用户名: 密码: 验证码:
AZ31B镁合金板料成形性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
发展新型材料,降低能耗,保护环境,实现人类的可持续发展,是解决地球资源日趋贫化和环境日益恶化的主要渠道之一,已成为人们关注的主要问题。镁合金作为目前世界上可工程化应用最轻的金属结构材料,具有比强度、比刚度高,导热导电和电磁屏蔽性能优越,与环境相容性良好等优点,在汽车、通讯电子等领域有着广阔的应用前景。
     镁合金具有密排六方晶体结构,常温下塑性变形能力差,但随着成形温度的升高,其塑性成形性能将发生根本性改变。利用镁合金板料温热冲压成形工艺不仅可以充分利用镁合金材料优异的性能、环保性以及满足产品薄壁化、轻量化的趋势,而且能够大幅度提高生产效率和产品合格率,因此研究开发镁合金板料冲压成形技术,已经逐渐成为近几年金属塑性加工领域研究的热点。
     镁合金在中高温下的流变应力及其数学模型是热冲压数值模拟中不可缺少的信息,它综合反映了流变应力与应变、应变速率、温度以及其它因素之间的关系。针对目前可用的镁合金基本性能数据仍很缺乏的问题,本文开展了AZ31B镁合金板料在室温和中高温下的拉伸试验,获得了AZ31B镁合金板料在不同温度和应变速率下的流变规律。研究表明,AZ31B镁合金板料在室温下拉伸时,其流变曲线对变形速度不敏感,低温变形主要受热效应控制;在中高温拉伸变形中发生明显的软化现象,并且温度越高,应变速率越低,这种软化效应越明显,表现出明显的动态再结晶特征。本文在对高温流变应力变化规律分析的基础上,构建了两类流变应力数学模型,即修正的Fields-Backofen模型和幂为二次函数的指数模型。研究表明,在变形的前半段,两种模型的预测值与试验值均能很好地吻合,但Fields-Backofen修正模型不能反映峰值应力之后的软化效应。而指数形式模型可以很好地反映AZ31B镁合金材料在中高温变形过程中的应变硬化效应和应变软化效应,因而本文所提出的新模型—指数形式模型对于描述镁合金高温下的流变应力软化特征更为适合。
     镁合金板料成形的主要失效控制因素不是应力而是极限应变。而极限应变一般通过胀形试验确定。本文进行了AZ31B镁合金板料在三个成形温度150℃、200℃、300℃下的半球形刚性凸模胀形试验,建立了对应温度下的成形极限图,分析获得了成形温度对成形极限图的影响规律。研究表明,AZ31B镁合金的成形极限图受温度影响比较显著,低于100℃时成形极限曲线基本汇集于一点,在150℃时可得到完整的成形极限图,但位置偏低;进一温度升高温度直到300℃,成形极限曲线稳定上升,胀形性能得到显著改善。针对试验制作成形极限图费时费力,且仅能确定几个有限温度点的成形极限图的问题,本文在对实测成形极限曲线变化规律分析的基础上,建立了AZ31B镁合金在不同温度下的成形极限数学模型,为AZ31B镁合金板料冲压成形破裂位置的预测及有限元模拟提供了依据。
     极限拱顶高度是反映板料成形性能的一个重要参数,本文主要采用试验方法研究并分析了板料厚度、成形温度、成形速度、润滑条件及预成形等对AZ31B镁合金板料成形性能的影响规律,获得了镁合金板料胀形成形的最优条件,厚度为0.6mm的板料在温度为250℃,采用二硫化钼润滑,且先进行拱顶高度为10mm的预成形,保温时间1.0h时板料的成形性能最好,其极限拱顶高度达到42mm,板料发生完全再结晶。
     在板料成形中摩擦是不可避免的,摩擦系数的确定是控制成形工艺及数值模拟计算的必要信息。本文将有限元模拟和试验研究相结合,提出了一种确定摩擦系数的新方法—有限元逆向确定法,分析获得了不同温度下半球形刚性凸模胀形试验过程中镁合金板料与冲头之间的摩擦系数,并结合成形极限图对模拟结果的合理性进行了验证。研究表明,有限元模拟结果与试验结果有着很好的一致性,从而为工程上确定材料接触面间的摩擦系数提供了一种简单、可行的新思路。
     拉深成形是一种常见的板料冲压工艺,本文利用Swift拉深试验装置对镁合金板料进行了室温及加热状态下的拉深试验,获得了成形温度、压边力、模具间隙等工艺参数对AZ31B镁合金板料成形性能的影响规律,研究表明,AZ31B镁合金板料室温成形性能较差,在升高的温度下,其成形性能显著改善。AZ31B镁合金板料最佳成形温度范围在210℃-240℃之间。在较低温度下,模具间隙可取材料厚度的1.0~1.05倍,但在较高的温度下,取板料厚度的1.1倍的模具间隙可以得到性能更好的拉深件。利用经验公式计算的压边力并不适用AZ31B镁合金板料,研究表明,作用于试件上的实际压边力应控制在1kN以内。
     板料成形过程中的回弹现象是影响成形件精度的主要因素。本文通过90°V形校正弯曲试验,探讨了成形温度、润滑条件、保压时间、最小弯曲半径等对AZ31B镁合金板料弯曲变形及其回弹的影响规律。研究表明,成形温度越高,镁合金的弯曲成形性能越好,其回弹量和最小弯曲半径越小。回弹角随保压时间的变化规律是前期迅速减少,当增加到2分钟左右时基本不再变化。在加热状态下,润滑剂的涂覆部位和有无润滑剂对镁合金的弯曲回弹影响很小。在常温下和加热条件下镁合金板料最小弯曲半径应大于2.0mm而小于8mm,,在较低的温度下,凸模圆角半径宜取的大一些,但温度较高时,可以取较小的临界值。
     有限元数值模拟已经成为现代工业设计中主要的辅助分析手段。本文采用有限元法,研究了AZ31B镁合金板料的热成形规律,主要研究了虚拟冲压速度对计算精度和压边力、原始毛坯尺寸、凸模圆角半径对AZ31B镁合金板料拉深性能的影响规律。研究表明,在5000mm/s的虚拟冲压速度下得到系统的动能和沙漏能均远远低于系统内能,能够保证计算精度。但考虑到镁合金板料在实际成形时变形速度比较低,虚拟冲压速度取值不宜太高,建议虚拟冲压速度不要超过2000mm/s。压边方式和压边力大小的合理选取对板料成形起着关键性的作用,并且板料尺寸不同对压边力的敏感程度不同。对于小尺寸试件,由于板料过早地脱离了压边圈的控制,变形后期在径向压力作用下失稳起皱,并且初始压边力越小,起皱越厉害。对于大尺寸试件,压边力低于500N时,试件由于压边力不足而在凸缘区严重起皱,最后在筒形件直臂靠近凹模入口处破裂,压边力超过1000N时,试件在圆筒直臂区被拉裂,并且凸缘区也形成了均匀的折皱。对于本文研究的拉深条件,在良好压边情浣下,200℃时镁合金可拉深成形的最大毛坯尺寸为70mm。随着凸模圆角半径的增大,冲头行程提高,拉深性能得到显著改善。在凸模圆角半径从2mm到4mm变化时,冲头行程迅速提高,当凸模圆角半径超过4mm后冲头行程的增大幅度变缓,这说明AZ31B镁合金板料在200℃拉深时凸模圆角半径取值应在4mm-10mm之间。有限元数值模拟结果与热拉深试验结果基本吻合,表明了本文中测定的材料流变曲线、成形极限曲线及运用有限元逆向法所估算的摩擦系数等数据是合理的,可以较好地保证了有限元数值模拟结果的准确性和可靠性。
The development of new materials with the aim of reducing energy consumption, protecting environment and achieving sustainable human development is one of main ways to solve the depletion of natural resources and deterioration of environment, and has become a major concern of mankind. Magnesium alloys, as the lightest engineering metal material, have many advantages such as high specific strength and specific stiffness, excellent thermal conductivity, strong electromagnetic shielding and good environmental compatibility, and have broad application prospects in automotive, communications, electronics and other fields
     Magnesium alloys show low ductility at room temperature because of their typical hexagonal close-packed crystal structure. However, the plastic formability of magnesium alloy would be significantly improved with the increase of temperature. The application of warm and hot stamping technology for magnesium alloy sheet can not only make full use of material's excellent performance, environmental performance and meet the need for thin and lightweight product, but also greatly improve production efficiency and product qualified rate. So the research and development of forming technology for magnesium alloy sheet has been a hotspot in recent years.
     Flow stress and constitutive equation of magnesium alloy at high temperatures are indispensable conditions for numerical simulation of hot stamping, which reflect the relationship between flow stress and strain, strain rate, temperature and other factors. Since available basic performance data of magnesium alloy in the present is still very lack, in this paper, uniaxial tensile tests of AZ31B magnesium alloy sheet were conducted at room and high temperatures, true stress-true strain curves at different temperatures and strain rates were obtained. Studies show that the tensile flow curves of AZ31B magnesium alloy sheet at room temperature are not sensitive to deformation velocity and controlled by heating effect. An obvious softening phenomenon was observed during hot tensile deformation of AZ31B magnesium alloy sheet. And as the temperature increases and/or strain rate decreases, the softening effect is more notable, which shows that dynamic recrystallization occurs. Through the analysis of the true stress-strain curves, two mathematical models of flow stress were developed, namely the model based on the Fields-Backofen equation, and the model based on a natural exponential function whose exponent is a quadratic function. The research indicates that, at the first stage of the deformation, two kinds of model are in good agreement with the experimental value. But the model built based on Fields-Backofen equation is inaccurate to describe the softening behavior after the peak stress. While the exponential model can accurately reflect the work hardening and strain softening effect of AZ31B magnesium alloy sheet at high temperatures. Therefore, the new model built in this paper is more appropriate for the prediction of flow stress of AZ31B magnesium alloys at high temperatures.
     Major causes of failure in the forming process of Magnesium alloy sheet is not stress but ultimate strain. The ultimate strain can be determined through bulge test. In this paper, the forming limit diagrams of AZ31B magnesium alloy sheet at the temperatures of150℃,200℃and300℃were determined experimentally by conducting hemispherical punch stretching tests. The effects of temperature on forming properties of AZ31B magnesium alloy sheets were discussed. The research indicates that, The forming limit diagrams of AZ31B magnesium alloy sheet are affected by temperatures. When temperature is below100℃, the FLC is almost concentrated to a point. A complete forming limit diagram can be obtained at150℃, but the location is low. When the temperature increases to300℃, the location of forming limit curve rise and the bulging performance is improved significantly. As we all know, experimental determination of forming limit diagram is a time-consuming and laborious work and only can obtain results at given temperature, the mathematical model of the forming limit diagrams for AZ31B magnesium alloy sheet at different temperatures was established on the basis of analysis of the experimental data. It can be used for predicting the locus of failure in stamping for AZ31B magnesium alloy sheet at high temperatures. It also provides an important safety judgment criterion in simulation of AZ31B magnesium alloy sheet metal forming processes.
     Limit dome height is one of the important parameters reflecting the forming property of sheet metal. In this paper, the effect of blank thickness, forming temperature, forming speed, lubrication conditions on the forming properties of AZ31B magnesium alloy sheet was analyzed by experimental method and forming optimum conditions was obtained. That is to say, sheet metal with a thickness of0.6mm shows the best forming performance under the conditions of the temperature of250℃, with MoS2lubricating, a pre-forming of10mm dome height and heat holding time of1.0h. The limit dome height reaches42mm with complete recrystallization.
     It is well known that friction is inevitable during the forming process of sheet metal and friction coefficient is necessary for controlling sheet metal forming process and numerical simulation. In this paper, a kind of new method for determining the friction coefficient was put forward by the combination of the finite element simulation and experiment. Friction coefficient between magnesium alloy sheet and the punch at different temperatures during hemispherical rigid punch bulging test process is estimated. The rationality of the simulation results are verified by forming limit diagram obtained by experiment. The research indicates that, simulation results are in good agreement with the experimental ones. and so it provides a simple, feasible new idea for the determination of the friction coefficient of the contact position between two surfaces in engineering.
     Deep drawing is a common sheet metal stamping process. In this paper, drawing tests of AZ31B magnesium alloy sheet were conducted using Swift drawing experiment device at room and high temperature, the effect law of the process parameters such as forming temperature, blank-holder force, die clearance on the forming performance of AZ31B magnesium alloy sheet are obtained. The research indicates that, the forming property of AZ31B magnesium alloy sheet was poor at room temperature, but it is significantly improved at elevated temperatures. The preferred forming temperature was in the range of210℃-240℃. At lower temperature, die clearance desirable is1.0to1.05times thickness of the material. And good drawing parts can be obtained with gap1.1times thickness of the material at high temperature. The blank-holder force calculated using the empirical formula is not suitable for AZ31B magnesium alloy sheet. BHF acting on the specimen should be controlled less than1kN.
     Springback is the main factor influencing the precision of parts during the forming process of sheet metal. The effect of forming temperature, lubrication condition, pressure holding time, the minimum bend radius on the deformation and springback of AZ31B magnesium alloy sheet was explored by V shape bending correction experiment with90°. The results indicate that the higher the temperature is, the better bending performance of magnesium alloy sheet is and the smaller springback and bending radius are. The springback angle decreases rapidly with the holding time in the initial stage, no longer changes when increased to2minutes. The effect of the lubricant on bending springback is less at heating condition. The minimum bending radius should be greater than2.0mm and less than8mm at room and high temperatures for AZ31B magnesium alloy sheet. At lower temperature, a large value is selected, but when the temperature is higher, a smaller critical value can be taken.
     Finite element numerical simulation has become main aided analysis method in modern industrial design. Hot forming bahavior of AZ31B magnesium alloy sheet is investigated by finite element method. The effect of virtual stamping velocity on calculation precision and the effect of the blank-holder force, original blank size and punch fillet radius on the deep draw ing performance of AZ31B magnesium alloy sheet are discussed. The results indicate that the kinetic energy of the system and the hourglass energy are far lower than the internal energy of the system at a virtual stamping velocity of5000mm/s, which can ensure the precision of calculation. But considering the low actual deformation rate of magnesium alloy sheet, virtual stamping velocity values should not be too high and it is suggested to be less than2000mm/s. The reasonable selection of blank-holder device and blank-holder force plays a critical role in sheet metal forming. Different sizes of sheet metal have different reflect on the blank-holder force. For small size specimen, because of sheet metal prematurely from the blank holder, instability wrinkling phenomenon appears in the last stage of deformation, and the smaller initial blank-holder force is, the more powerful wrinkling is. For large size specimen, when the blank-holder force is less than500N, severe wrinkling in flange zone of the specimen happens due to lack of blank-holder force, finally results in fracture in the straight wall zone of cylindrical cup close to the entrance of the die. When the blank-holder force is more than1000N, the specimen is pulled crack in the cylinder straight wall zone, and a uniform wrinkle in flange zone is also formed. For deep drawing conditions in this paper under a good blank-holder status, the maximum blank size is70mm at200℃. With the increase of the punch fillet radius, the punch stroke increases, and deep drawability is significantly improved.When punch fillet radius changes from2mm to4mm, punch stroke increases rapidly. When punch fillet radius is larger than4mm, the punch stroke increases at decreased rate. This slows that punch fillet radius should be between4mm and10mm for AZ31B magnesium alloy sheet at200℃. The results of numerical simulation are basically consistent with that of thermal drawing experiment. It indicated that flow curves, forming limit curves and friction coefficient obtained by inverse finite element method were reasonable, which ensures the accuracy and reliability of numerical simulation results.
引文
[1]Mordike B L, Ebert T. Magnesium:properties-applications-potential [J]. Materials Science and Engineering,2001,302(1):37-45.
    [2]Yang Z, Li J P, Zhang J X, et al. Review on research and development of magnesium alloys [J]. Acta Metallurgica Sinica (English Letters),2008,21(5):313-328.
    [3]Diem W. Magnesium in Different Applications [J]. Auto Technology,2001,1:40-41.
    [4]王渠东,丁文江.镁合金及其成形技术的国内外动态与发展[J].世界科技研究与发展,2004,26(3):39-46.
    [5]陈振华,夏伟军,严红革,等.镁合金材料的塑性变形理论及其技术[J].化工进展,2004,23(2):127-131.
    [6]Hsiang S H, Kuo J L. An investigation on the hot extrusion process of magnesium alloy sheet [J]. Journal of Materials Processing Technology,2003,140:6-12.
    [7]Kim S H, You B S, Yim C D, et al. Texture and microstructure changes in asymmetrically hot rolled AZ31 magnesium alloy sheets [J]. Materials Letters,2005,59:3876-3880.
    [8]Behrens B A, Schmidti. Improving the properties of forged magnesium parts by optimized process parameters [J]. Journal of Materials Processing Technology,2007,187-188:761-765.
    [9]Doege E, Droder K. Sheet metal forming of magnesium wrought alloys-formability and process technology [J]. Journal of Materials Processing Technology,2001,115:14-19.
    [10]Iwanaga K, Tashiro H. Okamoto H. et al. Improvement of formability from room temperature to warm temperature in AZ31magnesium alloy [J]. Journal of Materials Processing Technology, 2004,155-156:1313-1316.
    [11]Chino Y, Iwasaki H, Mabuchi M. Stretch formability of AZ31 Mg alloy sheets at different testing temperatures [J]. Materials Science and Engineering,2007,466:90-95.
    [12]Prasad Y V R K, Rao K P. Effect of crystallographic texture on the kinetics of hot deformation of rolled Mg-3Al-1Zn alloy plate [J]. Materials Science and Engineering:A,2006,432(1-2):70-177.
    [13]Balasubramanian S, Anand L. Plasticity of initially textured hexagonal polycrystals at high homologous temperatures:application to titanium [J].Acta Materiallia,2002,50(1):133-148.
    [14]Agnew S R, Duygulu O. Plastic anisotropy and the role of non-basal slip in magnesium alloy AZ31B [J].International Journal of Plasticity,2005,21(6):1161-1193.
    [15]Agnew S R, Duygulu O. A mechanistic understanding of the formability of magnesium: Examining the role of temperature on the deformation mechanisms [J]. Materials Science Forum, 2003,419-422:177-188.
    [16]余琨,黎文献,王日初.镁合金塑性变形机制[J].中国有色金属学报,2005,15(7):1081-1086.
    [17]Avedesian M M, Baker H. ASM specialty handbook-magnesium and magnesium alloys [S]. Ohio: ASM International,1999.
    [18]Starosels A, Anand L. A constitutive model for hcp materials deforming by slip and twinning: application to magnesium alloyAZ31B [J]. International Journal of Plasticity.2003,19(10): 1843-1864.
    [19]Chino Y, Kimura K, Hakamada M, et al. Mechanical anisotropy due to twinning in an extruded AZ31 Mg alloy [J]. Materials Science and Engineering:A,2008,485 (1-2):311-317.
    [20]陈振华.变形镁合金[M]北京:化学工业出版社,2005.
    [21]Chino Y, Kimura K, Mabuchi M. Deformation characteristics at room temperature under biaxial tensile stress in textured AZ31 Mg alloy sheets [J]. Acta Materialia,2009,57(5):1476-1485.
    [22]Tan J C, Tan M J. Superplasticity and grain boundary sliding characteristics in two stage deformation of Mg-3Al-1Zn alloy sheet [J]. Materials Science and Engineering:A,2003,339(1-2): 81-89.
    [23]Koike J. Enhanced deformation mechanisms by anisotropic plasticity in polyerystalline Mg alloys at room temperature [J]. Metallurgical and Materials Transactions A,2005,36(7):1689-1696.
    [24]Wang Y N, Huang J C. The role of twinning and untwinning in yielding behavior in hot-extruded Mg-AI-Zn alloy [J]. Acta Materialia,2007,55(3):897-905.
    [25]Jiang L, John J. Influence of{10-12} extension twinning on the flow behavior of AZ31 Mg alloy [J], Materials Science and Engineering:A,2007,445-446:302-309.
    [26]Jager A, Lukac P, Gartnerova M. Tensile properties of hot rolled AZ31 Mg alloy sheets at elevated temperatures [J], Journal of Alloys and Compounds,2004,378(1-2):184-187.
    [27]Christian J W. Mahajan S. Deformation twinning [J], Progress in Material Science,1995,39(1-2): 1-157.
    [28]Yoo M H. Slip, twinning and fracture in hexagonal close-packed metals [J]. Metallurgical Transaction A.1981,12(3):409-418.
    [29]Keshavarz Z, Barnett M R. EBSD analysis of deformation modes in Mg-3Al-1Zn [J]. Scripta Materialia,2006,55(10):915-918.
    [30]Myshlyaev M M, McQueen H J, Mwembela A, et al. Twinning, dynamic recovery and recrystallization in hot worked Mg-AI-Zn alloy [J]. Materials Science and Engineering:A,2002, 337(1-2):121-133.
    [31]Klimanel P, Potzsch A. Microstructure evolution undercompressive plastic deformation of magnesium at different temperatures and strain rates [J]. Materials Science and Engineering:A, 2002.324(1-2):145-150.
    [32]Ion S E, Humphreys F J, White S H. Dynamic recrystallization and the development of microstructure during he high temperature deformation of magnesium [J]. Acta Metallurgica,1982, 30(10):1909-1919.
    [33]Zhao X, Zhang K, Li X G Deformation behavior and dynamic recrystallization of Mg-Y-Nd-Gd-Zr alloy [J]. Journal of Rare Earths,2008,6(26):846-850.
    [34]Yia S B, Zaefferera S, Brokmeierb H G. Mechanical behaviour and microstructural evolution of magnesium alloy AZ31 in tension at different temperatures [J].Materials Science and Engineering: A,2006,424(1-2):275-281.
    [35]陈振华,许芳艳,傅定发,等.镁合金的动态再结晶[J].化工进展,2006,25(2):140-146.
    [36]Maksoud I A, Ahmed H, Rodel J. Investigation of the effect of strain rate and temperature on the deformability and microstructure evolution of AZ31 magnesium alloy [J]. Materials Science and Engineering:A,2009,504(1-2):40-48.
    [37]Barnett M R. Recrystallization during and following hot working magnesium alloy AZ31 [J]. Materials science forum,2003,419-422:503-508.
    [38]赵娟妮,冯再新.变形程度对铸态AZ31镁合金动态再结晶的影响[J].材料热处理技术,2010,39(16):60-62.
    [39]刘楚明,刘子娟,朱秀荣.镁及镁合金动态再结晶研究进展[J].中国有色金属学报,2006,16(1):1-12.
    [40]Liu W J, Kao V, Essadigi E, et al. Dynamic recrystallization of AZ31 magnesium alloy during torsion deformation at elevated temperatures [C]//Luo A A. Proc Symp Magnesium Tech. Charlotte USA:Minerals M & Mat Soc,2004:73-78.
    [41]Galiyev A M, Kaibyshev R O, Gottstein G. Grain refinement of ZK60 magnesium alloy during low temperature deformation [C]//Howard Kaplan. Magnesium Technology 2002. USA:Minerals M & Mat Soc,2002:181-185.
    [42]Galiyev A, Kaibyshev R, Gottstein G. Correlation of plastic deformation and dynamic recrystallization in magnesium alloy ZK60. Acta Materialia,2001,49(7):1199-1207
    [43]Yin D L, Wang K F, Han W B. Warm deformation behavior of hot-rolled AZ31 Mg alloy [J]. Materials Science and Engineering:A,2005,392(1-2):320-325.
    [44]Del Valle J A, Perez-Prado M T, Ruano O A. Texture evolution during large-strain hot rolling of the Mg AZ61 [J]. Material Science Engingeering:A,2003,355(1-2):68-78.
    [45]Jager A, Lukac P, GartnerovaV, et al. Tensile properties of hot rolled AZ31 Mg alloy sheets at elevated temperatures [J]. Journal of Alloys and Compounds,2004,378 (1-2) 184-187.
    [46]Yang Y Q, Li B C, Zhang Z M. Flow stress of wrought magnesium alloys during hot compression deformation at medium and high temperatures [J]. Materials Science and Engineering:A.2009. 499 (1-2):238-241.
    [47]Cavaliere P. Hot and warm forming of 2618 aluminium alloy [J]. Journal of Light Metals,2002, 2(4):247-252.
    [48]Kaya S. Altan T, Groche P, et al. Determination of the flow stress of magnesium AZ31-O sheet at elevated temperatures using the hydraulic bulge test [J]. International Journal of Machine Tools & Manufacture,2008,48 (5):550-557.
    [49]Mohri T. Mabuchi M, Nakamura M, et al. Microstructural evolution and superplasticity of rolled Mg-9Al-1Zn [J]. Materials Science and Engineering:A2000,290 (1-2):139-144.
    [50]张青来,胡永学,王粒粒.AZ31B镁合金拉伸应力、应变和再结晶组织[J].稀有金属材料与工程,2008,37(4):678-681.
    [51]黄光胜,李红成,张雷,等.工业态AZ31B镁合金薄板的拉性性能与组织变化[J].重庆大学学报.2009,32(4):367-370.
    [52]Cheng Y Q, Zhang H, Chen Z H, et al. Flow stress equation of AZ31 magnesium alloy sheet during warm tensile deformation [J]. Journal of materials processing technology,2008,208(1-3): 29-34.
    [53]Liu J, Cui Z S, Li C X. Modeling of flow stress characterizing dynamic recrystallization for magnesium alloy AZ31B[J]. Computational Materials Science,2008,41:375-382.
    [54]Takuda H, Fujimoto H, Hatta N. Modeling on flow stress of Mg-Al-Zn alloys at elevated temperatures [J]. Journal of Materials Processing Technology,1998,80-81:513-516.
    [55]Sheng Z Q, Shivpuri R. Modeling flow stress of magnesium alloys at elevated temperature [J]. Materials Science and Engineering:A,2006,419 (1-2):202-208.
    [56]张先宏.镁合金热变形过程试验研究和数值模拟[D].上海:上海交通大学,2003.
    [57]Lin Y C, Chen X M. A critical review of experimental results and constitutive descriptions for metals and alloys in hot working [J]. Materials & Design,2011,32(4):1733-1759
    [58]Johnson G R, Cook W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures [C]. Proceedings of the Seventh International Symposium on Ballistics.Holland:[s.n.],1983:541-547.
    [59]Fields D S, Bachofen W A. Determination of strain hardening characteristics by torsion testing [J]. Proc Soc Test Mater,1957,57:1259-1272.
    [60]Shi H, McLaren A J, Sellars C M, et al. Constitutive equations for high temperature flow stress of aluminium alloys [J]. Materials Science and Technology,1997,13(3):210-216.
    [61]Hollomon J H. Tensile deformation [J]. Transactions of AIME,1945,162:268-290.
    [62]Voce, E. The relationship between stress and strain for homogeneous deformation [J]. Journal of the Institute Metals,1948,74:537-562.
    [63]Takuda H, Morishita T, Kinoshita T, et al. Modelling of formula for flow stress of a magnesium alloy AZ31 sheet at elevated temperatures [J]. Journal of Materials Processing Technology,2005, 164-165:1258-1262.
    [64]咸奎峰.AZ31镁合金笔记本电脑外壳件温成形的有限元分析[D].长沙:湖南大学,2006
    [65]张庭芳,黄菊花,范洪春.镁合金高温流变应力实验及其数学模型研究[J].塑性工程学报.2008,15(5):17-21.
    [66]Khan A S, Liang R. Behaviors of three BCC metal over a wide range of strain rates and temperatures:experiments and modeling [J]. International Journal of Plasticity,1999,15, 1089-1109.
    [67]Sellars C M, McTegart W J. On the mechanism of hot deformation [J]. Acta Metallurgica, 1966,14(9):1136-1138.
    [68]Galiyev A, Sitdikov O, Kaibyshev R. Deformation behavior and controlling mechanisms for plastic flow of magnesium and magnesium alloy [J]. Materials Transactions,2003,44(4): 426-435.
    [69]McQueen H J. Constitutive analysis in hot working [J]. Materials Science and Engineering:A, 2002,322(1-2):43-63.
    [70]吴文祥,孙德勤,曹春艳,等.5083铝合金热压缩变形流变应力行为[J].中国有色金属学报,2007,17(10):1667-1671.
    [71]Zhou H T, Zeng X Q, Wang Q D, et al. A flow stress model for AZ61 magnesium alloy [J]. Acta Metallurgica Sinica (English letters),2004.17(2):155-160.
    [72]Serajzadeh S, Taheri A K.Prediction of flow stress at hot working condition [J]. Mechanics Research Communications,2003,30:87-93.
    [73]Lin Y C, Zhang J, Zhong J. Application of neural networks to predict the elevated temperature flow behavior of a low alloy steel [J]. Computational Materials Science,2008,43(4):752-758.
    [74]Chun M S, Biglou J, Lenard J G, et al. Using neural networks to predict parameters in the hot working of aluminum alloys[J]. Journal of Materials Processing Technology,1999,86:245-251.
    [75]胡丽娟.AZ31镁合金板材温热变形行为的数值分析与试验研究[D].上海:上海交通大学,2009.
    [76]萨洛金.镁合金板料冲压工艺[M].北京:机械工业出版社,1958.
    [77]王越,姜丽丽,毛萍莉,等.应变速率对AZ31B变形镁合金力学性能的影响[J].沈阳工业大学学报,2008,30(5):539-542.
    [78]张文玉,陈振华.温度对AZ31镁合金轧制板材冲压性能的影响[J].材料热处理技术,2010,39(8):38—41
    [79]黄光胜,徐伟,黄光杰,等.镁合金板材冲压性能与冲压工艺研究进展[J].材料导报,2006,20(11):73-76.
    [80]成奎峰,张辉,陈振华.变形镁合金板成形工艺研究现状[J].材料导报,2005,19(11)413-416.
    [81]陈林,汪凌云,卢志文.AZ31B镁合金板料冲压成形性能研究[J].轻合金加工技术,2006,9934(1):31-34,54.
    [82]Yoshihara S, Yamamoto H, Manabeb K, et al. Formability enhancement in magnesium alloy deep drawing by local heating and cooling technique[J]. Journal of Materials Processing Technology, 2003,143-144:612-615.
    [83]杨连发,迁浩和,森谦一郎.AZ31镁合金板冷拉深变形特点[J].桂林电子科技大学学报,2006,26(5):385-389.
    [84]全国锻压标准化技术委员会.GB/T15825.5-1995,金属薄板成形性能试验方法—弯曲试验[S].北京:中国标准出版社,1995.
    [85]刘满平,马春江,王渠东,等.工业态AZ31镁合金的超塑性变形行为[J].中国有色金属学报,2002,12(4):797-801.
    [86]Chen F X, Su J H, Yang Y L, et al. Research on superplasticity and superplastic extrusion of MB26 magnesium alloy [J]. Journal of material science technology,2001,17(21):147-148.
    [87]Yukutake E, Sugamate M, Kaneko J. Formability, Mechanical Properties and Texture of AZ31 Magnesium Sheets [J]. Advanced Technology of Plasticity,2002,2:1171-1176.
    [88]Kaneko J, Sugamata M, Numa M, et al. Effect of texture on the mechanical properties and formability of magnesium wrought materials [J]. Journal of Japan Institute of Light metals,2000, 64(2):141-147.
    [89]程永奇.AZ31镁合金板材等径角轧制及冲压性能研究[D].长沙:湖南大学,2007
    [90]Takuda H, Yoshii T, Hatta N. Finite element analysis of the formability of magnesium based alloy AZ31 Sheet [J]. Journal of Materials Processing Technology,1999,89-90:135-140.
    [91]Chen F K, Huang T B, Chang C K. Deep drawing of square cups with magnesium alloy AZ31 sheets[J]. International Journal of Machine Tools &Manufacture,2003,43:1553-1559.
    [92]Chen F K, Huang T B. Formability of stamping magnesium-alloy AZ31 sheets [J]. Journal of Materials Processing Technology,2003,142:643-647.
    [93]万玉刚,康永林,朱国明.AZ31镁合金薄板手机外壳温冲模具设计及成形性能研究[J].塑性工程学报,2009,16(1):47-53.
    [94]张坤,王忠堂,张士宏,等.镁合金AZ31B板材热拉深成形工艺研究[J].轻合金加工技术.2003,31(10):14-17.
    [95]Yoshihara S, Nishimura H, Yamamoto H, et al. Formability enhancement in magnesium alloy stamping using a local heating and cooling technique:circular cup deep drawing process [J]. Journal of Materials Processing Technology,2003,142(3):609-613.
    [96]Yoshihara S, MacDonalda B J, Nishimura H, et al. Optimisation of magnesium alloy stamping with local heating and cooling using the finite element method [J]. Journal of Materials Processing Technology,2004,153-154:319-322.
    [97]尹德良,张凯锋,吴德忠.AZ31镁合金非等温拉深性能的研究[J].材料科学与工艺,2004,12(1):87-90.
    [98]Takuda H, Enami T, Kubota K, et al. The formability of a thin sheet of Mg-8.5Li-Zn alloy[J]. Journal of Materials Processing Technology,2000,101:281-286.
    [99]Chang Q F, Li D Y, Peng Y H. et al. Experimental and numerical study of warm deep drawing of AZ31 magnesium alloy sheet [J]. International Journal of Machine Tools & Manufacture,2007, 47:436-443.
    [100]Palumbo G. Sorgente D, Tricarico L, et al. Numerical and experimental investigations on the effect of the heating strategy and the punch speed on the warm deep drawing of magnesium alloy AZ31 [J]. Journal of Materials Processing Technology,2007,191:342-346.
    [101]张凯峰,尹德良,吴德忠,等.AZ31镁合金板的热拉深性能[J].中国有色金属学报,2003,13(6):1505-1509.
    [103]董海,工忠堂,张士宏.AZ31镁合金板热拉深成形工艺研究[J].沈阳工业学院学报,2004,23(3):61-64.
    [104]Doege E, Sommer N. Blank-holder pressure and blank-holder layout in deep drawing of thin sheet metal [J]. Advanced Technology of Plasticity,1987,11:1305-1314.
    [105]Shulkin L B, Posteraro R A, Ahmetoglu M A, et al. Blank holder force(BHF) control in viscous pressure forming(VPF) of sheet metal[J]. Journal of Materials Processing Technology,2000,98: 7-16.
    [106]Sheng Z Q, Jirathearanat S, Altan T. Adaptive FEM simulation for prediction of variable blank holder force in conical cup drawing[J]. International Journal of Machine Tools & Manufacture, 2004,44:487-494.
    [107]Doege E, Elend L E. Design and application of pliable blank holder systems for the optimization of process conditions in sheet metal forming[J]. Journal of Materials Processing Technology, 2001,111:182-187.
    [108]Yoshihara S, Manabe K, Nishimura H. Effect of blank holder force control in deep-drawing process of magnesium alloy sheet[J]. Journal of Materials Processing Technology,2005,170: 579-585.
    [109]王东哲,娄臻亮,张永清,等.板材变压边力拉深成形方盒件数值模拟[J].上海交通大学学报,2001,35(10):1543-1546.
    [110]韩丹莹,程秋谋,孟晓峰,等.多级压边力拉深方法的研究[J].机械工程师,1996,(5):9-10.
    [111]程永奇,陈振华,傅定发.镁合金拉深工艺的研究与进展[J].热加工工艺.2004,(11):52-55.
    [112]Doege E, Sommer N. Blank-holder pressure and blank-holder layout in deep drawing of thin sheet metal [J]. Advanced Technology of plasticity:Proceeding of the Second International Conference on Technology ofPlasticity,1987:1305-1314.
    [113]Mori K, Tsuji H. Cold deep drawing of commercial magnesium alloy sheets [J]. CIRP Annals, 2007,56:285-288.
    [114]Siegert K, Hohnhaus J, Wagner S. Combination of hydraulic multipoint cushion system and segment-elastic blank-holders [J]. SAE Special Publications,1998, (1322):31-40.
    [115]Siegert K, Ziegler M, Wanger S. Closed loop control of the friction force. Deep drawing process. [J]. Journal of Materials Processing Technology,1997.71:126-133.
    [116]Siegert K, Rennet A. Farm K J. Prediction of final part properties in sheet metal forming by CNC-eontrolled stretch forming [J]. Journal of Materials Processing Technology,1997,71: 141-146.
    [117]Thiruvarudchelvn S. A hydraulic short-stroke device for deep drawing with the blank-holder force proportional to the punch force [J]. Journal of Materials Processing Technology.1995, 51(1-4):106-121.
    [118]Thiruvarudchelvn S, Lewis W G. Deep drawing with blank holder force approximately proportional to the punch force [J]. Journal of Engineering for Industry-Transactions of the ASME,1990,112(3):278-285.
    [119]Thiruvarudchelvan S, Loh N H. Deep drawing of cylinder cups with friction-actuated blank holding [J]. Journal of Materials Processing Technology,1994,40:343-358.
    [120]苌群峰.镁合金板材温热冲压成形理论与实验研究[D].上海:上海交通大学,2007.
    [121]Huang T B, Tsai Y A, Chen F K. Finite element analysis and formability of non-isothermal deep drawing of AZ31B sheets [J]. Journal of Materials Processing Technology,2006,177:142-145.
    [122]Koga N, Paisarn R. Oil-free deep drawing of AZ31 magnesium alloy sheets using hard thin-film-coated tools [J]. Journal of the JSTP,2001,42(481):145-149.
    [123]卢志文,李焕峰,李培杰,等.AZ31B镁合金板材冲压性能的实验研究[J].材料导报,2008,3: 134-136.
    [124]张青来,李强,卢晨,等.AZ31B变形镁合金压力成形[J].轻合金加工技术,2004,32(1):30-32.
    [125]Kurz G. Heated hydro-mechanical deep drawing of magnesium sheet metal [C]//Luo A A. Proc Symp Magnesium Tech.Warrendale, USA:Minerals M & Mat Soc,2004:67-71.
    [126]Lee S, Chen Y H, Wang J Y. Isothermal sheet formability of magnesium alloy AZ31 and AZ61 [J]. Journal of Materials Processing Technology,2002,124(1-2):19-24.
    [127]郑文涛,徐永超,张士宏,等.镁合金手机壳的温热液压成形实验及模拟研究[J].塑性工程学报,2006,13(5):92-95.
    [128]Wu X, Liu Y, Hao H Q. High strain rate superplasticity and microstructure study a magnesium alloy[J]. Materials Science Forum,2001,357-359:363-370.
    [129]Watanabe H, Mukai T, Higashi K. Superplsticity in a ZK60 alloy at low temperature[J].Scripta Mater,1999,40(4):477-484.
    [130]Watanabe H, Mukai T, Ishikawa K. High-strain rate superplasticity in an AZ91 alloy processed by ingot metallurgy [J]. Materials Transantion,2002.43(1):78-80.
    [131]Watanabe H, Mukai T, Ishikawa K. Superplasricity of a partical strengthened WE43 magnesiumalloy [J]. Materials Transtion,2001,42(1):157-162.
    [132]刘满平,马春江,王渠东,等.工业态AZ31镁合金超塑性变形行为[J].中国有色金属学报,2000,10(6):847-856.
    [133]Palaniswamy H, Ngaile G, Altan T. Finite element simulation of magnesium alloy sheet forming at elevated temperatures [J]. Journal of Materials Processing Technology,2004,146 (1):52-60.
    [134]Zhang S H, Zhang K, Yu C F, et al. Finite element simulation on deep-drawing process of magnesium alloy sheet at elevated temperatures [J]. International Journal of Vehicle Design, 2005,39(1-2):154-162.
    [135]张坤.镁合金板材热拉深工艺数值模拟与实验研究[D].沈阳:中国科学院金属研究所,2004
    [136]El-Morsy A W, Manabe K I. Finite element analysis of magnesium AZ31 alloy sheet in wann deep-drawing process considering heat transfer effect [J]. Materials Letters,2006,60(15): 1866-1870.
    [137]Tan J C, Tan M J. Dynamic continuous recrystallization characteristics in two stage deformation of Mg-3Al-1Zn alloy sheet [J]. Materials Science and Engineering:A,2003.339 (1-2):124-132
    [138]Hsu E, Carsley J E, Verma R. Development of forming limit diagrams of aluminum and magnesium sheet alloys at elevated temperatures [J]. Journal of Materials Engineering and Performance,2008,17(3):288-296.
    [139]Choi S C, Kim H Y, Hong S M, et al. Evaluation and prediction of the forming limit of AZ31B magnesium alloy sheets in a cross-shaped cup deep drawing process [J]. Metals and Materials International,2009,15(4):575-584.
    [140]Park J, Kim J, Pa N k. KIM Y. Study of forming limit for rotational incremental sheet forming of magnesium alloy sheet[J]. Metallurgical and Materials Transactions A,2010,41(1):97-105.
    [141]Naka T, Torikai G, Hino R, et al. The effects of temperature and forming speed on the forming limit diagram for type 5083 aluminum-magnesium alloy sheet [J]. Journal of Materials Processing Technology,2001,113:648-653.
    [142]Swift H W. Plastic instability under plane stress [J]. Journal of the Mechanics and Physics of Solids,1952,1(1):1-18.
    [143]Negroni F, Kobayasi S, Thomsen E G. Plastic instability in simple stretching of sheet metals [J]. Transactions of the ASME,1968,90(2):387-392.
    [144]Hill R. On discontinuous plastic states with special reference to localized necking in thin sheets [J]. Journal of the Mechanics and Physics of Solids,1952,1(1):19-31.
    [145]Marciniak Z, Kuczynski K. Limit strains in the processes of stretch-forming Sheet Metal [J]. International Journal of Mechanical Sciences,1967,9:609-620.
    [146]马高山,万敏,吴向东.基于M-K模型的铝锂合金热态下成形极限预测[J].中国有色金属学报,2008,18(6):980-984.
    [147]Storen S, Rice J R. Localized neck in thin sheets [J]. Journal of the Mechanics and Physics of Solids,1975,23 (6):421-441.
    [148]后藤学.弹塑性构成式の形式[J].第4报.金属薄板のFLDの计算の适用,1983,49:92-100.
    [149]Needleman A, Triantafvllidis N. Void growth and local necking in biaxially stretched sheets [J]. Engineering M aterials and Technology,1978,100:164-169.
    [150]Broberg K B. On stable crack growth [J]. Journal of the Mechanics and Physics of Solids,1975, 23(6):443-445.
    [151]钟敏.AZ31镁合金板材温热成形极限及回弹研究[D].上海:上海交通大学,2012.
    [152]马高山,万敏,吴向东.5A90铝锂合金热态下的成形极限图及其计算模型[J].中国有色金属学报.2008,18(4):717-721
    [153]黄华,李大永,彭颖红.7075-T6铝合金板温热成形极限图实验[J].塑性工程学报2010,17(1):93-97
    [154]Ambrogio G, Bruni C, Bruschi S, et al. Characterization of AZ31B magnesium alloy formability in warm forming conditions[J]. International Journal of Material Forming,2008,1(1):205-208.
    [155]极限拱顶高度试验(EB/OL].钢铁行业百科全书,2009,http://baike.steelho
    [156]Szeliga D, Gawad J, Pietrzyk M. Inverse analysis for identification of rheological and friction models in metal forming[J]. Computer Methods in Applied Mechanics and Engineering,2006, 195(48-49):6778-6798.
    [157]Szyndler D, Pietrzyk M, Kuziak R. Estimation of theological and friction parameters in hot forming process as inverse problem [C], in:Proceedings of the Fourth ESAFORM Conference on Material Forming, Belgium,2001,191-194.
    [158]Cho H, Altan T. Determination of flow stress and interface friction at elevated temperatures by inverse analysis technique [J]. Journal of Materials Processing Technology,2005,170:64-70.
    [159]韩志仁,陶华.基于有限元分析的摩擦系数测定[J].锻压技术.2008,33(1):136-138.
    [160]高宽,薄板成形过程中摩擦系数反求技术研究[D].长沙:湖南大学,2006.
    [161]胡忠,朱利华,李家庆.圆环压缩过程的有限元模拟—一种标定摩擦系数理论曲线的新方法[J].金属学报,1997,33(4):337-344.
    [162]郭海玲.AZ31B镁合金薄板热渐进成形及数值模拟[D].南京:江苏大学,2010.
    [163]商光春.变形镁合金板材拉深成形实验研究[D].济南:山东大学,2008
    [164]褚兴荣.变形镁合金板料冲压成形性能的实验研究[D].济南:山东大学,2008
    [165]Bruni C, Forcellese A, Gabrielli F, et al. Air bending of AZ31 magnesium alloy in warm and hot forming conditions [J]. Journal of Materials Processing Technology,2006,177:373-376.
    [166]Hama T, Kariyazaki Y, Ochi K, et al. Springback characteristics of magnesium alloy sheet AZ31B in draw-bending [J]. Materials Transactions,2010,51(4):685-693.
    [167]Nguyen D T, Yang S H, Jung D W, et al. A study on material modeling to predict springback in V-bending of AZ31 magnesium alloy sheet at various temperatures [J]. International Journal of advanced manufacturing technology,2012,62(5-8):551-562.
    [168]南景富,冯晓九,崔洪涛,等.高强钢板料弯曲成形回弹规律研究[J].油气田地面工程,2008,27(4):40-41.
    [169]官英平,赵长财,张立玲.板料校正弯曲回弹量计算[J].锻压技术,1998,6:18-20.
    [170]刘罡,林忠钦,张卫刚.薄板成形仿真动力显式算法的虚拟凸模速度分析[J].上海交通大学学报,2000,34(10):1046-1049.
    [171]印雄飞,何丹农,叶又,等.虚拟速度对板料成形数值模拟影响的实验研究[J].机械科学与技术2000,19(3):452-453.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700