用户名: 密码: 验证码:
基于拉索精细化物理特性的弦支结构体系力学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着预应力钢结构工程应用的推广和科学研究的深入,精细化数值模拟分析已经成为预应力钢结构全寿命状态下受力性能分析的有效方法。预应力钢结构的核心构件拉索的膨胀系数、弹性模量以及拉索结构阻尼的取值问题,直接影响到结构精细化数值模拟的准确性。新型拉索结构体系与拉索节点的研发,也给预应力钢结构体系分析设计以及工程应用带来一系列的科学问题。本文主要围绕上述问题,采用数值分析与试验研究相结合的方法,开展了系统深入的分析研究,取得了一些具有科学意义和工程应用价值的研究成果:
     建立了温度作用下预应力钢结构核心构件拉索的变形协调方程,推导了拉索材料线膨胀系数的解析公式;基于拉索热膨胀基本方程,研发出空气加热拉索线膨胀系数测定试验设备,测定了钢丝绳、钢绞线和钢丝束的线膨胀系数,验证了拉索热膨胀理论分析方法;研究了拉索热膨胀性能对弦支筒壳结构的性能的影响,并通过跨度约3.3米的弦支筒壳缩尺模型试验进行了验证。相关研究成果编入行业标准《预应力钢结构技术规程》和地方规程《天津市空间网格结构技术规程》;
     建立了受力状态下预应力钢结构核心构件拉索的变形协调方程,推导了拉索弹性模量计算公式,提出钢拉索弹性模量降低系数,揭示了绞捻方式、捻距、绕捻半径以及温度作用对钢拉索弹性模量影响规律;研究了不同拉索失效后对弦支穹顶稳定性能的影响规律;
     开展了弦支筒壳结构动力特性试验研究,分析了弦支筒壳结构矢跨比和垂跨比对其动力特性的影响;基于大跨度空间结构动力特性的复杂性与OKID系统识别方法的可靠性,提出一种适合弦支结构的动力特性识别新方法。通过一个弦支穹顶结构算例验证了方法的有效性和合理性,揭示了拉索索力,测点数量与布置,输出信号等对识别精度的影响规律;
     提出一种新型拉索补强型焊接相贯节点;通过破坏性试验和实物验证性试验与有限元数值模拟,系统研究了拉索补强型焊接相贯节点的受力性能与破坏模式。同时采用云纹干涉法有效解决了受力复杂区域电测时漏检误判的技术难题,全面验证了拉索补强型焊接相贯节点的安全性和可靠性。
With both the promotion of engineering application and the development oftheoretical research on prestress steel structure, the fine numerical simulation analysishas became an effective method to analysis the whole life cycle behavior of theprestress steel structure. As the key component of the prestress structure, thedetermination of the values of the expansion coefficient, elasticity modulus of thesteel cable and the damping of structure with the steel cable are directly related to theaccuracy of the fine numerical simulation analysis. Besides, with the innovation ofnew prestress steel structure system and steel cable joint, a series scientific problemson the analysis and design of the prestress steel research have also been put forward.Based on the above problems, both the numerical analysis and experimental researchhave been used to conduct a systematic and deep research on the prestress steelstructure in this paper. Several research results with great importance in scientificresearch and engineering application have been obtained:
     The extension deformation compatibility of the steel cable under the temperatureeffect was established. The formula of thermal expansion coefficient of steel cableswas devised. On the basis of the thermal expansion equation of the cable, the thermalexpansion coefficient measuring instrument was proposed. The thermal expansioncoefficients of the steel-wire rope cable, steel strand cable and steel tendon cable,were determined. Meanwhile, the theoretical analysis on thermal expansionmechanism of steel cables was verified. The influence regularity of the cableexpansion coefficient on the cable supported barrel vault structures performanceunder the temperature effect was researched and verified by a scale model of the cablesupported barrel vault structure, whose span is3.3m. The research results have beenorganized into technical specification for prestressed steel structure and technicalspecification for spatial grid structure of Tianjin.
     The compatibility equations of deformation of the steel cable and the equationsof mathematical physics of the wire were established. The evaluation approach on theelasticity modulus of steel cable was developed and reduction factor of cable elasticitymodulus was proposed. Then, the influence of the twisting way, lay pitch, thediameter of the steel wire and temperature effect on the cable elasticity moduls wasdiscussed. The influence regularity of the cable failure on the stability performance of the suspendome was investigated preliminary.
     The dynamic characteristic of cable-supported barrel vault structures was studied,and the influence regularity of rise-span ratio and sag-span ratio was obtained. Abaseon the complexity of the space structure and the reliability of the system identification,a new method to obtain dynamic characteristics of the cable supported structure wasproposed. Taking a suspendome for example, the validity and reasonable of thismethod was verified. The influence regularity of cable force, the number and locationof measure point, output signal and soon were discussed.
     The cable joint of reinforcing welded penetrated tubular was proposed, and thedesign formulas of the joint bearing capacity were derived. According to theverification test of object specimens, the destructive test of scale model specimens andnumerical analysis, the mechanical properties and failure modes of the cable joint ofreinforcing welded penetrated tubular was studied systematically. Meanwhile, thetechnical problem of missing inspection and misjudgment in the complicated forces filedwas solved by using themoire intervention, and the safety and reliability of the jointswere comprehensively verified.
引文
[1]沈世钊,徐崇宝,赵臣.悬索结构设计[M].2版.北京:中国建筑工业出版社,2006.
    [2]董石麟,罗尧治,赵阳等.新型空间结构分析、设计与施工[M].北京:人民交通出版社,2006.
    [3]马克俭等.一种短撑杆式新型张弦桁架及其制作方法[P].中国专利. ZL200410155399.7.2007-08-29.
    [4]陈志华.弦支穹顶结构[M].北京:科学出版社,2010.
    [5]陈志华.张弦结构体系[M].北京:科学出版社,2013.
    [6]刘锡良.现代空间结构[M].天津:天津大学出版社,2003.
    [7]张毅刚.张弦结构的十年-张弦结构的概念及平面张弦结构的发展[J].工业建筑,2009,39(10):105-113.
    [8]张爱林,刘学春,王冬梅等.2008奥运会羽毛球馆新型弦支穹顶结构模型静力试验研究[J].建筑结构学报,2007,28(6):58-67.
    [9]卫东,杨庆山,沈世钊.张拉膜结构模型全过程试验研究[J].建筑结构学报,2004,25(2):49-56.
    [10]张慎伟,张其林,罗晓群.双向张弦桁架结构施工过程跟踪计算理论与应用[J].西安建筑科技大学学报:自然科学版,2009,41(3):340-344.
    [11]陈志华,荣彬,孙国军.弦支结构体系概念与分类[J].工业建筑,2010,40(8):1-6.
    [12]陈志华,闫翔宇,乔文涛等.弦支筒壳结构体系[P].中国专利. ZL200810053722.8.2010-07-21.
    [13]刘红波,陈志华.一种新型空间结构形式-弦支拱壳结构[J].工业建筑,2010,40(8):10-12.
    [14]陈志华,乔文涛,王小盾.弦支混凝土集成楼盖结构及其施工方法[P].中国专利. ZL200810053438.0.2010-10-27.
    [15]陈志华,孙国军,闫翔宇.弦支网架结构体系概念及特性研究[J].工业建筑,2010,40(8):6-9.
    [16]曲秀姝,陈志华,乔文涛.弦支钢丝网架混凝土夹芯板的基本特性分析[J].工业建筑,2010,40(8):30-35
    [17]Georg h. Kohlmaier, Barna von Sartory. Houses of Glass: A Nineteenth-CenturyBuilding Type (John C. Harvey)[M]. Cambridge:the MIT Press,1986.
    [18]Masao Saitoh. Principle of Beam String Structure[C]. World Congress on Shelland Spatial Structure-Proceeding IASS Symposium.1979.
    [19]刘锡良,白正仙.张弦梁结构受力性能的分析[J].钢结构,1998,13(4):4-8.
    [20]白正仙,刘锡良,李义生.新型空间结构形式-张弦梁结构[J].空间结构,2001,7(2):33-38.
    [21]闫翔宇,陈志华,乔文涛等.大跨度门式刚架与弦支筒壳复合钢结构体系的应用研究[J].工业建筑,2010,40(3):107-127.
    [22]张其林,张莉,罗晓群.预应力梁-索屋盖结构形状确定[C].第九届空间结构学术会议论文集[M].萧山:2000:387-394.
    [23]杨睿,董石麟,倪英戈.预应力张弦梁结构的形态分析-改进的逆迭代法[J].空间结构,2002,8(4):29-35.
    [24]徐罡,完海鹰.张弦梁几何与力的联合找形[J].合肥工业大学学报(自然科学版),2006,29(8):1018-1020.
    [25]周瑞钦,房贞政.预应力空间张弦梁结构找形分析[J].福州大学学报(自然科学版),2007,35(2):266-269.
    [26]吴祖咸,高子珺.用等效降温法模拟预应力来实现张弦梁结构找形[J].浙江工业大学学报,2008,36(5):587-590.
    [27]陈以一,沈祖炎,赵宪忠等.上海浦东国际机场候机楼R2钢屋架足尺试验研究[J].建筑结构学报,1999,20(2):9-17.
    [28]丁博涵.张弦梁结构的静力、抗震和抗风性能研究:[博士学位论文].浙江:浙江大学,2005.
    [29]丁阳,岳增国,刘锡良.大跨度张弦梁结构的地震响应分析[J].地震工程与工程振动,2003,23(5):163-168.
    [30]王秀丽,丁南生,柴宏.大跨度张弦梁结构非线性地震响应及参数分析[J].空间结构,2006,12(2):34-38.
    [31]沈世钊.大跨空间结构若干关键理论问题研究[C].第九届空间结构学术会议论文集[M].杭州:2000:1-9.
    [32]黄颖,房贞政.单向张弦梁结构风振响应参数分析[J].福州大学学报(自然科学版),2009,37(3):407-411.
    [33]陈红媛,房贞政.单向张弦梁结构风振系数的研究[J].福州大学学报(自然科学版),2009,37(3):401-406.
    [34]郝亮亮,白正仙.抗风索张弦梁的静力性能分析[J].钢结构,2008,23(11):10-12.
    [35]郝亮亮,白正仙.抗风索张弦梁的动力性能研究[C].庆祝刘锡良教授八十华诞暨第八届全国现代结构工程学术研讨会论文集[M].天津:2008:522-527.
    [36]乔文涛,陈志华,韩庆华.平面张弦梁结构风致响应的频域分析[J].天津大学学报,2008,41(11):1326-1332.
    [37]乔文涛,韩庆华.平面张弦梁结构的风致响应分析[J].河北工业大学学报,2006,35(6):92-98.
    [38]黄明鑫.大型张弦梁结构的设计与施工[M].济南:山东科学技术出版社.2005.
    [39]齐永胜,赵风华.几何缺陷对张弦梁预应力张拉影响的力学分析[J].青岛理工大学学报,2007,28(6):43-47.
    [40]赵宪忠,陈建兴,陈以一.张弦梁结构张拉过程中的结构性能试验研究[J].建筑结构学报,2007,28(4):1-7.
    [41]张宇鑫,李国强,赵世峰.张弦梁结构振动方法索力识别(I):振动特性的参数分析[J].振动与冲击,2009,28(3):152-157.
    [42]张宇鑫,李国强,赵世峰.张弦梁结构振动方法索力识别(II):实用公式及误差分析[J].振动与冲击,2009,28(3):158-160.
    [43]骆宁安,王卫锋,韩大建.广州体育馆拉索索力测试方法及其应用[J].华南理工大学学报,2002,30(2):73-75.
    [44]魏建东,刘山洪.基于拉索静态线形的索力测定[J].工程力学,2003,20(3):104-107.
    [45]汪大绥,张富林,高承勇等.上海浦东国际机场(一期工程)航站楼钢结构研究与设计[J].建筑结构学报,1999,20(02):2-8.
    [46]陈荣毅,董石麟.大跨度预应力张弦钢管桁架的设计[C].第二届全国现代结构工程学术研讨会论文集[M].马鞍山:2002:379-383.
    [47]范峰,支旭东,沈世钊.哈尔滨国际会展体育中心大跨钢结构设计[C].第三届全国现代结构工程学术研讨会论文集[M].天津:2003:19-26.
    [48]王树,苏果,管志忠等.迁安文化会展中心平面张弦梁结构稳定分析与设计
    [C].第七届全国现代结构工程学术研讨会论文集[M].杭州:2007:167-172.
    [49]乔景,陈志华,王晓林等.预应力刚架的应用[C].第六届全国现代结构工程学术研讨会论文集[M].保定:2006:1351-1355.
    [50]秦杰,徐亚柯,覃阳.国家体育馆屋盖工程设计、施工、科研一体化实践[J].建筑结构,2009,39(S1):162-167.
    [51]丁洁民,康晓菊.北京奥运会乒乓球馆钢结构与下部结构的协同工作[J].建筑结构,2006,36(S):31-34.
    [52]Mamoru Kawaguchi, Masaru Abe, Tatsuo Hatato, et al. On a structural system“suspen-dome” system[C]. Proceeding of IASS Symposium.1993:
    [53]张明山,董石麟,张志宏.弦支穹顶初始预应力分布的确定及稳定性分析[J].空间结构,2004,10(2):9-12.
    [54]李永梅,张毅刚,杨庆山.索承网壳结构施工张拉索力的确定[J].建筑结构学报,2004,25(4):76-81.
    [55]郭正兴,石开荣,罗斌等.武汉体育馆索承网壳钢屋盖顶升安装及预应力拉索施工[J].施工技术,2006,35(12):51-58.
    [56]秦杰,王泽强,张然等.2008奥运会羽毛球馆预应力施工监测研究[J].建筑结构学报,2007,28(6):83-91.
    [57]崔晓强,郭彦林.弦支穹顶结构的抗震性能研究[J].地震工程与工程振动,2005,25(1):67-75.
    [58]陈志华,毋英俊,王小盾等.预应力钢结构滚动式张拉索节点[P].中国专利.ZL200810052955.6.2010-06-09.
    [59]罗尧治,张彦,林炎飞.一种适用于张弦桁架双索张拉的铸钢节点[P].中国专利. ZL200810063671.7.2010-09-22.
    [60]闫翔宇,陈志华,刘占省.弦支筒壳结构的概念及应用[J].工业建筑,2010,40(8):13-16.
    [61]马克俭,李晓红,韦明辉等.预应力网格结构体系的研究与应用前景[J].空间结构,1994,1(2):1-10.
    [62]董石麟.预应力大跨度空间钢结构的应用与展望[C].庆贺刘锡良教授执教五十周年暨第一届全国现代结构工程学术报告会论文集[M].天津:2001:17-25.
    [63]刘锡良,刘毅轩.平板网架设计[M].北京:中国建筑工业出版社,1979.
    [64]王少军,王春红,戚丽梅.预应力网架结构的初步研究[J].哈尔滨建筑大学学报,1998,31(4):29-31.
    [65]秦杰.黄河口模型厅屋盖[R].北京:北京建筑工程研究院,2007.
    [66]程文瀼,李爱群.混凝土楼盖设计[M].北京:中国建筑工业出版社,1998.
    [67]陈志华,乔文涛.弦支混凝土集成屋盖结构及其基本特性分析[J].建筑结构,2010,40(11):22-25.
    [68]沈祖炎,李元齐.新型大跨度空间结构形式-拱支网壳结构体系[J].空间结构,1996,2(4):5-9.
    [69]李宁.拉索膨胀系数及预应力钢结构在温度作用下性能研究:[硕士学位论文].天津:天津大学.2008.
    [70]Stanilav Kamet, Zuzana Kokuruduva. Nonlinear Analytical Solution for CableTruss, Journal of Engineering Mechanics (ASCE).2006,132(1):119-123.
    [71]American Institute of Steel Construction. Code of Standard Practice for SteelBuildings and Bridges. Chicago, Illinois.2001.
    [72]American Institute of Steel Construction (AISC). Manual of steel construction:Load and resistance factor design,2nd Ed., Vol. I, Structural members,specifications and codes. Chicago.1994.
    [73]Structural applications of steel sables for buildings. ASCE.19-96, New York.1997.
    [74]Eurocode3.“Design of steel structures-Part1-11: Design of structures withtension components.” BS EN1993-1-11, British Standards Institution, London.2006.
    [75]Japanese Steel Structure Association.“Cable material specification used instructure.” JSS II03-1994. Japan.1994.
    [76]宋杰.水域加热拉索线膨胀系数测试及斜拉结构预应力性能研究:[硕士学位论文],天津:天津大学,2006.
    [77]刘杰,李宁,陈志华等.测定拉索线膨胀系数的试验探讨[J].低温建筑技术,2007,(1):54-55.
    [78]刘占省.温度作用下拉索性能及弦支筒壳结构可靠性能研究:[博士学位论文].天津:天津大学.2010.
    [79]中华人民共和国国家标准. GB8918-2006.重要用途钢丝绳.北京:中国标准出版社,2006-09-01.
    [80]中国工程建设标准化协会标准. CECS212:2006.预应力钢结构技术规程.北京:中国华侨出版社,2006-12-01.
    [81]天津市空间网格结构技术规程. DB29-140-2011.天津市工程建设标准.天津:天津市城乡建设和交通委员会,2011-05-01.
    [82]李剑清.用随机衰减法评估建筑结构的阻尼:[硕士学位论文].武汉,华中科技大学.2003.
    [83]林凡伟.轻木-混凝土混合结构振动台试验阻尼识别研究:[硕士学位论文].上海,同济大学.2008.
    [84]李国豪.桥梁结构稳定与振动(修订版)[M].北京:中国铁道出版,2003.
    [85]Rayleigh, L. Theory of Sound. Dover Publicarions Inc., New York,1945.
    [86]Caughey, T.K. Classical normal modes in damped linear systems[J]. Journal ofApplied Mechanics.1960,27(2):269-271.
    [87]T.K. Caughey, M.E.J. O'Kelly. Classical normal modes in damped linear dynamicsystems[J]. Journal of Applied Mechanics.1965,33(2):471-472.
    [88]傅志方.振动模态分析与参数识别[M].北京:机械工业出版社,1990.
    [89]许本文.焦群英.机械振动与模态分析基础[M].北京:机械工业出版社,1998.
    [90]周传荣,赵淳生.机械振动参数识别及应用[M].北京:科学出版社,1989.
    [91]S. R. Ibrahim, E. C. Mikulcik. A method for the direct identification of vibrationParameters from Free Responses. Shock and Vibration Bulletin.1977,147(4):183-198.
    [92]S. R. Ibrahim. An approach for reducing computational requirements in modalidentification[J]. AIAA Jouma1,1986,24(10):1725-1727.
    [93]S. R. Ibrahim. Random decrement technique for modal identification ofstructures[J]. Journal of Spacecraft and Rockets, l977,14(11):696-700.
    [94]M. Phan, L.G. Horta, J-N. Juang, R.W. Longman. Improvement ofObserver/Kalman Filter Identification (OKID) by residual whitening Transactionsof the ASME,117(1995), pp.232–239.
    [95]Phan MQ. Observer/Kalman filter identification (OKID): step-by-step guide andreferences. In: A Matlab-based system identification software package.Department of Mechanical and Aerospace Engineering, Princeton University;1997.
    [96]Yang, J., Lei, Y., Lin, S., et al. Identification of natural frequencies and dampingsof in situ tall buildings using ambient wind vibration data. Journal of EngineeringMechanics,2004,130(5):570-577.
    [97]陈隽,徐幼麟. HHT方法在结构模态参数识别中的应用.振动工程学报,2003,16(3):383-388.
    [98]罗光坤,张令弥.小波用于环境激励下的模态参数识别研究.地震工程与工程振动,2007,27(4):109-115.
    [99]曾储惠,黄方林,柳成荫等.基于信号能量分析的结构阻尼比识别方法.振动与冲击,2003,22(2):66-68.
    [100]徐良,江见鲸,过静珺.随机子空间识别在悬索桥实验模态分析中的应用.工程力学,2002,19(4):46-49.
    [101]潘峰,孙炳楠,楼文娟.基于Hilbert-Huang变换的大跨屋盖气动阻尼识别.浙江大学学报(工学版),2007,41(1):65-70.
    [102]毋英俊.连续折线索单元及节点研究:[博士学位论文].天津:天津大学.2010.
    [103]刘红波.弦支穹顶结构施工控制理论与温度效应研究:[博士学位论文].天津:天津大学.2011.
    [104] S. E. Webster, F. Walker, A. M. Wood. Cast steel nodes-Their manufacture andadvantages to offshore structures. Journal of Petroleum Technology,1981,33(10):1999-2005.
    [105] G. J. Marston. Better cast than fabricated. Foundryman,1990,83(3):108-113.
    [106] P. Broughton, R. Hayes, A. Wood, et al. Cast steel nodes for the Ekofisk2/4JJacket. Proceedings of the Institution of Civil Engineers-Structures andBuildings,1997,122(3):266-280.
    [107] A. Ma, J. V. Sharp, Fatigue design of cast steel nodes in offshore structuresbased on research data. Proceedings of the Institution of Civil Engineers, WaterMaritime and Energy,1997,124(2):112-126.
    [108] T. H. Hyde, H. Fessler, Y. A. Khalid. Effect of cracks at one saddle on the staticstrength of die cast tin-lead alloy T, Y, and YT tubular joints. Proceedings ofthe Institution of Civil Engineers-Structures and Buildings,1997,122(4):379-389.
    [109] H. Fessler, C. D. Edwards. Comparison of stress distributions in a simple Casttubular joint using3D finite element, photoelastic and strain gage techniques.Journal of Energy Resource Technology,1984,106(4):480-488.
    [110] N. Akiyama, M. Yajima, H. Akiyama, et al. Experimental study on strength ofjoints in steel tubular structures[J]. Jounral of Society of Steel Construction,1974,10(102):37–68.
    [111] Scola S, Redwood R G, MitriH S. Behaviour of axially loaded tubularV-joints[J]. Journal of Constructional Steel Research,1990,16(2):89-109.
    [112] Paul J C, M akino Y, Kurobane Y. Ultimate resistance of tubular double T-joints under axial brace loading [J]. Journal of Constructional Steel Research,1993,24(3):205-228.
    [113] Vander Valk C.A.C. New aspects related to the ultimate strength of tubular K-and X-joints. Proceedings of the10th Offshore Mechanics and ArcticEngineering Conference, Stavanger (Norway),1991, III-B:417–422.
    [114] Lee M.M.K., Wilmshurst S.R. Strength of multiplanar KK-joint underanti-symmetrical loading. Journal of Structural Engineering(ASCE),1997,123(6):755–64.
    [115] Smedley P, Fisher P. Stress Concentration Factors for Simple Tubular Joints.Proceedings of the (1st) International Offshore and Polar EngineeringConference. Edinburgh, UK: International Society of Offshore and PolarEngineers,1991,475-483.
    [116] Wingerde A.M., Packer J.A., Wardenier J. Simplified SCF formulae and graphsfor CHS and RHS K-and KK-connections. Journal of Constructional SteelResearch.2001,57(3):221-252.
    [117] Morgan M.R., Lee M.M.K. Prediction of stress concentration factors in K-jointsunder balanced axial loading[C].Proceedings of the7thInternationalSymposium on Tubular Structures. Hungary,1996,301-308.
    [118] Lee M.M.K, Morgan M.R. Prediction of Stress Concentration Factors inIn-Plane Moment Loaded Tubular K-Joints[J]. Proceedings of the EighthInternational Symposium on Tubular Structures.1998.305-314.
    [119] Kay-Hiang Hoona, Looi-Kian Wong, Ai-Kah Soh. Experimental investigationof a doubler-plate reinforced tubular T-joint subjected to combined loadings.Journal of Constructional Steel Research.2001,57(9):1015-1039.
    [120] Underwater Engineering Group, Design of tubular joints for offshore structures.UEG Publication UR33, London,1985.
    [121] Munaswamy K, Swamidas A.S.J., Hopkins R.M., et al. Experimental study onfatigue of stiffened tubular T-joints. Proceedings of the8th InternationalConference On Offshore Mechanical and Arctic Engineering, New York,ASME,1989,375–382.
    [122] Chen B. Review of studies in China on stress analysis of ring stiffened tubularjoints for offshore structures. Proceedings of the9th International ConferenceOn Offshore Mechanicl and Arctic Engineering, Part A, New York, ASME,1990,3:313-319.
    [123] Ramachandra Murthy D.S., Madhava Rao A.G., Gandhi P, et al. Analytical andexperimental investigations on internally ring stiffened steel tubular joints.Fracture and Fatigue in Steel and Concrete Structures, ISFF Proceedings,Rotterdam, The Netherlands, Balkema,1991,715–728.
    [124]王磊.拉索膨胀系数试验研究及弦支结构性能分析:[硕士学位论文].天津:天津大学.2009.
    [125]中华人民共和国国家标准. GB/T24191-2009/ISO12076:2002.钢丝绳实际弹性模量测定方法.北京:中国国家标准化管理委员会,2010-04-01.
    [126]陈志华,刘红波,荣彬等.反力架子专利自平衡加载反力架[P].中国专利.ZL200910068574.1.2011-05-04.
    [127]曲明艺,付玉红,郝卓吾等.激光干涉全场测试技术及其工程应用[J].仪器仪表学报,2001,22(3):106-109.
    [128] Luo Zhi-shan, Zhang Heshui, Mu Zongxue, et al. Ultra-high sensitivity moreinterferometry by the aid of electronic-liguid phase-shifter and computer.Proceeding of VIII International Conference on Experimental Mechanics.1996,471-474.
    [129]刘锡良,陈志华.网架焊接空心球节点破坏机理分析及承载能力试验研究[J].建筑结构学报,1994,15(3):38-44.
    [130] D.Post.云纹干涉测量法进展[J].力学进展,1983,13(03):351-361.
    [131]罗至善,袁福湘,张桂琴.贴片云纹干涉法[J].力学学报,1990,22(1):116-123.
    [132]罗至善,张桂琴,穆宗学等.正常光照下亚动态云纹干涉法及其应用研究[J].机械工程学报,1997,33(04):38-43.
    [133]罗至善,孙立伟,张桂琴.云纹图象计算机处理技术的进展及其应用[J].测试技术学报,1998,12(03):42-47.
    [134] Liu Jie, Luo Zhi-shan, Zhang Xue-shen. New computeradjusted-and-processing moire interferometer’s applied research to mechanicalproperty measure of concrete. ISTM/2003-5th International Symposium on TestMeasurement.2003,(4):2985-2989.
    [135]刘杰,罗至善,张学深.应用云纹干涉法研究混凝土破坏机理[J].天津大学学报,2004,37(10):896-900.
    [136]罗至善.云纹干涉法的进展、仪器化及其工程应用前景[C].第四届全国现代结构工程学术研讨会论文集[M],宁波:2004,1137-1146.
    [137]罗至善,袁福湘,刘文秀.云纹干涉法及其试件栅的调制和测定[J].天津大学学报,1983,(4):39-48.
    [138] Urban Forssell, Lennart Ljung. Closed-loop identification revisited[J].Automatica,1999,35(7):1215-1241.
    [139] Elkaim, G. System identification for precision control of a wing sailedGPS-guided catamaran. Ph.D. Thesis, Department of Aeronautics andAstronautics, Stanford University,2002.
    [140] C.T. Chen. Linear System Theory and Design (3rd ed.). Oxford UniversityPress,1999.
    [141] J.N. Juang. Applied System Identification. Prentice Hall PTR,1994.
    [142]韩庆华,裴波,杨志等.预应力组合网架结构的理论分析与应用研究[J].建筑结构学报,2004,25(1):87-92.
    [143]韩庆华,裴波,王成博等.预应力组合网架结构的自振特性分析及现场测试[J].地震工程与工程振动,2004,24(2):118-124.
    [144] Liu Hong-bo, Chen Zhihua. Structural behavior of the suspen-dome structuresand the cable dome structures with sliding cable joints[J]. StructuralEngineering and Mechanics,2012,43(1):53-70.
    [145] Liu Hong-bo, Chen Zhi-hua, Zhou Ting. Research on the Process ofPre-Stressing Construction of Suspen-Dome Considering Temperature Effect[J].Advances in Structural Engineering,2012,15(3):489-493.
    [146] Chen Zhi-hua, Liu Hong-bo, Wang Xiao-dun, Zhou Ting. Establishment andapplication of cable-sliding criterion equation[J]. Advanced Steel Construction,2011,7(2):131-143.
    [147] Liu Hong-bo, Chen Zhi-hua. Influence of cable sliding on the stability ofsuspen-dome with stacked arches structures[J]. Advanced Steel Construction,2012,8(1):54-70.
    [148] Liu Hong-bo, Chen Zhi-hua. Research on effect of sliding between hoop cableand cable-strut joint on behavior of suspen-dome structures[J]. Advanced SteelConstruction,2012,8(4):359-365.
    [149]陈志华,刘红波,周婷等.空间钢结构APDL参数化计算与分析[M].北京:中国水利水电出版社,2009.
    [150]刘红波,陈志华,牛犇.弦支穹顶叠合拱结构施工过程的数值模拟及施工监测[J].建筑结构学报,2012,33(12):79-84.
    [151]刘红波,陈志华,周婷.弦支穹顶结构预应力张拉的摩擦损失[J].天津大学学报,2009,42(12):1055-1060.
    [152]陈志华,刘红波,牛犇.弦支穹顶结构的工程应用.工业建筑,2010,40(8):42-48.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700