用户名: 密码: 验证码:
考虑三轴度效应的奥氏体不锈钢深冷容器强度预测方法及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
深冷容器是用于液化天然气等深冷液化气体储运的极端承压设备,在能源、化工航空航天等领域已得到了广泛应用。奥氏体不锈钢是一种综合力学性能优良的材料,其韧塑性和低温性能尤为突出,被广泛用于深冷容器制造。
     为了实现国家倡导的“低碳”、“绿色”等发展理念,迫切需要通过提高许用应力、采用应变强化技术和采用分析设计等轻量化途径来减轻容器重量、降低重容比和制造运行能耗。在这一前提下,开展奥氏体不锈钢容器在室温和深冷环境下的强度研究,揭示奥氏体不锈钢深冷容器在不同工况下的强度裕度,对于促进深冷容器的轻量化设计,实现安全与经济并重、安全与资源节约并重具有重要意义。
     短时过量静载荷导致的韧性破坏是压力容器最基本的强度失效原因之一,是本文关注的对象。此前容器强度研究多集中于室温下简单结构容器的塑性垮塌失效,较少考虑三轴度效应对材料延性的削弱及其引起的复杂结构容器局部失效,也较少涉及深冷环境对容器强度的影响。为了分析深冷容器在不同工况下的强度,保证深冷容器的本质安全,本文在国家高技术研究发展计划(863计划)重点项目(项目编号2009AA044801)和教育部博士点基金(项目编号20090101120161)的支持下,以室温和-196℃深冷环境为例,在考虑三轴度效应的材料断裂应变、容器强度预测及弹塑性分析设计方法等方面进行研究,主要完成的工作如下:
     (1)开展奥氏体不锈钢光滑圆棒和缺口圆棒在室温和深冷环境下的拉伸试验。运用考虑微观损伤的Gurson-Tvergaard-Needleman (GTN)模型,建立拉伸试验全过程的参数化仿真模型,分析三轴度效应和深冷环境对材料断裂应变的影响,得出室温和深冷环境下材料断裂应变随三轴度变化的拟合关系。结果表明,随着三轴度的增大,材料断裂应变减小;深冷环境下材料的屈服强度和抗拉强度有大幅提高,断面收缩率和断裂应变有一定下降。
     (2)建立一种考虑三轴度效应的奥氏体不锈钢深冷容器强度预测方法。经室温水压爆破试验验证,本方法可以较好的预测容器强度。采用本方法探讨深冷环境对容器强度的影响,结果表明深冷环境对材料的强化作用会导致容器的塑性垮塌压力大幅提高,但深冷环境对材料的延性有一定削弱,导致容器的局部失效压力提高幅度有限;建议在深冷容器中尽量避免在高应力应变区设置高局部三轴度的结构附件,以降低局部失效风险,充分利用材料低温强化对容器强度的增益作用。
     (3)基于所建立的容器强度预测方法,参考国外先进技术标准,提出一种奥氏体不锈钢深冷容器弹塑性分析设计方法,并探讨其中材料本构模型和局部失效判据的设置。归纳奥氏体不锈钢深冷容器的常用轻量化途径,分析其在不同设计方法和不同工况下的强度裕度。结果表明,采用弹塑性分析设计和应变强化工艺等轻量化方法时,容器在常温和深冷环境下仍具有一定强度裕度。
Cryogenic pressure vessels, which are used as normal storage and transportation equipments for cryogenic liquefied gases, are widely used as extreme pressure equipments in the fields of energy, chemical machinery, aerospace engineering and so on. With excellent cryogenic mechanical properties, austenitic stainless steel is now widely used in the manufacturing of cryogenic pressure vessels.
     To achieve national development concept of "low carbon" and "green", vessels thickness, weight, and energy consumption should be reduced through adopting light weight technologies such as increasing allowable stress, cold stretching technology, and design by analysis. In this context, researches on strength of austenitic stainless steel vessels at room temperature and cryogenic temperature, which reveal the strength margin of cryogenic vessels under different working conditions, have great significance in improving the design method of cryogenic vessels and realizing the balance between security and economy.
     Ductile rupture due to excessive short term static load is one of the most essential strength failure modes, which is also the focus of this dissertation. Previous research focused on plastic collapse load of simple pressure vessel at room temperature. However, few research has been introduced on triaxiality and its influence on material ductility, which could cause local failure of vessel with complex structure. Vessel strength under cryogenic environment is not fully investigated. Supported by the National High Technology Research and Development Program (863Program Project No.2009AA044801) and the Research Fund for the Doctoral Program from Ministry of Education of China (Project No.20090101120161), this dissertation focused on strength of austenitic stainless steel cryogenic vessels, and investigated the effect of triaxiality on fracture strain, strength prediction of cryogenic vessels and design method by elastic-plastic analysis. The main work is listed below.
     (1) Tensile tests of smooth specimen and notched specimen from austenitic stainless steel were carried out at room temperature and cryogenic temperature. Based on damage mechanics, the parameterized simulation model of the whole process of tensile test was established applying Gurson-Tvergaard-Needleman (GTN) model to predict the influence of notch sizes on the material ductile rupture failure, and analyze triaxiality effect and fracture strain at room temperature and cryogenic temperature. The results showed that high triaxiality and cryogenic temperature would decrease fracture strain.
     (2) Based on plastic collapse and local failure modes, strength prediction method of pressure vessels was established and proved by burst test at room temperature. This method was used in strength prediction of vessels under cryogenic environment. The result showed that plastic collapse load increased obviously under cryogenic environment, but high triaxiality of complex structure might cause local failure and the strength increase of complex cryogenic vessel might be limited.
     (3) Based on the strength prediction method established in this paper and advanced foreign standards, a design method by elastic-plastic analysis was introduced considering plastic collapse and local failure. The true stress-strain curve parameter and local strain limit were discussed for Chinese austenitic stainless steel and cryogenic vessels. Different light weight design methods were compared and strength margin of cryogenic vessels under room temperature and cryogenic temperature were analyzed. The results showed that vessels still had enough strength margin after using light weight design.
引文
[1]ZHENG J, WU L, SHI J. Extreme Pressure Equipments[J]. Chinese Journal of Mechanical Engineering.2011,24(2):202-206.
    [2]EN 10028-2008 Flat Products Made of Steels for Pressure Purposes[S].
    [3]ISO 20421-2006 Cryogenic Vessels Large Transportable Vacuum Insulated Vessels[S].
    [4]ISO 21009-2008 Cryogenic Vessels Static Vacuum Insulated Vessels[S].
    [5]GB 150-2011压力容器[S].
    [6]GB/T 18442-2011固定式真空绝热深冷压力容器[S].
    [7]JB/T 4783-2007低温液体汽车罐车[S].
    [8]JB/T 4784-2007低温液体罐式集装箱[S].
    [9]周伟明,陈朝晖,魏蔚.深冷真空绝热容器标准技术发展与展望[J].压力容器.2013(2):1-14.
    [10]郑津洋,李雅娴,徐平,等.应变强化用奥氏体不锈钢力学性能影响因素[J].解放军理工大学学报:自然科学版.2011,12(5):512-519.
    [11]Energy Outlook, http://www.bp.com[OL].
    [12]World Energy Outlook. http://www.worldenergyoutlook.org/[OL].
    [13]中华人民共和国国务院.装备制造业调整和振兴规划[Z].2009.
    [14]Hydrocarbon Processing. www.hydrocarbonprocessing.com[OL].
    [15]马利,郑津洋,寿比南,等.奥氏体不锈钢制压力容器强度裕度研究[J].压力容器.2008,25(1):1-5.
    [16]国际不锈钢论坛http://www.cssc.org.cn/[OL].
    [17]中国科学院先进制造领域战略研究组.中国至2050年先进制造科技发展路线图[M].北京:科学出版社,2009.
    [18]郑津洋,缪存坚,寿比南.轻型化——压力容器的发展方向[J].压力容器.2009,26(9):42-48.
    [19]缪存坚.深冷疲劳试验装置和应变强化奥氏体不锈钢疲劳特性研究[D].浙江大学,2012.
    [20]EN 13445-2009 Unfired Pressure Vessels[S].
    [21]ASME BPVC 2013 Section Ⅷ Division 2 Alternative Rules for Constrction of Pressure Vessels[S].
    [22]TSG R0004-2009固定式压力容器安全技术监察规程[S].
    [23]EN 13530-2002 Cryogenic Vessels Large Transportable Vacuum Insulated Vessels[S].
    [24]EN 13458-2002 Cryogenic Vessels Static Vacuum Insulated Vessels[S].
    [25]ASME BPVC 2013 Section Ⅷ Division 1 Rules for Construction of Pressure Vessels[S].
    [26]ABRAHAM H. Metals and Fabrication Methods Used for the Atlas[J]. Metal Progress,1959,76(5):65-73.
    [27]FAURE A, GOURGEON L. Cryoformed Stainless Steel Pressure Vessels for Space Applications[J]. European Conference On Spacecraft Structures, Materials and Mechanical Testing, Proceedings,1999,428:201-203.
    [28]黄泽.压力容器用奥氏体不锈钢深冷拉伸试验研究[D].浙江大学,2013.
    [29]李雅娴.应变强化奥氏体不锈钢低温容器材料和成形工艺研究[D].浙江大学,2010.
    [30]周高斌.应变强化奥氏体不锈钢低温容器研究[D].浙江大学,2007.
    [31]郑津洋,郭阿宾,缪存坚,等.奥氏体不锈钢深冷容器室温应变强化技术[J].压力容器.2010(8):28-32.
    [32]朱晓波,缪存坚,黄泽,等.应变强化奥氏体不锈钢弯曲压头直径研究[J].压力容器.2012,29(12):37-40.
    [33]郑津洋,董其伍,桑芝富.过程设备设计(第三版)[M].北京:化学工业出版社,2010.
    [34]中华人民共和国全国人民代表大会.中华人民共和国特种设备安全法[Z].2013.
    [35]WU L, SHOU B, XIE T,et al. Classification Method in Chinese Supervision Regulation on Safety Technology for Stationary Pressure Vessel[C]. Proceedings of the ASME Pressure Vessels and Piping Conference 2010, July 18-22,2010, Bellevue, Washington, USA.
    [36]BRIDGMAN P W. Studies in Large Plastic Flow and Fracture:With Special Emphasis On the Effects of Hydrostatic Pressure [M]. New York:McGraw-Hill Company,Inc,1952.
    [37]GB/T 10623-2008金属材料力学性能试验术语[S].
    [38]ISO 16528-2007 Boilers and Pressure Vessels[S].
    [39]JB 4732 1995钢制压力容器分析设计标准[S].
    [40]SACHS G, LUBAHN D. Failure of Ductile Metals in Tension[J]. Trans. ASME.1946, 68:277-279.
    [41]SWIFT W. Plastic Instability Under Plane Stress[J]. Journal of the Mechanics and Physics of Solids.1952,11(1):1-18.
    [42]OROWAN E. Strength and Failure of Materials[J]. Design of Piping Systems. John Wiley& Sons.1956:478-506.
    [43]COOPER E. The Significance of the Tensile Test to Pressure Vessel Design[J]. Welding Research Council, WRC Supplement, Pressure Vessels, January 1957.
    [44]HILL R. A Theory of Plastic Bulging of a Metal Diaphragm by Lateral Pressure[J]. Philos Mag.1950,41(7):1133-1142.
    [45]MELLOR B. Tensile Instability in Thin-Walled Tubes[J]. The Journal of Mechanical Engineering Science.1962,4(3):251-256.
    [46]HILLIER J. Tensile Plastic Instability of Thin Tubes-Ⅰ[J]. Journal of Mechanical Sciences.1965,7(8):531-538.
    [47]HILLIER J. Tensile Plastic Instability of Thin tubes-Ⅱ[J]. International Journal of Mechanical Sciences.1965,7(8):539-549.
    [48]HILLIER J. The Inertia Effect in the Tensile Plastic Instability of a Thin Spherical Shell[J]. International Journal ofMechanical Sciences.1966.8:61-62.
    [49]LANKFORD T, SAIBEL E. Some Problems in Unstable Plastic Flow Under Biaxial Tension[J]. Metals Technology,METY-A, American Institute of Mining and Metallurgical Engineers, Aug.1947, No.2238:1-12.
    [50]DAVIS A. Yielding and Fracture of Medium Carbon Steel Under Combined Stress[J]. Journal of Applied Mechanics.1945,12(1):A13-A24.
    [51]RAWE A, CORN D. A Comparison of the Experimental Biaxial Strength of Structural Alloys with Theoretical Predications[J]. Journal of Materials.1969,4(1): 3-18.
    [52]SVENSSON N. The Bursting Pressure of Cylindrical and Spherical Vessels[J]. Journal of Applied Mechanics.1958,80:89-96.
    [53]ZHU X K, LEIS. Strength Critria and Analytic Predictions of Failure Pressure in Line Pipes[J]. International Journal of Polar Engineering.2004,14(2):125-131.
    [54]ZHU X, LEIS. Influence of Yield to Tensile Strength Ratio On Failure Assessment of Corroded Pipelines[J]. Journal of Pressure Vessel Technology.2005,127:436-442.
    [55]ZHU X, N L B. Analytic Prediction of Plastic Collapse Failure Pressure of Line Pipes[J]. Proceedings of PVP2005,2005 ASME Pressure Vessels and Piping Division.
    [56]邓阳春.考虑材料应变强化的压力容器静压承载能力[D].华东理工大学,2009.
    [57]COOPER E, KOTTCAMP E H, SPIERING G A. Experimental Effort On Bursting Constrained Disks as Relates to the Effective Utilization of Yield Strength[J]. ASME Pressure Vessels and Piping Conference.1971:1-8.
    [58]UPDIKE D P, KALNINS A. Tensile Plastic Instability of Axisymmetric Pressure Vessels[J]. Journal of Pressure Vessel Technology-Transactions of the Asme.1998, 120(1):6-11.
    [59]RICCARDELLA P C. Elasto-Plastic Analysis of Constrained Disk Burst Tests.[J]. Transactions of the ASME.1973(1):129-136.
    [60]JONES D P, HOLLIDAY J E. Elastic-Plastic Analysis of the PVRC Burst Disk Tests with Comparison to the ASME Code Primary Stress Limits[J]. Journal of Pressure Vessel Technology-Transactions of the Asme.2000,122(2):146-151.
    [61]FLORIZONE D. Design of Ellipsoidal Heads Using Elastic-Plastic Finite Element Analysis[J]. Deign and Analysis of Piping, Vessels and Components ASME.2002, PVP vol-1440.
    [62]李涛,郑津洋,张涛,等.基于双判据的压力容器失效压力预测方法研究:第八届全国压力容器设计学术会议,张家港,2012[C][Z].2013.
    [63]KISIOGLU Y, BREVICK J R, KINZEL G L. Determination of Burst Pressure and Location of the DOT-39 Refrigerant Cylinders [J]. Journal of Pressure Vessel Technology-Transactions of the Asme.2001,123(2):240-247.
    [64]KAPTAN A, KISIOGLU Y. Determination of Burst Pressures and Failure Locations of Vehicle LPG Cylinders[J]. International Journal of Pressure Vessels and Piping. 2007,84(7):451-459.
    [65]张伯君.山体滑坡区域内长输埋地油气管道强度研究[D].浙江大学,2013.
    [66]CRISFIELD M A. An Arc-length Method Including Line Searches and Accelerations[J]. International Journal for Numerical Methods in Engineering.1983, 19:1269-1289.
    [67]RIKS E. An Incremental Approach to the Solution of Snapping and Buckling Problems[J]. International Journal of Solids and Structures.1979,15:529-551.
    [68]AHMED M B, SU X Z. Arc-Length Technique for Nonlinear Finite Element Analysis [J]. Journal of Zhejiang University Science.2004,5(5):618-628.
    [69]WEMPNER G A. Discrete Approximation Related to Nonlinear Theories of Solids[J]. International Journal of Solids and Structures.1971,7:1581-1599.
    [70]RAMM E. Strategies for Tracing the Nonlinear Response near Limit Points. In: Nonlinear Finite Element Analysis in Structural Mechanics[M]. New York:Springer, 1981.
    [71]LIU P, ZHENG J, MA L,et al. Calculations of Plastic Collapse Load of Pressure Vessel Using FEA[J]. Journal of Zhejiang University SCIENCE a.2008,9(7): 900-906.
    [72]XUE L. Burst Anslysis of Cylindrical Shells[J]. Journal of Pressure Vessel Technology-Transactions of the Asme.2008,130.
    [73]陈凤.带接管压力容器极限压力及爆破压力的研究[D].南京工业大学,2005.
    [74]王辰.考虑材料应变强化效应的含缺陷承压设备塑性失效载荷[D].华东理工大学,2007.
    [75]OH C K, KIM Y J, BAEK J H,et al. Development of Stress-Modified Fracture Strain for Ductile Failure of API X65 Steel[J]. International Journal of Fracture.2007, 143(2):119-133.
    [76]OH C K, KIM Y J, BAEK J H,et al. A Phenomenological Model of Ductile Fracture for API X65 Steel[J]. International Journal of Mechanical Sciences.2007,49(12): 1399-1412.
    [77]OH C K, KIM Y J, BAEK J H,et al. Ductile Failure Analysis of API X65 Pipes with Notch-Type Defects Using a Local Fracture Criterion[J]. International Journal of Pressure Vessels and Piping.2007,84(8):512-525.
    [78]OH C S, KIM N H, KIM Y J,et al. A Finite Element Ductile Failure Simulation Method Using Stress-Modified Fracture Strain Model[J]. Engineering Fracture Mechanics.2011,78(1):124-137.
    [79]KIM N H, OH C S, KIM Y J,et al. Comparison of Fracture Strain Based Ductile Failure Simulation with Experimental Results[J]. International Journal of Pressure Vessels and Piping.2011,88(10):434-447.
    [80]KIM N, OH C, KIM Y. A Numerical Method to Simulate Ductile Failure of Tensile Plates with Interacting Through-Wall Cracks[J]. Fatigue & Fracture of Engineering Materials & Structures.2011,34(3):215-226.
    [81]KIM Y J, OH C K, MYUNG M S,et al. Fully Plastic Analyses for Notched Bars and Plates Using Finite Element Limit Analysis[J]. Engineering Fracture Mechanics. 2006,73(13):1849-1864.
    [82]GRAVILLE A B, DINOVITZER S A. Strain-Based Failure Criteria for Part-Wall Defects in Pipes[J]. International Conference On Pressure Vessel Technology,Vol.1.ASME 1996:267-279.
    [83]REINHARDT W. Investigation of the Elastic-Plastic Design Method in Section Ⅷ Div.2[J]. Proceedings of the ASME 2009 Pressure Vessels and Piping Conference.
    [84]LI H, FU M W, LU J,et al. Ductile Fracture:Experiments and Computations[J]. International Journal of Plasticity.2011,27(2):147-180.
    [85]MIRONE G. A New Model for the Elastoplastic Characterization and the Stress-Strain Determination On the Necking Section of a Tensile Specimen[J]. International Journal of Solids and Structures.2004,41(13):3545-3564.
    [86]TSG R0005-2011移动式压力容器安全技术监察规程[S].
    [87]BROOKS C R, CHOUDHURY A.工程材料的失效分析[M].北京:机械工业出版社,2003.
    [88]HENRY G, HORSTMANN D.宏观断口学及显微断口学[M].北京:机械工业出版社,1990.
    [89]郑长卿,周利,张克实.金属韧性破坏的细观力学及其应用研究[M].北京:国防工业出版社,1995.
    [90]钟群鹏,赵子华.断口学[M].北京:高等教育出版社,2006.
    [91]马凯,李智慧,汤安民.金属材料断裂与应力状态参数的关系[J].西安理工大学学报.2007,23(2):201-204.
    [92]汤安民,卢智先.韧性材料的几种断裂形式及判据讨论[J].机械强度.2002, 24(4):566-570.
    [93]李小陵.应力状态和温度对金属材料断裂特性的影响[D].西北工业大学,1989.
    [94]MANJOINE M J. Ductility Indices at Elevated Temperature[J]. Journal of Engineering Materials and Technology, Transactions of the ASME.1975,97 Ser H(2):156-161.
    [95]HANCOCK J W, MACKENZIE A C. On the Mechanisms of Ductile Failure in High-Strength Steels Subjected to Multi-Axial Stress-States[J]. Journal of the Mechanics and Physics of Solids.1976,24(2):147-160.
    [96]HANCOCK J W, BROWN D K. On the Role of Strain and Stress State in Ductile Failure[J]. Journal of the Mechanics and Physics of Solids.1983,31(1):1-24.
    [97]BANDSTRA J P, GOTO D M, KOSS D A. Ductile Failure as a Result of a Void-Sheet Instability:Experiment and Computational Modeling[J]. Materials Science and Engineering:A.1998,249(1):46-54.
    [98]TRATTNIG G, ANTRETTER T, PIPPAN R. Fracture of Austenitic Steel Subject to a Wide Range of Stress Triaxiality Ratios and Crack Deformation Modes[J]. Engineering Fracture Mechanics.2008,75(2):223-235.
    [99]MIRONE G, CORALLO D. A Local Viewpoint for Evaluating the Influence of Stress Triaxiality and Lode Angle On Ductile Failure and Hardening[J]. International Journal of Plasticity.2010,26(3):348-371.
    [100]GOTO D M, KOSS D A, JABLOKOV V. Influence of Tensile Stress States On the Failure of HY-100 Steel[J], Metallurgical and Materials Transactions a:Physical Metallurgy and Materials Science.1999,30(11):2835-2842.
    [101]MIRONE G. Role of Stress Triaxiality in Elastoplastic Characterization and Ductile Failure Prediction[J]. Engineering Fracture Mechanics.2007,74(8):1203-1221.
    [102]CHAOUADAI R, MEESTER D, VANDERMEULEN W. Damage Work as Ductile Fracture Criterion[J]. International Journal of Fracture.1994,66:155-164.
    [103]ALVES M, JONES N. Influence of Hydrostatic Stress On Failure of Axisymmetric Notched Specimens[J]. Journal of the Mechanics and Physics of Solids.1999,47(3): 643-667.
    [104]姜公锋.基于塑性强化效应的典型材料极限承载能力分析[D].北京工业大学,2009.
    [105]蒲吉斌.金属材料缺口拉伸试样的损伤和断裂行为[D].兰州理工大学,2005.
    [106]LEMAITRE J. A Continuous Damage Mechanics Model for Ductile Fracture[J]. Journal of Engineering Materials and Technology-Transactions of the Asme.1985, 107(1):83-89.
    [107]BAO Y B, WIERZBICKI T. On Fracture Locus in the Equivalent Strain and Stress Triaxiality Space[J]. International Journal of Mechanical Sciences.2004,46(1): 81-98.
    [108]BAO Y B, WIERZBICKI T. On the Cut-Off Value of Negative Triaxiality for Fracture[J]. Engineering Fracture Mechanics.2005,72(7):1049-1069.
    [109]BAO Y. Dependence of Ductile Crack Formation in Tensile Tests On Stress Triaxiality, Stress and Strain Ratios[J]. Engineering Fracture Mechanics.2005,72(4): 505-522.
    [110]BAO Y, WIERZBICKI T. A Comparative Study On Various Ductile Crack Formation Criteria[J]. Journal of Engineering Materials and Technology, Transactions of the ASME.2004,126(3):314-324.
    [111]MIRONE G. Elastoplastic Characterization and Damage Predictions Under Evolving Local Triaxiality:Axysimmetric and Thick Plate Specimens[J]. Mechanics of Materials.2008,40(9):685-694.
    [112]RICE J R, TRACEY D M. On the Ductile Enlargement of Voids in Triaxial Stress Fields[J]. Journal of the Mechanics and Physics of Solids.1969,17(3):201-217.
    [113]MCCLINTOCK F A. A Criterion for Ductile Fracture by Growth of Holes[J]. Journal of Applied Mechanics.1968,35(2):363.
    [114]CHAE D, BANDSTRA J P, KOSS D A. The Effect of Pre-Strain and Strain-Path Changes On Ductile Fracture:Experiment and Computational Modeling[J]. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing.2000,285(1-2):165-171.
    [115]CHAE D, KOSS D A. Damage Accumulation and Failure of HSLA-100 Steel[J]. Materials Science and Engineering a.2004,366(2):299-309.
    [116]CHAE D, KOSS D A, WILSON A L,et al. The Effect of Microstructural Banding On Failure Initiation of HY-100 Steel[J]. Metallurgical and Materials Transactions a: Physical Metallurgy and Materials Science.2000,31(13):995-1005.
    [117]GURSON A L. Continuum Theory of Ductile Rupture by Void Nucleation and Growth:Part I-Yield Criteria and Flow Rules for Porous Ductile Media[J]. Journal of Engineering Materials and Technology-Transactions of the Asme.1977,99(1): 2-15.
    [118]NEEDLEMAN A, TRIANTAFYLLIDIS N. Void Growth and Local Necking in Biaxially Stretched Sheets[J]. Journal of Engineering Materials and Technology-Transactions of the Asme.1978,100(2):164-169.
    [119]NEEDLEMAN A, TVERGAARD V. An Analysis of Ductile Rupture in Notched Bars[J]. Journal of the Mechanics and Physics of Solids.1984,32(6):461-490.
    [120]TVERGAARD V. Influence of Voids Nucleation On Ductile Shear Fracture at a Free Surface[J]. Journal of the Mechanics and Physics of Solids.1982,30(6):399-425.
    [121]TVERGAARD V. Influence of Voids On Shear Band Instabilities Under Plane-Strain Conditions [J]. International Journal of Fracture.1981,17(4):389-407.
    [122]TVERGAARD V. Material Failure by Void Coalescence in Localized Shear Bands[J]. International Journal of Solids and Structures.1982,18(8):659-672.
    [123]TVERGAARD V, NEEDLEMAN A. Analysis of the Cup-Cone Fracture in a Round Tensile Bar [J]. Acta Metallurgica.1984,32(1):157-169.
    [124]TVERGAARD V, NEEDLEMAN A, LO K K. Flow Localization in the Plane-Strain Tensile Test[J]. Journal of the Mechanics and Physics of Solids.1981,29(2): 115-142.
    [125]BENSEDDIQ N, IMAD A. A Ductile Fracture Analysis Using a Local Damage Model[J]. International Journal of Pressure Vessels and Piping.2008,85(4):219-227.
    [126]DUTTA B K, SAINI S, ARORA N. Application of a Modified Damage Potential to Predict Ductile Crack Initiation in Welded Pipes[J]. International Journal of Pressure Vessels and Piping.2005,82(11):833-839.
    [127]IMAD A, WILSIUS J, ABDELAZIZ M N,et al. Experiments and Numerical Approaches to Ductile Tearing in an 2024-T351 Aluminium Alloy[J]. International Journal of Mechanical Sciences.2003,45(11):1849-1861.
    [128]DECAMP K, BAUVINEAU L, BESSON J,et al. Size and Geometry Effects On Ductile Rupture of Notched Bars in a C-Mn Steel:Experiments and Modelling[J]. International Journal of Fracture.1997,88(1):1-18.
    [129]KUNA M, SUN D Z. Three-Dimensional Cell Model Analyses of Void Growth in Ductile Materials[J]. International Journal of Fracture.1996,81(3):235-258.
    [130]JOHNSON G, COOK W. Fracture Characteristics of Three Metals Subjected to Various Strains, Strain Rates, Temperatures and Pressures[J]. Engineering Fracture Mechanics.1985,21(1):31-48.
    [131]JABLOKOV V, GOTO D M, KOSS D A. Damage Accumulation and Failure of HY-100 Steel[J]. Metallurgical and Materials Transactions a:Physical Metallurgy and Materials Science.2001,32(12):2985-2994.
    [132]JABLOKOV V, GOTO D M, KOSS D A,et al. Temperature, Strain Rate, Stress State and the Failure of HY-100 Steel [J]. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing.2001,302(2):197-205.
    [133]SHIMURA M, SAITO S. The Effects of Hgdrostatic Tensile Stress On Fdvances in Fract[J]. Proceedings of ICF6.1984:1447-1455.
    [134]GB 24511-2009承压设备用不锈钢钢板及钢带[S].
    [135]ASME BPVC 2013 Section Ⅱ Materials Part a:Ferrous Material Specifications[S].
    [136]GB/T 228-2010金属材料拉伸试验[S].
    [137]HB 5214-1996金属室温缺口拉伸试验方法[S].
    [138]LIU W, LI Z, WANG B. Effect of Strain Rate On Strain Induced A'-Martensite Transformation and Mechanical Response of Austenitic Stainless Steels[J]. Acta Metallurgica Sinica.2009(45):285-291.
    [139]丁剑,张荻,金东寒.深冷变形工艺提高奥氏体不锈钢丝力学性能[J].热加工工艺.2002(4):4-5.
    [140]王琼琪.深冷处理提高奥氏体不锈钢服役性能及机理的研究[D].华东理工大学,2009.
    [141]BS 7910-2005 Guide to Methods for Assessing the Acceptability of Flaws in Metallic Structures[S].
    [142]黄建科.金属成形过程的细观损伤力学模型及韧性断裂准则研究[D].上海交通大学,2009.
    [143]FRANKLIN A. Comparison Between a Quantitative Microscope and Chemical Methods for Assessment of Non-Metallic Inclusions[J]. J Iron.1969,181-6.
    [144]TSG R0002-2005超高压容器安全技术监察规程[S].
    [145]ASME ST-LLC BPVC Section Ⅷ Division 2 Criteria Document[S].
    [146]PRAGER M. Development of a Local Strain Criteria for Use with Elastic-Plastic Analysis. WRC Bulletin in Preparation[R].

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700