用户名: 密码: 验证码:
三维网格拓扑感知模型及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着三维模型扫描设备和交互式建模工具的快速发展和广泛使用,以三维模型为表现形式的第四代数字媒体——数字几何,比二维图像具有更丰富的视觉感知细节和内容,更适用于人类的视觉感知和思维模式,在实际应用中被广泛采用。三维数字几何的数据越来越庞大,要完整地呈现真实的虚拟场景和实时地绘制这些三维数字几何实体是一件相当困难的事情。基于视觉感知理论的三维模型处理理论与技术可在保证视觉感知质量的前提下,能较大幅度地提高三维场景的渲染性能,已成为计算机图形学界的研究热点,为三维数字几何处理与应用提供了一种有效的途径。
     视觉感知理论的核心之一是提供可计算的视觉感知模型,主要集中在视觉注意机制、视觉掩蔽效应和拓扑知觉理论三个方面。在三维数字几何处理技术中,主要体现为三维网格显著图、粗糙图和骨架提取。然而,现有研究主要侧重于人类视觉系统的单一视觉感知特性,缺乏通用的视觉感知处理模型和三维模型视觉质量及视觉降质的客观评估方法。具有视觉意义的三维模型分割是视觉感知理论的重要组成部分,基于马尔科夫随机场的分割可较好地对三维模型的视觉先验知识和几何特征进行建模。目前,基于马尔科夫随机场实现具有视觉意义的三维模型分割的研究还处于起步阶段,缺乏易于集成不同特征的基于马尔科夫随机场的三维网格分割通用框架。本文针对上述研究热点中存在的问题展开研究,论文的主要研究工作和创新性如下:
     (1)提出了一种三维网格拓扑感知图通用计算模型——SMTPM(SkeletonModulated Topological Perception Map)。从人类视觉系统的视觉注意机制、视觉掩蔽效应和全局拓扑感知三大特性出发,提出了自底向上的改进的显著度图谱模型以及面向全局拓扑感知特性和运动重要性的基于骨架提取技术的骨架图谱模型。以骨架图谱对三维模型的显著度图谱和粗糙度图谱进行调制,提出了一种通用的视觉感知处理模型。该模型分别在不同的退化情况下可描述HVS的视觉注意机制和视觉掩蔽效应特性。
     (2)基于三维网格拓扑感知图通用计算模型,提出了一种适于三维模型简化过程中的多尺度视觉降质评估算法,并用于简化算法的比较。考虑SMTPM在退化为显著度图谱时的情形,以香农信息熵为工具,提出了面向结构相似性视觉降质的全局感知结构化降质评估方法,实现了多尺度的结构化视觉降质度量和三维模型简化算法的比较。通过构建主观实验评测库和设计主观实验评测协议,实验结果分析表明,该评估算法要优于传统的几何度量方法,并具有多尺度评估的特性,适于多分辨率和多层次细节等应用。
     (3)基于三维网格拓扑感知图通用计算模型,提出了一种视点快速选择方法,定义了用于三维模型视觉质量评价的感觉熵。基于SMTPM模型,提出了视点感知信息量、最佳视点和最不利视点的定义及计算方法,并基于子分模板设计了一种迭代式快速视点选择算法。同时,还基于视点感知信息量定义了球形视点感知信息谱,为所有三维模型的视觉感知信息提供了统一规范的表达方式。基于球形视点感知信息谱,本文定义了感觉熵,为三维模型处理提供了通用的视觉质量度量和理论指导。
     (4)提出了基于马尔科夫随机场的三维模型统一分割框架,并基于骨架图和分割框架实现了具有视觉意义的分割。基于马尔科夫随机场构建了一种通用的三维模型分割框架,并测试了其通用性。马尔科夫随机场聚类是该框架的核心,三维模型顶点等基元的任何特征均可很方便地集成到该框架中。基于该分割框架,将视觉先验知识等引入其中,提出了一种具有视觉意义的三维模型分割方法,实现了具有视觉意义的三维模型分割。实验表明基于该分割框架实现的分割算法在分割效果上要优于其他聚类算法。
With the fast development and widely spread of3D scanner and interactive modelingtools, digital geometry with the expression of3D models, as the fourth generation digitalmedia is widely used and becoming and is more suitable for human visual system(HVS)and thinking pattern for their abundant visually perception details and contents than2Ddigital image. The increasing size of3D digital geometry data make it a indeed difcultthing to perform real-time description and rendering of a virtual scene. The visual per-ception based3D object processing theory and technology can significantly improve therender performance and visual experience of a3D scene under the condition of the samevisual quality and has become a eye-catching topic. They provide an efcient tool for3Ddigital geometry processing and application.
     The kernel of visual perceptual processing theory aims to provide a visual perceptionbased computational model, it mainly focuses on the following three aspects: visual atten-tion, visual masking and topology perception. They are in the form of3D mesh saliencymap, roughness map and sekelton respectively. However, existing research works fail toconsider the overall visual perception characteristics and lack of general visual perceptionmodel with corresponding objective visual quality and degradation evaluation methods.Visual meaningful3D mesh segmentation is an important part of visual perception theory,3D model segmentation based on Markov Random Field(MRF)provides an efcient mod-eling tool for integrating the geometric features with visual prior knowledge. However,visually meaningful based3D mesh segmentation using MRF is in its beginning stage andshort of a MRF based segmentation framework having the capability to integrate diferentfeatures. Aiming at the above issues in reserarch hot topics, the main research works andcontributions of this dissertation are as the following:
     (1) A general visual perception based computational model–SMTPM(Skeleton Mod-ulated Topological Perception Map) is proposed. Considering the attention mechanism,masking mechanism and global topological perception of HVS, an improved bottom-upattention oriented saliency map model is presented. A global topology perception orient-ed and kinematics importance guided skeleton map algorithm is also proposed. Based onmodulation between saliency and roughness maps using the skeleton map, We propose a general visual perception model which can describe the attention and masking mecha-nisms of HVS under diferent degradation status.
     (2) A multi-scale visual degradation evaluation algorithm based on SMTPM is p-resented and used to compare mesh simplification methods. Considering the situationof SMTPMs′degeneration to saliency map, a global perceptual degradation evaluationmethod based on Shannons′information entropy is proposed and used to evaluate the vi-sual degradation during mesh simplification and compare mesh simplification methods.The subjective corpus and subjective experiment protocol are also designed. The statisti-cal analysis results for conducted subjective experiments demonstrate that the subjectiveexperiment protocol is valid and the evaluation method is superior to other geometricbased metrics. The capability of multi-scale visual degradation evaluation is also verified.
     (3) A rapid viewpoint selection method and a definition of perceptual entropy areproposed. Based on SMTPM, this paper presents the definitions for the amount of view-point perceptual information. The best and worst viewpoint selection methods based onsubdivision stencil are also proposed. Additionally, a Spherical Viewpoint PerceptualInformation Map(SVPIM) is defined based on the amount of viewpointsp′erceptual in-formation. SVPIM provids a uniform expression for visual perceptual information ofarbitrary3D objects. The perceptual entropy is first proposed using SVPIM and provide atheortical guide and general visual perception quality evaluation for3D object processing.
     (4) Based on the skeleton map and a unified segmentation framework using MRFpresented in this paper, a new visual meaningful mesh segementation is achieved. MRFbased clustering is the kernel of this framework and any3D mesh item with geometric orperceptual features can be easily integrated into the framework. A new visual meaningfulmesh segmentation algorithm is implementated by introducing the visual prior knowledgeto the framework and utilizing the double level Gibbs random field. Experimental result-s show that segmentation algorithms based on the proposed framework achieves bettersegmentation results than other clustering based segmentation algorithms.
引文
[1] Robert O, Thomas F, Bernard C. Shape Distribution[J]. ACM Transactions onGraphics,2002,21(4):807–832.
    [2]郑伯川,彭维,张引, et al.3D模型检索技术综述[J].计算机辅助设计与图形学学报,2004,16(7):873–881.
    [3]刘玉杰.基于形状的三维模型检索若干关键技术研究[D].沈阳:中国科学院研究生院(计算技术研究所),2006:8–13.
    [4] Hu, Gang and Gao, Qigang.3D perceptual shape feature-based body parts classi-fication and pose estimation[C]//Proceedings of the2011joint ACM workshop onHuman gesture and behavior understanding.2011. New York, NY, USA: ACM,J-HGBU’11.
    [5] P. Schroder and W. Sweldens. Digital Geometry Processing[C]//Computer Graph-ics Proceedings, Annual Conference Series, Course Notes, ACM SIGGRAPH..[S.l.]:[s.n.],2001:42–53.
    [6] M. Levoy and K. Pulli and B. Curless and S. Rusinkiewicz and D. Koller andL. Pereira and M. Ginzton and S. Anderson and J. Davis and J. Ginsberg and J.Shade and D. Fulk. The Digital Michelangelo Project:3D Scanning of LargeStatues[C]//ACM SIGGRAPH..[S.l.]:[s.n.],2000:131–144.
    [7]杨育彬,林珲.基于内容的三维模型检索综述[J].计算机学报,2004,27(10):1297–1310.
    [8] Lavoue′, G. A Multiscale Metric for3D Mesh Visual Quality Assessment[J]. Com-puter Graphics Forum,2011,30(5):1427–1437.
    [9] Dutagaci, Helin and Cheung, Chun Pan and Godil, Afzal. A benchmark for bestview selection of3D objects[C]//Proceedings of the ACM workshop on3D objectretrieval.2010. New York, NY, USA: ACM,3DOR’10.
    [10] C. H. Lee and A. Varshney and D. W. Jacobs. Mesh saliency[J]. ACM Transactionson Graphics,2005,24(3):659–666.
    [11] McNamara, Ann and Mania, Katerina and Gutierrez, Diego. Perception in graph-ics, visualization, virtual environments and animation[C]//SIGGRAPH Asia2011Courses.2011. New York, NY, USA: ACM, SA’11.
    [12] R. Mohan and R. Nevatia. Using Perceptual Organization to Extract3D Struc-tures[J]. IEEE Transations on Pattern Analysis and Machine Intelligence,1989,11(11):1121–1139.
    [13] M. Reddy. SCROOGE: Perceptually-driven Polygon Reduction[J]. ComputerGraphics forum,1996,15(4):191–203.
    [14] M. Reddy. Perceptually Optimized3D Graphics[J]. IEEE Computer Graphics andApplications,2001,21(5):68–75.
    [15] M. Eckert and A. Bradley. Perceptual quality metrics applied to still image com-pression[J]. Signal Processing,1998,70(3):177–200.
    [16] N. D. Cornea and D. Silver and P. Min. Curve-skeleton properties, applications,and algorithms[J]. IEEE Trans. Vis.&Comp. Graphics,2007,13(3):530–548.
    [17] Dugelay J L, Baskurt A, Daoudi M.3D Object Processing: Compression, Indexing,Watermarking[M]. England: John Wiley&Sons,2008:10–20.
    [18]罗四维.视觉感知系统信息处理理论[M].北京:电子工业出版社,2006:109–133.
    [19] Bulbul, Abdullah and Koca, Cetin and Capin, Tolga and Gu¨du¨kbay, Ug ur. Saliencyfor animated meshes with material properties[C]//Proceedings of the7th Sympo-sium on Applied Perception in Graphics and Visualization.2010. New York, NY,USA: ACM, APGV’10.
    [20] Bosse, T. and Maanen, P.-P. van and Treur, J. A Cognitive Model for VisualAttention and its Application[C]//The Twentieth International joint Conference onArtificial Intelligence (IJCAI’07). Hyderabad: Springer,2007:1–8.
    [21] Bosse, T. and Maanen, P.-P. van and Treur, J. Simulation and Formal Analysisof Visual Attention[J]. Journal of Web Intelligence and Agent Systems,2009,7(1):89–105.
    [22] A.M. Treisman and G. Gelade. A Feature-Integration Theory of Attention[J]. Cog-nitive Psychology,1980,12(1):97–136.
    [23] C. Koch and S. Ullman. Shifts in selective visual attention: towards the underlyingneural circuitry[J]. Human Neurobiology,1985,4(4):219–227.
    [24] L. Itti and C. Koch and E. Niebur. A model of saliency based visual attentionfor rapid scene analysis[J]. IEEE Transactions on Pattern Analysis and MachineIntelligence,1998,20(11):1254–1259.
    [25] H. Yee and S. Pattanaik and D. P. Greenberg. Spatiotemporal sensitivity and visualattention for efcient rendering of dynamic environments[J]. ACM Transactionson Graphics,2001,20(1):39–65.
    [26] S. Howlett and J. Hamill and C. O’Sullivan. Predicting and Evaluating Saliency forSimplified Polygonal Models[J]. ACM Transactions on Applied Perception,2005,2(3):286–308.
    [27] G. Taubin. A Signal Processing Approach to Fair Surface Design[C]//ACM SIG-GRAPH..[S.l.]:[s.n.],1995:351–358.
    [28] Y. Kim and A. Varshney. Persuading Visual Attention through Geometry[J]. IEEETtransations on Visualization and Computer Graphics,2008,14(4):772–782.
    [29] M. Feixas and M. Sbert and F. Gonza′lez. A unified information-theoretic frame-work for viewpoint selection and mesh saliency[J]. ACM Transactions on AppliedPerception,2009,6(1):Article1.
    [30] Y. Kim and A. Varshney and D.W. Jacobs and F. Guimbretie`re. Mesh saliency andhuman eye fixations[J]. ACM Transactions on Applied Perception,2010,7(2):Ar-ticle12.
    [31] R. Milanese and H. Wechsler and S. Gil and J. Bost and T. Pun. Integra-tion of bottom-up and top-down cues for visual attention using non-linear re-laxation[C]//IEEE Conference on Computer Vision and Pattern Recognition.:,1994:781–785.
    [32] J. Tsotsos, S. Culhane, W. Wai, Y. Lai, N. Davis and F. Nuflo. Modeling visual-attention via selective tuning[J]. Artificial Intelligence,1995,78(1–2):507–545.
    [33] R. Rosenholtz. A simple saliency model predicts a number of motion popout phe-nomena[J]. Vision Research,1999,39(19):3157–3163.
    [34] C. M. Privitera and L. W. Stark. Focused JPEG encoding based upon automaticpreidentifed regions of interest[C]//Proceedings of SPIE, Human Vision and Elec-tronic Imaging IV. San Jose, CA, USA: SPIE,1999:552–558.
    [35] L. Q. Chen and X. Xie and X. Fan and W. Y. Ma and H. J. Zhang and H. Q. Zhou. Avisual attention model for adapting images on small displays[J]. ACM MultimediaSystems Journal,2003,9(4):353–364.
    [36] McDonnell, Rachel and Larkin, Miche′al and Herna′ndez, Benjam′n and Rudomin,Isaac and O’Sullivan, Carol. Eye-catching crowds: saliency based selective varia-tion[J]. ACM Trans. Graph.,2009,28:55:1–55:10.
    [37] Miao, Y. and Feng, J. and Pajarola, R. Visual saliency guided normal enhancementtechnique for3D shape depiction[J]. Computers&Graphics,2011,35(3):706–712.
    [38] C.H. Lee and Y.M. Kim and A. Varshney. Saliency-Guided Lighting[J]. IEICETransactions on Information and Systems,2009, E92-D(2):369–373.
    [39] Ja¨nicke, H. and Chen, M. A Salience-based Quality Metric for Visualiza-tion[C]//Computer Graphics Forum..[S.l.]:[s.n.],2010,29:1183–1192.
    [40] F. Campbell and J. Kulikowski. Orientation selectivity of the human visual sys-tem[J]. Journal of Physiology,1966,187():437–445.
    [41] C. Harmon and B. Julesz. Masking in visual recognition: efects of two-dimensional filtered noise[J]. Science,1973,180():1194–1197.
    [42] C. Blakemore and F. W. Campbell. On the existence of neurones in the humanvisual system selectively sensitive to the orientation and size of retinal images[J].Journal of Physiology,1969,203():237–260.
    [43] H. R. Wilson and D. J. Gelb. Modified line-element theory for spatial-frequencyand width discrimination[J]. J. Opt. Soc, Am. A,1984,1():124–131.
    [44] H.R. Wilson. Psychophysical models of spatial vision and hyperacuity[M].. BocaRaton, FL: CRC Press,1991: Vol.10.
    [45] G. C. Phillips and H. R. Wilson. Orientation bandwidths of spatial mechanismsmeasured by masking[J]. J. Opt. Soc, Am. A,1984,1():226–232.
    [46] Breitmeyer B G, ogmen H. Visual Masking: Time Slices Through Conscious andUnconscious Vision[M]. England: Oxford: Oxford University Press,2006.
    [47] S. Daly. The visible diferences predictor: An algorithm for the assessment ofimage fidelity[M].. Cambridge, MA: MIT Press,1993:179–206.
    [48] J. Ferwerda and S. Pattanaik and P. Shirley and D. Greenberg. A model of visualmasking for computer graphics[C]//ACM Siggraph.: ACM Press/Addison-WesleyPublishing Co.,1997:143–152.
    [49] G. E. Legge and J. M. Foley. Contrast masking in human vision[J]. J. Opt. Soc,1980,70():1458–1470.
    [50] G. Lavou”′e. A local roughness measure for3D meshes and its application to visualmasking[J]. ACM Transactions on Applied Perception,2009,5(4):Article21.
    [51] Z. Karni and C. Gotsman. Spectral compression of mesh geome-try[C]//Proceedings of SIGGRAPH. New Orleans, LA: ACM Press/Addison-Wesley Publishing Co.,2000:279–286.
    [52] M. Corsini and E.D. Gelasca and T. Ebrahimi and M. Barni. Watermarked3d meshquality assessment[J]. IEEE Transaction on Multimedia,2007,9(2):247–256.
    [53] L. Qu and G. W. Meyer. Perceptually Driven Interactive Geometry Remesh-ing[C]//I3D. Redwood City, California:,2006:199–206.
    [54] D. Navon. Forest before trees: The procedence of global features in visual percep-tion[J]. Cognitive Psychology,1977,9(2):353–383.
    [55] L. Chen and S. Zhang and M. V. Srinivasan. Global perception in small brains:Topological pattern recognition in honey bees[C]//Proceedings of the AmericanNational Acacdemy of Science.:,2003:6884–6889.
    [56] W. Gong and G. Bertand. A Simple Parallel3D Thinning Algorithm[C]//Proc.IEEE Pattern Recognition.:,1990:188–190.
    [57] Nicu Daniel Cornea. Curve-Skeletons: Properties, Computation and Application-s[D]. New Brunswick, New Jersey: State University of New Jersey,2007:.
    [58] O. K.-C. Au and C.-L. Tai and H.-K. Chu and D. Cohen-Or and T.-Y. Lee. Skeletonextraction by mesh contraction[J]. ACM Transactions on Graphics,2008,27(3):Ar-ticle44.
    [59] T. K. Dey and J. Sun. Defining and computing curve-skeletons with medialgeodesic function[C]//Symp. on Geom. Proc. Cagliari, Sardinia, Italy: Eurograph-ics Association,2006:143–152.
    [60] M. Hilaga and Y. Shinagawa and T. Komura and T. Kunii. Topology Matchingfor Fully Automatic Similarity Estimation of3D Shapes[C]//Computer GraphicsProceedings, Annual Conference Series, ACM SIGGRAPH.: ACM,2001:203–212.
    [61] V. Pascucci and G. Scorzelli and P. T. Bremer and A. Mascarenhas. Robust on-line computation of Reeb graphs: simplicity and speed[J]. ACM Trans. on Graph,2007,26(3):Article58.
    [62] Solomon, J. and Ben-Chen, M. and Butscher, A. and Guibas, L. Discovery of in-trinsic primitives on triangle meshes[C]//Computer Graphics Forum..[S.l.]:[s.n.],2011,30:365–374.
    [63] J. Cao and A. Tagliasacchi and M. Olson and H. Zhang and Z. Su. Point CloudSkeletons via Laplacian-Based Contraction[C]//Proc. of IEEE Shape Modeling In-ternational2010.:,2010:187–197.
    [64] Y. Pan and I. Cheng and A. Basu. Quality metric for approximating subjectiveevaluation of3-D objects[J]. IEEE Trans. on Multimedia,2005,7(2):269–279.
    [65] I. Cheng and A. Basu. Reliability and judging fatigue reduction in3D perceptu-al quality estimation[C]//Proceedings of the2nd International Symposium on3DData Processing, Visualization, and Transmission.:,2004:797–804.
    [66] M. Garland and A. Willmott and P. Heckbert. Hierarchical face clustering onpolygonal surfaces[C]//Proceedings of the ACM Symposium on Interactive3DGraphics, Research Triangle Park.: ACM,2001:49–58.
    [67] B. Levy and S. Petitjean and N. Ray and J. Maillot. Least squares conformalmaps for automatic texture atlas generation[C]//Proceedings of SIGGRAPH. SanAntonio, TX: ACM,2002:362–371.
    [68] D. Cohen-Steiner and P. Alliez and M. Desbrun. Variational shape approxima-tion[J]. ACM Transactions on Graphics,2004,23(3):905–914.
    [69] W. Schroeder and J. Zarge and W. Lorensen. Decimation of triangle mesh-es[C]//ACM SIGGRAPH.: ACM,1992:65–70.
    [70] R. Klein and G. Liebich and W. Strasser. Mesh reduction with error control[J].IEEE Visualization,1996,():311–318.
    [71] M. Garland and PS. Heckbert. Surface simplification using quadric error metric-s[C]//ACM Siggraph.: ACM Press/Addison-Wesley Publishing Co.,1997:209–216.
    [72] P. Alliez and M. Meyer and M. Desbrun. Interactive geometry remeshing[J]. ACMTransactions on Graphics,2002,21(3):347–354.
    [73] P. Alliez and D. Cohen-Steiner and O. Devillers and B. Levy and M. Desbrun.Anisotropic polygonal remeshing[J]. ACM Transactions on Graphics,2003,22(3):485–493.
    [74] A. Lee and W. Sweldens and P. Schroder and L. Cowsar and D. Dobkin. MAPS:multiresolution adaptive parameterization of surfaces[C]//ACM SIGGRAPH.:,1998:95–104.
    [75] I. Guskov and K. Vidimce and W. Sweldens and P. Schroder. Normal mesh-es[C]//ACM SIGGRAPH.:,2000:95–102.
    [76] L. Kobbelt and J. Vorsatz and U. Labik and HP. Seidel. A shrink wrapping approachto remeshing polygonal surfaces[J]. Computer Graphics Forum,1999,18(3):119–130.
    [77] I. Boier-Martin and H. Rushmeier and J. Jin. Parameterization of triangle meshesover quadrilateral domains[C]//Eurographics Symposium on Geometry Processing.:,2004:197–208.
    [78] N. Ray and WC. Li and B. Levy and A. Shefer and P. Alliez. Periodic globalparameterization[J]. ACM Transactions on Graphics,2006,25(4):1460–1485.
    [79] Secord, Adrian and Lu, Jingwan and Finkelstein, Adam and Singh, Manish andNealen, Andrew. Perceptual models of viewpoint preference[J]. ACM Trans.Graph.,2011,30:109:1–109:12.
    [80] B. Gooch and E. Reinhard and C. Moulding and P. Shirley. Artistic composi-tion for image creation[C]//Proceedings of Eurographics Workshop on RenderingTechniques.:,2001:83–88.
    [81] P.P. Va′zquez and M. Feixas and M. Sbert and W. Heidrich. Viewpoint SelectionUsing Viewpoint Entropy[C]//Vision, Modeling, and Visualization2001. Stuttgart,Germany:,2001:273–280.
    [82] P. Marziliano and F. Dufaux and S. Winkler and T. Ebrahimi. Perceptual Blur andRinging Metrics: Application to JPEG2000[J]. Signal Processing: Image Commu-nication,2004,19(2):163–172.
    [83] Z. Wang and A. Bovik and H. Sheikh and E. Simoncelli. Image quality assess-ment: from error visibility to structural similarity[J]. IEEE Transactions on ImageProcessing,2004,13(4):600–612.
    [84] I. Cheng and B. Pierre. Feature Extraction and Adaptive On-line Visualization ofThree-Dimensional Texmesh Using Scale-Space Analysis and Perceptual Evalua-tion[J]. IEEE Transations on Circuits and Systems for Video Technology,2005,15(10):1234–1244.
    [85] I. Cheng, et al. Perceptual Analysis of Level-of-Detail: The JND Ap-proach[C]//The Eighth IEEE International Symposium on Multimedia.:,2006:.
    [86] I. Cleju and D. Saupe. Evaluation of supra-threshold perceptual metrics for3D models[C]//Symposium on Applied Perception in Graphics and Visualization.Boston, Massachusetts: ACM,2006:41–44.
    [87] S. Kim and C. Kim. Discrete Diferential Error Metric for Surface Simplifica-tion[C]//Pacific Graphics.:,2002:276–283.
    [88] G. E. Drelie and M. Corsini and T. Ebrahimi. Objective Evaluation of The Per-ceptual Quality of3D Watermarking[C]//IEEE International Conference on ImageProcessing.: IEEE,2005:241–244.
    [89] M. Corsini and G. E. Drelie and T. Ebrahimi. A Multi-Scale Roughness Metricfor3D Watermarking Quality Assessment[C]//Workshop on Image Analysis forMultimedia Interactive Services.:,2005:.
    [90] G. Lavou”′e”, E.D. Gelasca, F. Dupont, A. Baskurt and T. Ebrahimi. Per-ceptually driven3D distance metrics with application to watermarking[C]//SPIEApplications of Digital Image Processing XXIX. San Diego, CA, USA: SPIE,2006:vol.6312,63120L.
    [91] D. L. Page and A. F. Koschan and M. A. Abidi. Perception-based3D TriangleMesh Segmentation Using Fast Marching Watersheds[C]//IEEE Computer SocietyConference on Computer Vision and Pattern Recognition. Madison:,2003:27–32.
    [92] A. Shamir. A survey on mesh segmentation techniques[J]. Computer GraphicsForum,2008,27(6):1539–1556.
    [93] G. Lavoue and F. Dupont and A. Baskurt. A new CAD mesh segmentation method,based on curvature tensor analysis[J]. Computer Aided Design,2005,37():975–987.
    [94] Xiao, D. and Lin, H. and Xian, C. and Gao, S. CAD mesh model segmentation byclustering[J]. Computers&Graphics,2011,35(3):685–691.
    [95] S. Katz and A. Tal. Hierarchical mesh decomposition using fuzzy clustering andgraph cuts[J]. ACM Transactions on Graphics,2003,22(3):954–961.
    [96] S. Shlafman and A. Tal and S. Katz. Metamorphosis of Polyhedral Surfaces UsingDecomposition[C]//Annual Conference of the European Association for ComputerGraphics.:,2002:219–228.
    [97] Y. Zhang and J. K. Paik and A. Koschan and M. A. Abidi. A Simple and EfcientAlgorithm for Part Decomposition of3d Triangulated Models Based on CurvatureAnalysis[C]//International Conference on Image Processing.:,2002:273–276.
    [98] Wang, J. and Yu, Z. Surface feature based mesh segmentation[J]. Computers&Graphics,2011,35(3):661–667.
    [99] M. Attene and B. Falcidieno and M. Spagnuolo. Hierarchical Mesh SegmentationBased on Fitting Primitives[J]. The Visual Computer,2006,22(3):181–193.
    [100] K. Marty. Segmentation of a Human Brain Cortical Surface Mesh Using Water-sheds[C]//University of Wisconsin. Madison: CS766Final Project,2002:1–11.
    [101] Y. Zhou and Z. Huang. PDecomposing Polygon Meshes by Means of CriticalPoints[C]//The10th International Multimedia Modelling Conference.: IEEE Com-puter Society,2004:187–194.
    [102] M. Mortara and G. Patane`and M. Spagnuolo and B. Falcidieno and J. Rossignac.Blowing Bubbles for Multi-Scale Analysis and Decomposition of Triangle Mesh-es[J]. Algorithmica,2004,38(1):227–248.
    [103] M. Mortara and G. Patane`and M. Spagnuolo and B. Falcidieno and J. Rossignac.Plumber: A Method for A Multi-scale Decomposition of3D Shapes into Tubu-lar Primitives and Bodies[C]//The9th ACM Symposium on Solid Modeling andApplications.: Eurographics Association,2004:339–344.
    [104] J. Tierny and J. P. Vandeborre and M. Daoudi.3D Mesh Skeleton Extraction UsingTopological and Geometrical Analysis[C]//The Pacific Conference on ComputerGraphics and Applications.:,2006:85–94.
    [105] J. Tierny and J. P. Vandeborre and M. Daoudi. Topology Driven3D mesh Hier-archical Segmentation[C]//The International Conference on Shape Modeling andApplications.:,2007:215–220.
    [106] G. Lavou”′e and C. Wolf. Markov Random Fields for Improving3D Mesh Anal-ysis and Segmentation[C]//Eurographics Workshop on3D Object Retrieval.:,2008:25–32.
    [107] Xiaobai Chen and Aleksey Golovinskiy and Thomas Funkhouser. A Benchmarkfor3D Mesh Segmentation[J]. ACM Transactions on Graphics(Proc. SIGGRAPH),2009,28(3):.
    [108] D. Cohen-Steiner and J. Morvan. Restricted Delaunay Triangulations and NormalCycle[C]//The ACM Symposium on Computational Geometry.: ACM,2003:237–246.
    [109] G. Taubin. Estimating the tensor of curvature of a surface from a polyhedral ap-proximation[C]//Proceedings of the International Conference on Computer Vision.MA, Boston:,1995:902–907.
    [110]石振锋,金凯,牛夏牧.基于结构相似的三维模型视觉降质度量[J].哈尔滨工业大学学报,2010,42(9):1444–1448.
    [111] Z.f. SHI and H. LUO and X.m. NIU. Saliency-based structural degradation evalua-tion of3D mesh simplification[J]. IEICE Electronics Express,2011,8(3):161–167.
    [112] S. Melax. A simple, fast, and efective polygon reduction algorithm[J]. GameDeveloper Magazine,1998,():44–49.
    [113] G. Lavou”′e and M. Corsini. A Comparison of Perceptually-Based Metrics forObjective Evaluation of Geometry Processing[J]. IEEE Trans. On Multimedia,2010,12(7):636–649.
    [114] J. Schweitzer. Analysis and Application of Subdivision Sufaces[D]. Seattle: Uni-versity of Washington,1996:.
    [115] P. Schroder and D. Zorin and T. DeRose and D. Forsey and L. Kobbelt and M.Lunsbery and J. Peters. Subdivision for Modeling and Animation[J]. ACM SIG-GRAPH98Course Notes,1999,():.
    [116] Ed. Catmull and J. Clark. Recursively Generated B-spline Surfaces on ArbitraryTopological Meshes[J]. Computer Aided Geometric Design,1978,10(6):350–355.
    [117] Ed. Catmull and J. Clark. Behaviour of Recursive Division Surfaces near Extraor-dinary Points[J]. Computer Aided Geometric Design,1978,10(6):356–360.
    [118] C. T. Loop. Smooth subdivision surface based on triangle[D]. Salt Lake City, UT:University of Utah,1987:.
    [119] A. Gregory and A. State and M. Lin and D. Manocha and M. Livingstone. Inter-active surface decomposition for polyhedral morphing[J]. The Visual Computer,1999,15():453–470.
    [120] M. Zockler and D. Stalling and H.C. Hege. Fast and intuitive generation of geo-metric shape transitions[J]. The Visual Computer,2000,16(5):241–253.
    [121] T. Funkhouser and M. Kazhdam and P. Shilane and P. Min and W. Kiefer and A. Taland S. Rusinkiewicz and D. Dobkin. Modeling by example[J]. ACM Transactionson Graphics,2004,13(3):652–663.
    [122] E. Zuckerberger and A. Tal and S. Shlafman. Polyhedral surface decompositionwith applications[J]. Computer Graphics,2002,26(5):733–743.
    [123] J. Tierny and J.-P. Vandeborre and M. Daoudi. Partial3D shape retrieval by Reebpattern unfolding[J]. Computer Graphics Forum,2009,28(1):41–55.
    [124] X. Li and T. Woon and T.S. Tan and Z. Huang. Decomposing polygon meshes forinteractive applications[C]//Proceedings of the ACM Symposium on Interactive3DGraphics. Venice, Italy: ACM,2001:35–42.
    [125] Q. X. Li and J. Y. Zhao. Unsupervised Image Segmentation Based on MRFs andGraph Cuts[J]. Journal of Communication and Computer,2009,6(9):46–53.
    [126] S. Li. Markov Random Field Modeling in Image Analysis[M].. New York:Springer Verlag,2001:.
    [127] C.M. Bishop. Pattern Recognition and Machine Learning[M]..: Springer,2006:123–178.
    [128] J. Hammersley and P. Cliford. Markov fields on finite graphs and lattices[J]. un-published manuscript,,():.
    [129] D. Hofman and W. Richards. Parts of Recognition[J]. Cognition,1984,18():65–96.
    [130] D. Hofman and M. Singh. Salience of Visual Parts[J]. Cognition,1997,63():29–78.
    [131] V. Kolmogorov and R. Zabih. What Energy Functions can be Minimized via GraphCuts?[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2004,26(2):147–159.
    [132] Y. Boykov and O. Veksler and R. Zabih. Efcient Approximate Energy Mini-mization via Graph Cuts[J]. IEEE transactions on Pattern Analysis and MachineIntelligence,2001,20(12):1222–1239.
    [133] L. Shapira and A. Shamir and D. Cohen-Or. Consistent mesh partitioning andskeletonisation using the shape diameter function[J]. The Visual Computer,2008,24(4):249–259.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700