用户名: 密码: 验证码:
弦支穹顶结构施工控制理论与温度效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
弦支穹顶是一种高效的预应力空间钢结构,已推广用于体育馆、会展中心等近20项大跨度建筑工程中。随着工程应用的推广和研究的深入,在施工控制技术与分析设计理论方面遇到了一些亟待解决的关键课题,包括弦支穹顶结构临时支承结构的分析设计理论、考虑温度变化和滑移摩擦影响的弦支穹顶的预应力施工过程数值模拟与控制理论、太阳辐射作用下弦支穹顶结构温度荷载的数值模拟理论及其温度效应研究等,这些课题解决的好坏,直接影响到弦支穹顶的结构效能、工程造价及施工阶段和使用阶段的安全等问题。本文围绕上述问题,采用数值分析与试验研究相结合的方法,开展了系统深入的分析研究,取得了一些具有科学意义和工程应用价值的研究成果。
     弦支穹顶施工时通常会采用扣件式钢管满堂支承架作为结构和施工荷载的临时支承,而目前扣件式钢管满堂支承架半刚性分析计算理论尚不完善,由此带来了很多问题,甚至工程事故。结合行业标准《扣件式钢管脚手架安全技术规范》(JGJ 130-2001)修订工作,通过足尺试验和理论分析对扣件式钢管满堂支承架的结构力学特点、分析方法及其设计理论进行了深入的研究,提出了一套完整的扣件式钢管满堂支承架的数值模拟理论和简化计算方法,揭示了各个参数对结构稳定性能的影响规律,相关研究成果已编入行业标准《扣件式钢管脚手架安全技术规范》(JGJ 130-2011)。
     在弦支穹顶结构预应力张拉施工过程中,环索与撑杆下节点之间的滑移摩擦引起显著的预应力张拉偏差,给结构带来了一定的安全隐患。为系统深入的研究滑移摩擦导致的预应力偏差及其对结构性能的影响,本文基于拉索的热胀冷缩原理及其泛函广义逆的概念,考虑滑移摩擦建立了环索绕撑杆下节点滑移的数值模拟理论,通过ANSYS的APDL语言编程实现;同时基于有限元基础理论,推导了基于有限元列式的三节点滑移索单元和闭合多滑轮滑移索单元的刚度矩阵、质量矩阵,通过商用有限元软件ABAQUS的用户自定义单元功能,将单元算法用于计算机手段进行实现索滑移的数值模拟。通过算例和试验验证上述三种索滑移数值模拟理论的合理性。利用上述理论,分别研究了滑移摩擦导致的预应力偏差的分布规律、偏差对弦支穹顶结构性能的影响、环索滑移与不滑移时结构性能的对比分析等内容,得出了一些可供工程参考的结论。
     在弦支穹顶结构预应力施工期间,环境温度与结构温度是不断变化的,并且变化的幅度较大,给结构的预应力张拉的精确施工带来技术难题。本文首先通过算例分析得出由预应力张拉期间环境温度变化引起显著的预应力张拉误差,误差可达212%,因此必须考虑环境温度的变化对预应力施工的影响。为考虑施工期间环境温度的变化对预应力施工的影响,本文提出了循环补偿法和简化线性方法来考虑施工过程中环境温度变化对预应力张拉施工的影响,通过算例对方法的合理性和精度进行了验证。
     在弦支穹顶结构的施工阶段和使用阶段,其结构本身的温度场是一个不断变化的过程。温度作用作为一种特殊的荷载,与重力荷载、风荷载、地震作用等常规荷载有着本质的不同,后者可通过增强结构的刚度来有效抵抗,但是前者却不然,刚度越大,温度作用引起的内力就越大,因此对于温度作用引起的内力不能仅靠增加结构的刚度来抵抗。本文采用有限元理论研究了温度作用对弦支穹顶的预应力大小、节点位移、杆件内力和支座反力的影响,揭示了拉索材料和支座约束刚度对温度作用下弦支穹顶结构性能的影响规律。
     在弦支穹顶结构的施工阶段和使用阶段,其结构温度场不仅受到环境空气温度的影响,而且还受到太阳辐射的影响,太阳辐射作用下,结构表面的温度可超出环境空气温度20℃之上,若设计和施工过程中不能合理的考虑结构的温度场,将会引起安全隐患。本文基于有限元理论,建立太阳辐射作用下钢结构温度场数值模拟方法,并提出了一种高效的太阳阴影计算方法。采用本文建立的数值模拟和阴影计算方法采用ASHRAE晴空辐射模型,建立了太阳辐射作用下钢结构的温度场分析模型,研究了钢板太阳辐射吸收系数、地面辐射反射系数、构件规格和空间方位对结构温度场的影响,完成了钢板、钢管、箱型钢管和H型钢四组太阳辐射下钢构件的温度场试验,验证了理论分析模型和简化计算方法的有效性和合理性。利用本文提出的太阳辐射下钢结构温度场数值模拟方法,研究了太阳辐射下弦支穹顶和弦支穹顶叠合拱结构的温度场分布规律,并揭示了此温度场下弦支穹顶的结构响应规律。
As an efficient pre-stressing spatial structure, the suspen-dome structure has been widely adopted in long-span buildings, such as gymnasiums, exhibition center and so on. Some burning problems have occurred during the researches and application of suspen-dome structures, which will make a significant effect on its cost and its safety. These problems include the design and numerical simulation theory of temporary falsework structures, numerical simulation theory of pre-stressing construction process considering the sliding friction and temperature change, numerical simulation theory of temperature field theory under solar radiation and its temperature effect and so on. Consequently, a systematical study was carried out to solve the above burning problems by theoretical analysis and experimental researches, and some achievements, having obviously scientific and technological significance, were obtained.
     The structural steel tube and coupler scaffolds (hereinafter referred to as STCS) were usually adopted as the mian falsework during the construction of suspen-dome structures. Many disastrous collapses of STCS’s have occurred due to that no perfect design guidelines are obtained in current research. A systematic research on the structural characteristics, analysis method and design method have been conducted through experiments and finite element analysis and the numerical simulation theory and simplified calculation method of STCS were presented. In addition, the effects of various parameters on the stability of STCS were analyzed. Some achievements presented in this paper were adopted in the industry standard, technical code for safety of steel tubular scaffold with couplers in construction.
     A remarkable pre-stressing deviation is induced by the sliding friction between hoop cable and cable-strut joint, and this deviation brings hidden danger of suspen-dome structures. In order to research the pre-stress deviation distribution and its effect on the structural behavior, three numerical simulation method for the cable sliding were presented. The first method was presented based on heat expansion and cold contraction and generalized inverse, and this method can consider the sliding friction and can be realized in ANSYS software using APDL language. The second method was to derive the stiffness matrix of three-node cable sliding element based on the finite element theory, and this method can realized in ABAQUS software using its UEL function. The third method was also to derive the stiffness matrix of closed sliding polygonal cable element based on the finite element theory, and this method can realized in ABAQUS software using its UEL function. The above three methods were verified by example analysis and experiment. Using the above three methods, the distribution of pre-stressing deviation and its effect on the structural behavior of suspen-dome were studied as well as the structural behavior of suspen-dome structures with various friction coefficient. Based on those analyses, some meaningful conclusions were obtained in this paper.
     The temperature of suspen-dome structures and ambient air temperature are changing during construction, and the temperature changes bring technical problems for the pre-stressing construction. The pre-stressing deviation was investigated though example analysis and the analysis results showed that the deviation induced by temperature change during construction is up to 212%. So the temperature change must be considered in the pre-stressing construction. In order to consider the temperature change in pre-stressing construction, a new pre-stressing construction control method and simplified calculation formula, is presented in this paper, which is verified by example.
     The temperature load of suspen-dome structures is change during the construction and usage stages. Comparing with the common loads, such as gravity, wind load and seismic action, temperature action is quite different. The former loads can be overcome by increase the structural stiffness, but the temperature action cannot. Furthermore, the structural stiffness is lager, the stress and displacement is larger. The influence of temperature load on the pre-stressing value, node displacement, member stress and reaction were studied by finite element analysis.
     In the process of construction and service stage of suspen-dome, the temperature distribution is affected not only by ambient temperature but also by solar radiation. Considering the effect of solar radiation, the steel temperature may be 20℃higher than the corresponding ambient temperature. Therefore, there will be hidden danger under condition that a non-rational temperature distribution is used in design. In order to provide a rational temperature data for structural design, a numerical simulation model based on ASHRAE model is presented for the temperature field analysis considering the solar radiation, and a solar shadow algorithm was also presented in this paper. A parametric study was carried out in order to investigate the influence of the steel solar radiation absorption, the solar radiation reflectance, steel member size and orientation. Four groups specimens including steel plates, steel tube, steel rectangular tube and H-shaped steels were designed and measured not only to provide insights into temperature distribution of steel members under solar radiation but also to provide data to verify future analytical results and simplified design formula. Using above method, the temperature distribution and temperature effect of suspen-dome structures and suspen-dome with stacked arch were investigated, and some significant conclusions were obtained.
引文
[1]刘锡良.现代空间结构[M].天津:天津大学出版社,2003.
    [2]董石麟,罗尧治,赵阳等,新型空间结构分析、设计与施工[M].北京:人民交通出版社,2006
    [3]董石麟.中国空间结构的发展与展望.建筑结构学报,2010,31(6):1-14.
    [4]陈志华.弦支穹顶结构[M].北京:科学出版社,2010.
    [5]陈以一,江晓峰,陈扬骥.大型开闭屋盖结构极端状况研究.建筑结构学报,2007,28(1):21-27.
    [6]郝际平,刘立杰.穹顶后张拉整体成形过程研究.西安交通大学学报,2003,37(11):1202-1206.
    [7]邢海东,郝际平,徐国彬.索托网架结构在干煤棚工程中的应用.湖南大学学报(自然科学版),2007,34(2):29-32.
    [8]袁驷,刘学林,叶康生.张拉膜结构极小曲面找形的有限元线法求解.土木工程学报,2010,43(11):1-6.
    [9]袁驷,刘学林,叶康生.膜结构极小曲面找形分析的一种线性化近似方法及其有限元线法求解.工程力学,25卷,增刊2:1-6.
    [10]沈世钊,陈昕.网壳结构的稳定性[M].北京:科学出版社,1999.
    [11] R. Fuller, tensegrity. Portfolio and art news annual, 1961.
    [12] R.B.Fuller. Tensile-integrity Structures [P]. U.S.Patent, No.3063521, 1962.
    [13]陈志华.张拉整体结构的理论分析与实验研究[D].天津:天津大学,1994.
    [14] Masao Saitoh and Kurasiro Tosiya,“A study on structural behaviors of beam string structure”, Summaries of technical papers of annual meeting architectural institute of Japan [C], Tokyo, Japan, B 1.1985, pp.280–284.
    [15] Masao Saitoh, Ohtake Tohru, A Study on beam string structure with flat circular arch, Summaries of technical papers of annual meeting architectural institute of Japan [C], Tokyo, Japan, B 1.1988: 1369–1374.
    [16] Masao Saitoh, A study on structural planning of radial type beam string structures, Summaries of technical papers of annual meeting architectural institute of Japan [C], Tokyo, Japan, B 1.1988: 1365–1366.
    [17] Masao Saitoh, Akira Okada, Katsuo Maejima, et al., Study on mechanical characteristics of a light-weight complex structure composed of a membrane and a beam string structure, Spatial, lattice and tension structures, In: Proc. of the IASS-ASCE Int. Symp., 1994:632–641.
    [18] S. Kato, et al., Active control of axial forces in beam string space frames, Spatial, lattice and tension structures, In: Proc. of the IASS-ASCE Int. Symp., 1994: 664-673.
    [19] Masao Saitoh, akira okada. The role of string in hybrid string structure[J]. Engineering Structures, 1999, 21(8), pp.280–284.
    [20] Mamoru Kawaguchi, Masaru Abe, Tatsuo Hatato, et al. On a structural system“suspen-dome”system, Proc. of IASS Symposium,Istanbul, 1993, pp:523-530.
    [21] Mamoru Kawaguchi, Masaru Abe, Ikuo Tatemichi. Design, tests and realization of‘suspen-dome’System. Journal of the IAAS, 1999, 40(131):179-192
    [22]陈志华,闫翔宇等.弦支筒壳结构体系[P].中国:2008100537228,2008.
    [23]陈志华,乔文涛等.弦支混凝土集成楼盖结构及其施工方法[P].中国:2008100534380,2008.
    [24]刘红波,陈志华.一种新型空间结构形式——弦支拱壳结构.工业建筑, 2010,40(445):10-12.
    [25]中国博士后科学基金:张弦穹顶的静力性能研究(中博基[98]9号)
    [26]张毅刚,白正仙.昆明柏联广场中厅索承网壳的设计研究[J]. IB智能建筑与城市信息,2003:60-63
    [27]陈志华,冯振昌,秦亚丽等,弦支穹顶静力性能的理论分析及实物加载试验[J],天津大学学报,2006,39(8):944-950
    [28]陈志华,秦亚丽,赵建波等,刚性杆弦支穹顶实物加载试验研究[J],土木工程学报,2006(9):47-53
    [29]王永泉,郭正兴,罗斌等.大跨度椭球形弦支穹顶预应力张拉成形方法对比分析.施工技术,2008,37(3):26-28.
    [30]张爱林,葛家琪,刘学春. 2008奥运会羽毛球馆大跨度新型弦支穹顶结构体系的优化设计选定.建筑结构学报,2007(6):1-9
    [31]葛家琪,王树,梁海彤等. 2008奥运会羽毛球馆新型弦支穹顶预应力大跨度钢结构设计研究.建筑结构学报,2007(6):10-21
    [32]葛家琪,张国军,王树等. 2008奥运会羽毛球馆弦支穹顶结构整体稳定性能分析研究.建筑结构学报,2007(6):22-30
    [33]王树,张国军,张爱林等. 2008奥运会羽毛球馆索撑节点预应力损失分析研究.建筑结构学报,2007(6):39-44
    [34]王树,张国军,葛家琪等. 2008羽毛球馆预应力损失对结构体系的影响分析.建筑结构学报,2007(6):45-51
    [35]秦杰,王泽强,张然等. 2008奥运会羽毛球馆预应力施工监测研究.建筑结构学报,2007(6):83-91
    [36]丁洁民,孔丹丹,杨晖柱等.安徽大学体育馆屋盖张弦网壳结构的试验研究与静力分析.建筑结构学报,2008,29(1):24-30.
    [37]司波,秦杰,张然等.正六边形平面弦支穹顶结构施工技术.施工技术,2008,37(4):56-58.
    [38]张志宏,傅学怡,董石麟等.济南奥体中心体育馆弦支穹顶结构设计[J].空间结构,2008(4):8-13
    [39]李志强,张志宏,袁行飞等.济南奥体中心弦支穹顶结构施工张拉分析[J].空间结构,2008(4):14-20
    [40]郭正兴,石开荣,罗斌等.武汉体育馆索承网壳钢屋盖顶升安装及预应力拉索施工.施工技术,2006,35(12):51-58.
    [41]吴宏磊,丁洁民,何志军等.连云港体育馆屋面弦支穹顶结构分析与设计.建筑结构,2008,38(5)::33-36.
    [42]范峰,陈小培,金晓飞等.营口市奥体中心体育馆屋盖结构优化选型[J].哈尔滨工业大学学报,2008,40(12):1910-1913.
    [43]陈志华,闫翔宇,刘红波等.茌平体育馆的大跨度弦支穹顶叠合拱复合结构体系[J].建筑结构,2009,14(3):59-64.
    [44]王立维,杨文,杨曦.渝北体育馆屋盖弦支穹顶的设计[C].第八届全国现代结构工程学术研讨会论文集,天津,2008.
    [45]吴兵,孟美莉,傅学怡等.深圳大运会篮球馆结构设计.钢结构,2010,25(3):39-46
    [46]耿艳丽,孙文波,朱昊梁等. 2010,南沙体育馆屋盖结构设计[J].钢结构,25(129):21-23.
    [47]郭云.弦支穹顶结构形态分析、动力性能及静动力试验研究[D].天津:天津大学,2003.
    [48]张明山.弦支穹顶结构的理论研究[D].浙江大学,2004.
    [49]郭佳民,董石麟,袁行飞.弦支穹顶结构的形态分析问题及其实用分析方法.土木工程学报,2008,41(12):1-7.
    [50] Wenjiang Kang, Zhihua Chen, Heung-Fai Lam, et al., Analysis and design of the general and outmost-ring stiffed suspen-dome structures. Engineering Structures, Vol.25, 2003, pp.1685-1695.
    [51]张明山,包红泽,张志宏等,弦支穹顶结构的预应力优化设计,空间结构,2004(3):26-30
    [52]张明山,董石麟,张志宏,弦支穹顶初始预应力分布的确定及稳定性分析,空间结构,2004(2):9-12
    [53]张国发.弦支穹顶结构施工控制理论分析与试验研究[D].浙江大学,2009.
    [54] Mamoru Kawaguchi; Masaru Abe; Tatsuo Hatato et al. Structural tests on the“suspen-dome”system, Proc. of IASS Symposium Atlanta,1994,pp.384-392.
    [55]田国伟.弦支穹顶的理论分析与应用研究[D].天津:天津大学,2001.
    [56]陈志华,李阳,康文江.联方型弦支穹顶研究.土木工程学报,2005,38(5):34-40.
    [57] Kitipornchai, Kang. W.J., Lam. H.F. et al. Facters affecting the design and construction of lamella suspendome systemes. Journal of Constructional Steel Research, 2005, 61(6):764-785.
    [58] GAO Bo-qing, WENG En-hao. Sensitivity analyses of cables to suspen-dome structural system. Journal of Zhejiang University SCIENCE, 2004 5(9):1045-1052
    [59]崔晓强,郭彦林,叶可明.滑动环索连接节点在弦支穹顶结构中的应用,同济大学学报,2004,32(10):1300-1303.
    [60]崔晓强,郭彦林,Kiewitt型弦支穹顶结构的弹性极限承载力研究,建筑结构学报. 2003,Vol.24.No.1 Feb:74-79
    [61]李永梅,张毅刚.新型索承网壳结构静力、稳定性分析.空间结构,2003(1):25-30
    [62]陈志华,窦开亮,左晨然,弦支穹顶结构的稳定性分析,建筑结构,2004(5):46-48
    [63] Zhihua Chen, Yang Li, Parameter analysis on stability of a suspendome[J]. International Journal of Space Structure, 2005, 20(2): 115-124.
    [64]刘学春,张爱林,葛家琪等.施工偏差随机分布对弦支穹顶结构整体稳定性影响的研究.建筑结构学报,2007(6):76-82.
    [65]张爱林,刘学春,王冬梅等. 2008奥运会羽毛球馆新型弦支穹顶结构模型静力试验研究.建筑结构学报,2007,28(6):58-67.
    [66]罗永峰,刘慧娟,韩庆华.弦支穹顶结构动力稳定性分析方法.西南交通大学学报,2008,43(6):729-735.
    [67]陈志华,张立平,李阳等.弦支穹顶结构实物动力特性研究.工程力学,2007(24):131-137
    [68]张爱林,王冬梅,刘学春等. 2008奥运会羽毛球馆弦支穹顶结构模型动力特性试验及理论研究.建筑结构学报,2007,28(6):68-75.
    [69]李永梅,郑志英,张毅刚.新型索承网壳结构非线性地震反应特性和参数分析.地震工程与工程振动,2006,26(6):93-100.
    [70]李永梅,张毅刚.凯维特型索承网壳结构的自振特性及参数分析.世界地震工程,2007,23(1):91-97.
    [71]李永梅,张毅刚.肋环型索承网壳结构的动力特性.工业建筑,2006,36(5):83-86.
    [72]张志宏,张明山,董石麟,弦支穹顶结构动力分析,计算力学学报,2005(6):646-650.
    [73]张增军,马人乐,张哲.弦支穹顶结构动力反应分析.世界地震工程,2006,22(4):89-94.
    [74]崔晓强,郭彦林,弦支穹顶结构的抗震性能研究,地震工程与工程振动,2005(1):67-75.
    [75]周向阳,梁枢果,张其林.武汉体育馆钢结构屋盖风振响应分析.土木工程学报,2008,41(5):33-39.
    [76]蔡建国,冯键,涂展麒等。弦支穹顶结构预应力设计及其抗震性能研究.四川大学学报(工程科学版),2009,41(4):70-75.
    [77]卓新,石川浩一郎.张力补偿计算法在预应力空间网格结构张拉施工中的应用.土木工程学报,2004,37(4):38-40.
    [78]李永梅,张毅刚,杨庆山.索承网壳结构施工张拉索力的确定.建筑结构学报,2004,25(4):76-81.
    [79]吕方宏,沈祖炎.修正的循环迭代法与控制索原长法结合进行杂交空间结构施工控制.建筑结构学报,2005,26(3):92-97.
    [80]张国发,董石麟,卓新等.弦支穹顶结构施工滑移索研究.浙江大学学报(工学版),2008,42(6):1051-1057.
    [81]张国发,董石麟,卓新.位移补偿法计算法在结构索力调整中的应用.建筑结构学报,2008,29(2):39-42.
    [82]王永泉,郭正兴,罗斌等.常州体育馆大跨度椭球形弦支穹顶预应力拉索施工.施工技术,2008,37(3):33-36.
    [83]陈志华,毋英俊.弦支穹顶滚动式索节点研究及其结构体系分析.建筑结构学报,2010,第31卷,增刊1:234-240
    [84]中华人民共和国国家标准.建筑结构荷载规范GB50009-2001.北京:中国建筑工业出版社,2006.
    [85]中华人民共和国行业标准.建筑施工扣件式钢管脚手架安全技术规范JGJ130-2001.北京,中国建筑工业出版社,2001.
    [86] British Standards Institution. BS EN 12811: Temporary works equipment: 2003.
    [87] British Standards Institution. BS EN 12812: Falsework—performance requirements and general design: 2004.
    [88] American national standards institution. ANSI/ASSE A10.8-2001: safety requirements for scaffolding: 2001.
    [89] Japanese industrial standards committee. JIS A 8951-1995: tubular steel scaffolds: 1995.
    [90]敖鸿斐,李国强,双排扣件式钢管脚手架的极限稳定承载力研究,力学季刊,2004,25(2):213~218
    [91]徐崇宝,黄宝魁,双排扣件式钢管脚手架工作性能的理论分析与试验研究,哈尔滨建筑工程学院学报,1989,22(2):38~55
    [92] B Milojkovic, R G Beale, M H R Godley. Determination of the Factors of Safety of Standard Scaffold Structures. Proceedings of International Conference on Advances in Steel Structures 2002; 1: 303-10.
    [93] Godley MHR, Beale RG. Sway stiffness of scaffold structures. The Structural Engineer,1997, Vol 75(1), 4-12.
    [94] R.G. Beale, M.H.R. Godley. Numerical modeling of tube and fitting access scaffold systems. Advanced Steel Construction 2006; 2: 199-223.
    [95] F. Yue, Y. Yuan, G. Q. Li, K. M. Ye, Zh. M. Chen, Zh. P. Wang. Wind load on integral-lift scaffolds for tall building. ASCE J Struct Engng 2005; 131: 816-24.
    [96] S.Vaux, C.Wong, G. Hancock. Sway Stability of Steel Scaffolding and Formwork Systems. Proceedings of International Conference on Advances in Steel Structures 2002; 1: 311~19.
    [97] J. L. Peng, A. D. Pan, D. V. Rosowsky, W. F. Chen, T. Yen, S. L. Chan. High clearance scaffold systems during construction-1: structural modeling and modes of failure. Eng Struct 1996; 18: 247-57.
    [98] J. L. Peng, A. D. Pan, D. V. Rosowsky, W. F. Chen, T. Yen, S. L. Chan. High clearance scaffold systems during construction-2: structural analysis and development of design guidelines. Eng Struct 1996; 18: 258-67.
    [99] S. L. Chan, Z. H. Zhou W. F. Chen, J. L. Peng, A. D. Pan. Stability Analysis of Semi-rigid Steel Scaffolding. Eng Struct 1995; 17: 568-74.
    [100] J.L. Peng, A.D.E. Pan, S.L. Chan. Simplified Models for Analysis and Design of Modular Falsework. J Construct Steel Res 1998;48:189-209
    [101] W.K. Yu, K.F. Chung, S.L. Chan. Structural instability of multi-storey door-type modular steel scaffolds. Eng Struct 2004; 26: 867-61.
    [102] L.B. Weesner, H.L. Jones. Experimental and Analytical Capacity of Frame Scaffolding. Eng Struct 2001; 23: 592-99.
    [103] Peng, J. L., Pan, A. D. E., and Chen, W. F.. Approximate analysis method for modular tubular falsework. ASCE J Struct Engng 2001; 127: 256–63.
    [104] Peng, J. L., Pan, A. D. E., Chen, W. F., Yen, T., and Chan, S. L. Structural modeling and analysis of modular falsework systems. ASCE J Struct Engng1997; 123: 1245–51.
    [105]陆征然,扣件式钢管满堂支承体系理论分析与试验研究:[博士学位论文],天津:天津大学,2010.
    [106]谢楠,王勇.超高模板支架的极限承载能力研究.工程力学,2008,第25卷,增刊1:148~153
    [107]袁雪霞,金伟良,鲁征等,扣件式钢管支模架稳定承载力研究,土木工程学报,2006,39(5):43~50
    [108] N. Kishi, W.F. Chen, Y. GOTO, M. Komuro. Effective length factor of columns in flexibly jointed and braced frames. J Construct Steel Res 1998; 47: 93–118.
    [109] J. Dario Aristizabal-Ochoa. slope-deflection equations for stability and second-order analysis of timoshenho beam-column structures with semi-rigid connections. Eng Struct 2008; 2517–2527.
    [110] Charis J. Gantes, Georgios E. Mageirou. Improved stiffness distribution factors for evaluation of effective buckling lengths in muti-story sway frames. Eng Struct 2005; 1113–1124.
    [111]童根树.钢结构平面内稳定.北京:中国建筑工业出版社,2005.
    [112]董石麟,卓新,周亚刚.预应力空间网架结构一次张拉计算法.浙江大学学报. 2003,37(6):629-633.
    [113]吕方宏,沈祖炎.修正的循环迭代法与控制原长法结合进行杂交空间结构施工控制.建筑结构学报,2005,26(3):92-97.
    [114]卓新,袁行飞.预应力索分批张拉过程中张力的仿真分析.土木工程学报. 2004,37(9):27-30.
    [115]张国发,弦支穹顶结构施工控制理论分析与试验研究:[博士学位论文],浙江:浙江大学,2009
    [116]刘学武,大型复杂钢结构施工力学分析及应用研究:[博士学位论文],北京:清华大学,2008
    [117]郭彦林,崔晓强.滑动索系结构的统一分析方法——冷冻-升温法.工程力学. 2003,20(4):156-160.
    [118]崔晓强,郭彦林,叶可明,滑动环索连接节点在弦支穹顶结构中的应用,同济大学学报(自然科学版),2004, 32(10): 1300~1303
    [119] Cui X.Q., Guo, Y.L (2004).“Influence of gliding cable joint on mechanical behavior of suspen-dome structures”, International Journal of Space Structure, Vol. 19, No. 3, pp.149-154
    [120]冯振昌,索穹顶结构静动力性能研究:[硕士学位论文],天津:天津大学,2006
    [121] Z.H. Chen, Y.J. Wu, Y. Yin, C. Shan, Formulation and application of multi-node sliding cable element for the analysis of Suspen-Dome structures,Finite Elements in Analysis and Design,2010,46(9),743-750
    [122] Aufaure M (2000).“A three-node cable element ensuring the continuity of the horizontal tension: a clamp cable element”, Computers & Structures, Vol. 74, No. 2, pp. 243-252
    [123] Aufaure M (1993).“A finite element of cable passing through a pulley”, Computers & Structures, Vol. 46, No. 5, pp. 807-812
    [124] Zhou. B, Accorsi, ML, Leonard. JW (2004).“Finite element formulation for modeling sliding cable elements”, Computers and Structures, Vol. 82, No. 2, pp. 271-280
    [125] Feng Ju, Yoo Sang Choo (2005).“Dynamic analysis of tower cranes”, Journal of Engineering Mechanics, Vol. 131, No. 1, pp. 88-96
    [126] M. Ravikumar, Avijit Chattopadhyay (1999).“Integral analysis of conveyor pulley using finite element method”, Computers & Structures, Vol. 71, No. 3, pp.303-332
    [127] Singru, P.M., Modak, J.P. (2001).“Computer simulation of the dynamic and vibration response of a belt drive pulley”, Journal of Sound and Vibration, Vol. 242, No. 2, pp. 277-293
    [128] K.H. Lee, Y.S. Choo, F. JU (2003).“Finite element modeling of frictional slip in heavy lift sling systems”, Computers and Structures, Vol. 81, No. 2, pp. 673-690
    [129] F. JU, Y.S. Choo (2005).“Super element approach to cable passing through multiple pulleys”, International Journal of Solids and Structures, Vol. 42, No. 3, pp. 533-547
    [130]唐建民,沈祖炎.悬索结构非线性分析的滑移单元法.计算力学学报,1999年5月,16(2):143-149.
    [131]魏建东.索托桥结构分析的滑移索单元法.计算力学学报,2006年8月,23(4):508-512.
    [132]魏建东.滑动索系结构分析中的摩擦滑移索单元.工程力学,2006年9月,23(9):66-70.
    [133]尚守平,李知兵,汪明等.昼夜温差对预应力碳纤维板应力的影响.土木工程学报,2009, 42(4):72-76.
    [134] .樊小卿.温度作用于结构设计.建筑结构学报,1999,20(2):43-50.
    [135]王毅,叶见曙.温度梯度对混凝土曲线箱梁的计算方法.东南大学学报,2005,35(6):924-929.
    [136]徐铨彪,余祖国,金伟良等.基于温度效应的混凝土砌块建筑抗裂结构设计方法研究.建筑结构学报,2003,24(5):42-49.
    [137]吕培印,宋玉普.不同温度下混凝土抗拉疲劳性能试验研究.工程力学,2003,20(2):80-86.
    [138]孙君,李爱群,丁幼亮,邓扬.润扬大桥悬索桥模态频率-温度的季节相关性研究及其应用.工程力学,2009,26(9):50-55.
    [139]付春雨,李乔.考虑空间整体效应的温度自应力计算.铁道学报,2007,29(6):80-83.
    [140]殷志祥,张辉.空间网架结构边界约束对网架温度应力的影响.辽宁工程技术大学学报,2002,21(6):723-725.
    [141] M.M Alinia, S. Kashizadeh. Effect of flexibility of substructures upon thermal behaviour of spherical double layer space truss domes. Part I: Uniform thermal loading. Journal of Constructional Steel Research, 2006, Vol. 62: 359-368.
    [142] M.M Alinia, S. Kashizadeh. Effect of flexibility of substructures upon thermal behaviour of spherical double layer space truss domes. Part II: Gradient & partial loading. Journal of Constructional Steel Research, 2006, Vol. 62, 675-681.
    [143] M.M Alinia, S. Kashizadeh. Effects of support positioning on the thermal behaviour of double layer space truss domes. Journal of Constructional SteelResearch, 2007, Vol.63, 375-382.
    [144] Caspar Zs. Temperature analysis of pin-jointed spherical domes. International journal of Space Structure, 1988, 3(4).
    [145]杨立军,吴晓,孙晋.考虑温度变化的单层索网幕墙结构的非线性振动.土木建筑与环境工程,2009,31(2):23-28.
    [146] F.凯尔别克.太阳辐射对桥梁结构的影响[M].北京:中国铁道出版社,1981.
    [147]刘来君.变分法在桥梁结构温度应力计算中的应用.中外公路,2004,24(1):10-13
    [148] Tong M,Tham L G,Au F T K. Numerical modeling for temperature distribution in steel bridges[J]. Computers and structures, 2000, 79:583-593.
    [149] Xu Y. L., Chen B., Ng C. L., Wong K. Y., Chan W. Y.. Monitoring temperature effect on a long suspension bridge[J].Structural Control and Health Monitoring, 2010, Vol. 17:632–653
    [150] S.-H. KIM, K.-I. CHO, J.-H. WON, J.-H. KIM. A study on thermal behavior of curved steel box girder bridges considering solar radiation. Archives of Civil and Mechanical Engineering, 2009, vol. 9, No. 3, pp:59-76.
    [151]孙国富.大跨度钢管混凝土拱日照温度效应理论及应用研究:[博士学位论文],山东:山东大学,2010
    [152]孙国晨,关荣财,姜英民等.钢-混凝土叠合梁横截面日照温度分布研究[J].工程力学,2006,23(11):122-127.
    [153]徐光亚,颜东煌,张克波.桁架式钢管混凝土拱桥合龙时温度影响对策与计算方法.工程力学,2008,25(4):236-240.
    [154]张元海,李乔.非线性日照梯度温度作用下斜支承箱梁的温度效应研究.工程力学,2009(1):131-136
    [155] Chen xiaoqiang, liu qiwei, zhu jun. measurement and theoretical analysis of solar temperature field in steel-concrete composite girder. Journal of southeast university, 2009, 25(4):513-517
    [156]任志刚,胡曙光,丁庆军,吕林女.钢管膨胀混凝土墩柱日照温度场分析.武汉理工大学学报,2008,30(11):99-107
    [157]雷笑,叶见曙,王毅.日照作用下混凝土箱梁的温度代表值.东南大学学报,2008,38(6):1106-1109
    [158]张元海,李乔.斜支承箱梁的日照温度次内力研究.土木工程学报,2008,41(5):46-51
    [159]彭友松,强士中,李松.哑铃形钢管混凝土拱日照温度场分布研究.中国铁道科学,2006,27(5):71-75.
    [160]谭毅平,韩大建.预应力混凝土箱梁日照温度效应研究.深圳大学学报,2008,25(1):43-49.
    [161] Brisn K. Diefenderfer, Imad L. Al-Qadi, Stacey D. Diefenderfer. Model to predict pavement temperature profile: development and validation. Journal of Transportation Engineering, vol. 132, no. 2, pp:162-167.
    [162] Andrew D. Chiasson, Cenk Yavuzturk, Khaled Ksaibati. Linearized approach for predicting thermal stresses in asphalt pavements due to environmental conditions. Journal of Materials in Civil Engineering, Vol. 20, No. 2, pp: 118-127.
    [163] Chen-Ming Kuo. Effective temperature differential in concrete pavements. Journal of transportation engineering, 1998, 124(2):112-116.
    [164] Wing-Gun Wong, Yang Zhong. Flexible pavement thermal stresses with variable temperature. Journal of transportation engineering, 2000, 126(1):46-49.
    [165] J. Zhang, T. F. Fwa, K. H. Tan, X. P. Shi. Model for nonlinear thermal effect on pavement warping stresses. Journal of transportation engineering, 2003, 129(6):695-702.
    [166] Robert Y. Liang, Yan-Zhou Niu. Temperature and curling stress in concrete pavements: analytical solutions. Journal of transportation engineering, 1998, 124(1):91-100.
    [167] Jin Feng, Chen Zheng, Wang Jinting, Yang Jian. Practical procedure for predicting non-uniform temperature on the exposed face of arch dams[]. Applied Thermal Engineering, 2010, vol. 20:2146-2156.
    [168] Noorzaei J, Bayagoob KH, Thanoon WA, et al. Thermal and stress analysis of Kinta RCC dam[J]. Engineering Structures, 2006, 28(13): 1795-802.
    [169]陈拯,金峰,王进廷.拱坝坝面太阳辐射强度计算.水利学报,2007,28(12):1460-1474.
    [170]林志祥.混凝土大坝温度应力数值仿真分析关键技术研究:[博士学位论文].南京:河海大学,2005.
    [171] Hamed E, Bradford MA, Gilbert RI. Time-dependent and thermal behaviour of spherical shallow concrete domes[J]. Engineering Structures, 2009, 31(9): 1919-1929.
    [172]李志磊,干钢,唐锦春.考虑辐射换热的建筑结构温度场的数值模拟[J].浙江大学学报(工学版),2004,38(7):915-920.
    [173]李红梅,金伟良,叶甲淳等.建筑维护结构的温度场数值模拟[J].建筑结构学报,2004,25(6):93-98.
    [174]刘文燕,耿耀明.混凝土表面太阳辐射吸收率试验研究.混凝土与水泥制品,2004,4:8-11.
    [175]肖建庄,宋志文,赵勇,钱岳红.基于气象参数的混凝土结构日照温度作用分析.土木工程学报,2010,43(4),30-36.
    [176]张宇鑫,宋玉普,王登刚.基于遗传算法的混凝土三维非稳态温度场反分析.计算力学学报,2004,21(3):41-46.
    [177]刘佳坤.太阳辐射对大跨度钢网壳的温度场及受力性能的影响:[硕士学位论文],贵州:贵州大学,2009
    [178]范重,王喆,唐杰.国家体育场大跨度钢结构温度场分析与合拢温度研究[J].建筑结构学报,2007,28(2):32-40.
    [179] Faye C. McQuiston, Jerald D. Parker, Jeffrey D. Spitler. Heating, ventilating, and air conditioning analysis and design.UAS: John Wiley and Sons, 2005.
    [180] Duffie J A, Beckman W A. Solar energy of thermal process [M]. New York: John Wiley & Sons, 1991.
    [181] Dilger W H, Ghali A, Chan M. Temperature stresses in composite box girder bridges [J]. Journal of Structural Engineering, ASCE, 1983, 109(6): 1460―1478.
    [182]陈志华,刘红波,周婷等.空间钢结构APDL参数化计算与分析.北京:中国水利水电出版社,2009
    [183]李锦萍,宋爱国.北京晴天太阳辐射模型与ASHRAE模型比较[J].首都师范大学学报(自然科学版),1998,19(1):35-38.
    [184] AITM220018. Airbus industrie test method solar absorption of paints[R] . Airbus Industrie , 1998.
    [185]兰中秋,何川,丹宇等.钢箱梁桥SMA沥青路面温度场的数值模型.重庆大学学报,2003,26(6):66-69.
    [186]贾璐,孙立军,黄立葵等.沥青路面温度场数值预估模型.同济大学学报(自然科学版),2007,35(8):1039-1043
    [187]中华人民共和国行业标准.民用建筑热工设计规范GB 50176-1993.北京,中国计划版社,2001. OptionButton1

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700