,39:501-511.
    [95]W.J.Schroeder and M.S.Shepard,Geometry-based Fully Automatic Mesh Generation and the Delaunay Triangulation,Int.J.Numer.Meth.Engng.,1988,26:2503-2515.
    [96]P.Moller and P.Hansbo,On advancing front mesh generation in three dimensions,Int.J.Numer.Methods Engrg.,1995,38:3551-3569.
    [97]Y.X.Xiao,S.Shu(Correponding author),P.Zhang,M.Tan.An algebraic multigrid method for isotropic linear elasticity problems on anisotropic meshes,Communications in Numerical Methods in Engineering,2008,DOI:10.1002/cnm.ll40,Published Online:Jul 10 2008.
    [98]J.Ruge,AMG for higher-order discretizations of second-order elliptic problems,in:Abstracts of the Eleventh Copper Mountain Conference on Multigrid Methods (http:// www.mgnet.org/mgnet/Conferences/CopperMtn03/Talks/ruge.pdf),2003.
    [99]J.J.Heys,T.A.Manteuffel,S.F.Mcormick and L.N.Olson,Algebraic Multigrid (AMG) for Higher-Order Finite Elements,Journal of Computational Physics,2005,204:520-532.
    [100]J.W.Ruge and K.Stiiben,Algebraic multigrid,In S.F.McCormick,editor,Multigrid methods,Frontiers in applied mathematics,pages 73-130,Philadelphia,Pennsylvania,SIAM,1987.
    [101]孙杜杜,舒适,求解三维高次拉格朗日有限元方程的代数多重网格法,计算数学,2005,27:101-112.
    [102]Shi Shu,Sun Dudu and Jinchao Xu,An Algebraic Multigrids for Higher Order Finite Element discretizations,Computing,2006,77:347-377.
    [103]Yunqing Huang,Shi Shu,Xijun Yu,Preconditioning Higher Order Finite Element Systems by Algebraic Multigrid Method of Linear Elements.J.Comp.Math.,2006,24(5):657-664.
    [104]T.F.Chan,J.Xu and L.Zikatanov,An agglomeration multigrid method for unstructured grids,in 10-th international conference on Domain Decomposition methods,vol.218 of Contemporary Mathematics,AMS,1998,67-81.
    [105]J.Mandel,M.Brezina and P.Vanek,Energy optimization of algebraic multigrid bases,Computing,1999,62:205-228.
    [106]J.Xu and L.Zikatanov,On the energy minimizing base for algebraic multigrid methods,Comput.Visual Sci.,2004,7:121-127.
    [107]Y.Saad,Iterative methods for sparse linear systems,Society for Industrial and Applied Mathematics,Philadelphia,PA,second edition,2003.
    [108]R.Hiptmair and J.Xu,Nodal auxiliary space preconditioning in H(curl;Ω)spaces,SIAM J Numer Anal,2007,45(6):2483-2509.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700