用户名: 密码: 验证码:
型钢混凝土框架结构宏观有限元的方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
型钢混凝土(SRC)组合结构以其刚度大、承载能力高、抗震性能优越等优点,成为高烈度设防地区高层、大跨、重载及高耸结构的首选结构形式。鉴于试验采集到的试验数据普遍存在较大离散性且在数量上不具备统计意义,现阶段采用理论分析和数值方法相结合对相关科学问题进行探究不失为一种可行的研究手段。考虑到基于微观单元的数值模拟建模过程较为复杂,加之计算成本较高且对计算机硬件有着高标准需求,难以对大型复杂结构非线性力学行为进行有限元数值分析。借助宏观单元的有限元数值模拟在确保计算精度的前提下可实现对计算成本的有效控制,得到了广大科研工作者的青睐。
     为满足SRC框架结构宏观力学行为研究的需要,论文基于纤维单元模型理论并结合课题组前期关于型钢-混凝土间粘结滑移性能试验研究成果,在纤维层面上通过修正钢纤维的应变以实现对材料间粘结滑移的数值体现,使其更为精确地反映构件强非线性力学行为,同时提出了模拟SRC节点剪切变形的剪切块模型,并结合现阶段最新2D单元理论,从而构建了SRC节点单元,最终基于OpenSEES软件平台建立了SRC框架宏观有限元计算模型,取得了理想的验证效果。主要研究内容及研究结论有:
     1.分别采用宏观单元和微观单元对SRC柱抗震性能进行数值模拟分析,并结合试验实测数据,探讨了宏观单元和微观单元有限元数值模拟在单元原理、材料本构、网格划分、加载控制及模拟结果等方面的优缺点,提出了基于宏观单元的SRC梁-柱构件精细化建模方法,为深入进行SRC梁-柱宏观有限元理论研究奠定了基础。
     2.本课题组前期的研究成果表明,SRC构件在粘结滑移发生后,构件的承载力有较大改变。本文基于纤维单元模型理论,根据课题组前期提出的型钢-混凝土粘结滑移本构模型及粘结滑移沿截面高度的变化规律,提出在纤维层面上通过修正钢纤维应变的方法以实现对材料间粘结滑移的数值体现,该方法的意义在于精确的反映SRC构件非线性力学行为。
     3.为洞悉SRC节点内部应力的传递模式与分布情况,通过辅以微观有限元模拟以弥补试验研究无法观察节点内部应力分布形态的不足,对SRC平面框架涉及的中节点、边节点、角节点及屋面中节点进行剪切变形分析,结果表明节点内部应力主要分布在节点核心区型钢腹板、型钢翼缘内部混凝土斜压短柱及核心区外箍筋约束的混凝土斜压短柱区域,为建立剪力传递公式提供了分析依据。
     4.提出用于模拟SRC节点剪切变形的剪切块模型,并结合现阶段最新2D节点单元理论以构建SRC节点单元。根据SRC节点构造特点及内部应力传递模式与分布情况,认为SRC框架梁-柱节点剪力应由节点核心区型钢腹板、内部斜压杆及外部斜压杆三个部分承担,结合主要建筑材料的非线性本构模型,提出了SRC节点剪力传递公式,同时辅以试验得到的斜压杆宽度调整系数,最终建立了用于模拟SRC节点剪切变形的剪切块模型,随即利用C++计算机语言将剪切块模型编译为计算程序,以供2D节点单元程序调用,实现了SRC节点单元的数值体现。
     5.将纤维单元精细化模拟SRC梁-柱构件的方法与SRC梁-柱节点单元相结合,基于OpenSEES软件平台建立SRC框架宏观有限元计算模型。试验结果与模拟结果对比表明,本方法建立的SRC框架模型较好的模拟了SRC框架循环荷载作用下的力学响应。
Due to the high rigidity, high bearing capacity, superior seismic performance and otheradvantages, SRC composite structures become the preferred structures used in the high-rise,long-span, heavy-load and towering structures in high intensity security areas. Because theexperimental data collected from tests generally has larger discreteness and is not enough tohave statistical significance, the research method combining theoretical analysis and numericalsimulations to explore the relevant scientific problems is feasible recently. Considering thecomplexity of the numerical simulation modeling process based on the microscopic element,the high computation cost and the strict requirements to computer hardware, the finite elementnumerical analysis on the nonlinear mechanical behavior of large complex structures is hard toconduct. Under the help of macroscopic element, the effective control of computation cost canbe realized with the finite element numerical analysis in the premise of ensuring calculationaccuracy, which is popular in the large number of research workers.
     To meet the needs of the research on the macroscopic mechanical behavior of SRC framestructure, the numerical simulation of the bond-slip between materials is realized by modifyingthe strain of steel fiber in the fiber level, based on the fiber element model theory and combinedwith the research results from the previous performance test of the bond-slip between steel andconcrete in our team. The strongly nonlinear mechanical behavior of components is reflectedmore accurately. At the mean time, the shear block model used to simulate the sheardeformation of the SRC joints is proposed. And combined with the latest2D element theory atpresent, the SRC joints element is built. Based on the platform of OpenSEES software, themacroscopic finite element calculation model applied to SRC frame structure is established andis verified well. The main research work and research conclusion are as follows:
     1. The numerical simulations analysis on the seismic performance of SRC columns using macroscopic element and microscopic element is conducted respectively. And combined withthe measured data of tests, the advantages and disadvantages between the macroscopic finiteelement numerical simulation and the microscopic finite element numerical simulation in theelement principle, the material constitutive, the meshing means, the load control, the simulationresults and other aspects are explored. The refined modeling method applied to beam-columncomponents based on the macroscopic element is put forward, which lays the foundation toimplement the research on the macroscopic finite element theory applied to the SRCbeam-column components in deep.
     2. The previous research results in our team show that the bearing capacity of componentsis changed a lot after the bond slip of SRC components have occurred. Based on the fiberelement model theory, the numerical simulation of the bond slip between materials is realizedby modifying the strain of steel fiber in the fiber level, according to the bond-slip constitutivemodel of steel concrete and the variation rule of bond slip along the section height proposedpreviously in our team. The significance of this method lies in that the nonlinear mechanicalbehavior of SRC components is reflected accurately.
     3. In order to detect the delivery mode and the distribution of the inner stress in SRC joints,the insufficiency that the distribution patterns of the inner stress in joints cannot be observedthrough the test is made up with the simulation of microscopic finite element. The sheardeformation of the middle joints, side joints, corner joints and middle joints on the roofinvolved in SRC plane frame is analyzed. It is showed that the inner stress in joints is mainlydistributed in the steel webs of the joint core area, the oblique compression concrete columns inthe steel flange and the inclined concrete columns area restrained with stirrups out of the corezone, which provide the analysis basis to establish the shear transfer formula.
     4. The shear block model used to simulate the shear deformation of SRC joints is putforward. And combined with the latest2D element theory at present, the SRC joints element isbuilt. According to the construction features of SRC joints, the delivery mode and thedistribution of the inner stress, it is considered that the shear of SRC frame beam-column jointis beard with three parts as steel webs of the joint core area, the internal oblique compressionbar and the external oblique compression bar. Combined with the nonlinear constitutive modelof main construction materials, the shear transfer formula of SRC joints is proposed. Thecoefficient to adjust the width of the oblique compression bar is obtained with the test. The shear block model used to simulate the shear deformation of SRC joints is established finally.Then the shear block model to be called by2D joints element is compiled into the calculatingprograms with C++computer language. Then the numerical simulations of SRC joints elementis realized.
     5. Combining the method that simulate SRC beam-column by using fiber element with theSRC beam-column joint element, the macroscopic finite element calculation model of SRCframe is established based on the platform of OpenSEES software. Comparing the test resultswith the simulation results, it is showed that the mechanical response of SRC frame subjected tocycle loading is simulated well with the SRC frame model set up in the paper.
引文
[1-1]叶列平,方鄂华.钢骨混凝土构件的受力性能研究综述[J].土木工程学报.2000,33(5):1-12.
    [1-2]韩林海.钢管混凝土结构[M].北京:科学出版社,2000.
    [1-3]赵鸿铁.钢与混凝土组合结构[M].北京:科学出版社,2001.
    [1-4] Enrico Spacone, Sherif El-Tawil. Nonlinear Analysis of Steel-Concrete CompositeStructures: State of the Art[J]. Journal of Engineering Mechanics.2004,130(2):159-168.
    [1-5]王连广,刘之洋.型钢混凝土结构在国内外的研究进展[J].东北大学学报(自然科学版)1995(6),238-242.
    [1-6]杨红,吴晶晶,万志军.模型化方法对钢筋混凝土框架地震反应的影响分析[J].地震工程与工程振动,2008,28(2):20-28.
    [1-7]杨勇.型钢混凝土粘结滑移基本理论及应用研究[D].西安:西安建筑科技大学.2002.
    [1-8]梁威,型钢混凝土梁柱节点构造方法的试验研究[D].上海:同济大学,2007.
    [1-9]聂建国,樊健生.广义组合结构及其发展展望[J].建筑结构学报,2006,27(6):1-8.
    [1-10]赵鸿铁,潘泰华,姜维山,等.型钢混凝土构件的强度计算[J].建筑结构学报,1991,12(5):12-24.
    [1-11]赵世春.劲性钢筋混凝土构件基本受力行为的研究[D].成都:西南交通大学博士学位论文,1993.
    [1-12]杨勇,郭子雄,杜培龙,等.核心型钢混凝土柱截面非线性分析及抗震设计[J].基建优化,2005.26(5):110-116.
    [1-13]史庆轩,王秋维,雷剑,型钢混凝土框架结构基于位移的抗震设计方法研究[J].建筑结构,2009,39(7):66-69.
    [1-14]郭子雄,张志伟,黄群贤,等.型钢混凝土柱恢复力模型试验研究[J].地震工程与工程振动,2009,29(5):79-85.
    [1-15] Alemdar, B. N., Taylor, J., White, D. W., and Leon, R. T. Nonlinear analysis of buildingswith partially-restrained composite (PRC) connections. Structures Congress ‘‘StructuralEngineering in the21st Century’’ ASCE.1999,402-405.
    [1-16] American Concrete Institute (ACI).(2002).‘‘Building code requirements for structuralconcrete.’’ ACI-318Detroit..
    [1-17]傅永华.有限元分析基础[M].武汉:武汉大学出版社.2003.
    [1-18]冷纪桐.有限元技术基础[M].北京:化学工业出版社.2007.
    [1-19]陈孝珍,赵维涛.有限元法基础[M].北京:科学出版社.2009.
    [1-20]王勖成.有限单元法[M].北京:清华大学出版社.2003.
    [1-21] Klaus-Jurgen Bathe. Finite Element Procedures[M]. Printed in the united of America.1996.
    [1-22]江见鲸.混凝土结构有限元分析[M].北京:清华大学出版社.2005.
    [1-23]华东水利学院.弹性力学的有限单元法[M].北京:水利电力出版社.1974.
    [1-24] C.S.Desai, J.F.Abol. Introduction to the Finite Element Method,1972.
    [1-25] R.H.Gallagher. The Finite Element Method for Engineers,1975.
    [1-26] K.H.Huebner. The Finite Element Method in Stress Analysis,1972.
    [1-27] R.H.Gallagher, Y.Yamada, J.T.Oden. Recent Advances in Matrix Methods of StructuralAnslysis and design.1971.
    [1-28] J.T.Oden, R.W.Clough. Advances in Computational Methods in Structrue Mechanics anddesign,1972.
    [1-29]顾祥林,孙飞飞.混凝土结构的计算机仿真[M].上海:同济大学出版社,2002.
    [1-30]吕西林,金国芳,吴晓涵.钢筋混凝土结构非线性有限元理论与应用[M].上海:同济大学出版社,1996.
    [1-31]庄茁,张帆,等. ABAQUS非线性有限元实例分析与实例.北京:科学出版社,2005.
    [1-32]黄宗明,陈滔.基于有限单元柔度法和刚度法的非线性梁柱单元比较研究[J].工程力学,2003,20(5):24-31.
    [1-33]陈滔,黄宗明.基于有限单元柔度法的材料与几何双重非线性空间梁柱单元.2006,23(5):524-545.
    [1-34]康澜,张其林.三维退化纤维梁单元线性和非线性有限元分析.2009,31(2):13-17.
    [1-35]周凌远,李乔.基于UL法的CR列式三维梁单元计算方法[J].西南交通大学学报,2006,41(6):690-695.
    [1-36]童育强,向天宇,赵人达.基于退化理论的空间梁单元有限元分析[J].工程力学,2006,23(1):33-37.
    [1-37]陈政清,曾庆元,颜全胜.空间杆系结构大挠度问题内力分析的UL列式法[J].土木工程学报,1992,25(5):34-44.
    [1-38]叶列平,方鄂华.钢骨混凝土构件的受力性能研究综述[J].土木工程学报.2000,33(5):1-12.
    [1-39]中国建筑科学研究院.混凝土结构研究报告选集3[M].北京:中国建筑工业出版社,1994.
    [1-40]邹昀,吕西林,钱江.上海环球金融中心大厦结构抗震性能研究[J].建筑结构学报.2006,27(6):74-80.
    [1-41]中华人民共和国行业标准.型钢混凝土组合结构技术规程[S].2002.
    [1-42]郑山锁,邓国专,田威,等.型钢与混凝土之间粘结强度的力学分析[J].工程力学,2007,24(1):96-105.
    [1-43]王斌.型钢高强高性能混凝土构件及框架结构的地震损伤研究[D].西安:西安建筑科技大学,2010.
    [1-44]曾磊.型钢高强高性能混凝土框架节点抗震性能及设计计算理论研究[D].西安:西安建筑科技大学,2008.
    [1-45]邓国专.型钢高强高性能混凝土结构力学性能及抗震设计的研究[D].西安:西安建筑科技大学,2008.
    [1-46]车顺利.型钢高强高性能混凝土梁的基本性能及设计计算理论研究[D].西安:西安建筑科技大学,2008.
    [1-47]张亮.型钢高强高性能混凝土柱的受力性能及设计计算理论研究[D].西安:西安建筑科技大学,2012.
    [1-48]谢明.混凝土分型特性及分型损伤本构关系研究[D].西安:西安建筑科技大学,2012.
    [1-49]刘玉擎.劲性钢筋混凝土框架节点抗震性能的研究[D].西安:西安建筑科技大学,1988.
    [1-50]潘泰华,岳清瑞.劲性钢筋混凝土偏心受压长柱的试验研究.冶金部建筑研究总院研究报告,1988.
    [1-51]唐九如,陈红雪.劲性钢筋混凝土梁柱节点受力性能与抗剪强度[J].建筑结构学报.1990,11(4):28-36.
    [1-52]周起敬,姜维山,潘泰华主编.钢与混凝土组合结构设计施工手册[M].北京:中国建筑工业出版社,1991.
    [1-53]劲性钢筋混凝土结构性能及设计方法课题组.劲性钢筋混凝土结构性能及设计方法综合报告,1991.
    [1-54]陈家夔,张轶群,赵世春.劲性钢筋混凝土框架顶层边节点静力及抗震性能试验研究[J].西南交通大学学报.1993(1):13-19.
    [1-55]中国建筑科学研究院.混凝土结构研究报告选集3[M].北京:中国建筑工业出版社,1994.
    [1-56]李红,姜维山.型钢与混凝土粘结本构关系的试验研究[J].西北建筑工程学院学报,1995,03:16-22.
    [1-57]白国良,秦福华著.型钢钢筋混凝土原理与设计[M].上海:科学技术出版社,2000.
    [1-58]曹秀丽.型钢混凝土受弯构件变形和裂缝的研究[D].西安:西安建筑科技大学,2003.
    [1-59]徐亚丰.钢骨高强混凝土框架节点抗震性能研究[D].沈阳:东北大学,2003.
    [1-60]沈银良.型钢混凝土梁受力性能试验研究[D].南京:南京理工大学,2005.
    [1-61]刘丽华.型钢混凝土粘结滑移机理及本构关系研究[D].西安:西安建筑科技大学,2005.
    [1-62]邹昀,吕西林,钱江.上海环球金融中心大厦结构抗震性能研究[J].建筑结构学报.2006,27(6):74-80.
    [1-63]陈小刚,牟在根,张举兵.型钢混凝土柱抗震性能实验研究[J].北京科技大学学报,2009,31(12):1516-1524.
    [1-64]汪训流,陆新征,叶列平.往复荷载下钢筋混凝土柱受力性能的数值模拟[J].工程力学,2007,24(12):76-85.
    [1-65]薛建阳,赵鸿铁,杨勇,等.型钢混凝土柱粘结滑移性能及ANSYS数值模拟方法研究[J].建筑钢结构进展,2006,8(5):8-16.
    [1-66]郑山锁,邓国专,田威,等.型钢与混凝土之间粘结强度的力学分析[J].工程力学,2007,24(1):96-105.
    [1-67] Ashraf Ayoub. Nonlinear Analysis of Reinforced Concrete Beam–Columns withBond-Slip[J]. Journal of Engineering Mechanics.2006,132(11):1177-1186.
    [1-68] SHEIKH S A, UZUMERI S M. Analytical model for concrete confinement in tiedcolumns[J]. Journal of the Structural Division,1982,108(12):2703-2722.
    [1-69] FILIPPOU F C. Effects of bond deterioration on seismic response of reinforced concreteframe[D]. Berkeley, California: University of California,1983.
    [1-70] Amit H. Varma, James M. Ricles, Richard Sause, Le Wu Lu. Seismic Behavior AndModeling Of High-Strength Composite Concrete-Filled Steel Tube (CFT)Beam–Columns[J]. Journal of Constructional Steel Research,2002,58:725-758.
    [1-71] Cheng-Chih Chen, Nan-Jiao Lin. Analytical model for predicting axial capacity andbehavior of concrete encased steel composite stub columns[J]. Journal of ConstructionalSteel Research,2005,62(2006):424-433.
    [1-72] Giorgio Monti, Fillp C.Filippou,Enrico Spacone. Finite Elment For Anchored Bars UnderCyclic Load Reversals[J]. Journal of structural Engineering.1997,123(5):614-623.
    [1-73] Giorgio Monti, Enrico Spacone, Reinforced Concrete Fiber Beam Element WithBond-Slip[J]. Journal of Structural Engineering.2000,126(6):654-661.
    [1-74] Enrico Spacone, Filip C. Filippou, Fabio F. Taucer. Fibre Beam-Column Model ForNon-Linear Analysis Of R/C Frames: Part I. Formulation[J]. Earthquake Engineering AndStructural Dynamics.1996,25:711-725.
    [1-75] Enrico Spacone, Filip C. Filippou, Fabio F. Taucer. Fibre Beam-Column Model ForNon-Linearanalysis Of R/C Frames: Part II. Applications[J]. Earthquake Engineering AndStructural Dynamics.1996,25:727-742.
    [1-76] Enrico Spacone, Sherif El-Tawil. Nonlinear Analysis of Steel-Concrete CompositeStructures:State of the Art[J]. Journal of Engineering Mechanics.2004,130(2):159-168.
    [1-77] M. Reza Salari, Enrico Spacone, Analysis Of Steel-Concrete Composite Frames WithBond-Slip[J]. Journal of Structural Engineering.2001,127(11):1243-1250.
    [1-78] Marco Petrangeli, Paolo Emilio Pinto, Vincenzo Ciampi. Fiber Element For cyclic BendingAnd Shear Of RC structures. I: Theory[J]. Journal of Engineering Mechanics.1999,125(9):994-1001.
    [1-79] Marco Petrangeli. Fiber Element For Cyclic Bending And Shear Of RC Structures. II:Verification[J]. Journal of Engineering Mechanics.1999,125(9):1001-1009.
    [1-80] Jerome F. hajjar. A distributed plasticity model for concrete-filled steel tube beam columswith interlayer slip[J]. Engineering Structures.1998,20(8):663-676.
    [1-81] Ashraf Ayoub. Filip C. Filippou. Discussion of ‘‘Reinforced Concrete FrameElement withBond Interfaces. II: StateDeterminations and Numerical Validation’’ by Suchart LimkatanyuandEnrico Spacone[J]. Journal Of Structural Engineering.2003,10.
    [1-82] Henrik Thomsen, Enrico Spacone, Suchart Limkatanyu, Camata. Failure Mode Analyses ofReinforced Concrete Beams Strengthened in Flexure with Externally BondedFiber-Reinforced Polymers[J]. Journal of Composites for Construction.2004,8(2):123-131.
    [1-83] J Coleman, Enrico Spacone, Localization Issues In Force-Based Frame Elements[J].Journalof structural Engineering.2001,127(11):1257-1265.
    [1-84] Guido Camata, Enrico Spacone, Riadh Al-Mahaidi,Victor Saouma. Analysis of TestSpecimens for Cohesive Near-Bond Failure of Fiber-Reinforced Polymer-Plated Concrete[J].Journal of Composites for Construction.2004,8(6):528-538.
    [1-85] Alessandra Aprile, Enrico Spacone, Suchart Limkatanyu, Role Of Bond In RC BeamsStrengthened With Steel And Frp Plates[J].Journal of Structural Engineering.2001,127(12).
    [1-86] John Henry Weathersby. Investigation Of Bond Slip Between Concrete And SteelReinforcement Under Dynamic Loading Conditions[D]. Louisiana State University andAgricultural and Mechanical College.2003.
    [1-87] David z. Yankelevsky. New Finite Element for Bond-Slip Analysis[J]. Journal of StructuralEngineering.1985,111(7):1533-1542.
    [1-88]严志刚,王德军,盛洪飞.钢管混凝土三维非线性梁单元的研究与应用.哈尔滨工业大学学报.2003,35(3):335-341.
    [1-89]余勇,吕西林.方钢管混凝土柱的三维非线性分析.地震工程与工程振动.1999,19(1):57-64.
    [1-90]陈滔.基于有限单元柔度法的钢筋混凝土框架三维非弹性地震反应分析[D].重庆:重庆大学,2003.
    [1-91]赵红华,钱若军.考虑多因素共同作用的空间梁分析模型[J].太原理工大学学报,2003,34(4):418-421.
    [1-92]赵红华,钱若军.多因素耦合影响下的杆系结构几何非线性分析.同济大学学报(自然科学版).2004,32(7):861-865.
    [1-93]周凌远,李乔,张士中.采用有限单元法计算梁任意形状截面特性.计算力学学报.2008,25(5):634-638.
    [1-94]王开强,李国强,孙飞飞,等.多弹簧型钢梁柱单元若干问题的探讨.四川建筑科学研究.2008,34(6):1-5.
    [1-95]周凌远,李乔.基于UL法的CR列式三维梁单元计算方法.西南交通大学学报.2006,41(6):690-695.
    [1-96]吴庆雄,陈宝春,韦建刚.三维杆系结构的几何非线性有限元分析.2007,24(12):19-24.
    [1-97]黄荣杰,杜太生,宋天霞.钢筋混凝土空间梁单元刚度矩阵研究.华中科技大学学报.2007,35(3):116-118.
    [1-98]三维支撑钢框架结构弹塑性地震反应实用分析方法研究[D].上海:同济大学,2005.
    [1-99]方明霁,李国强,孙飞飞,等.基于多弹簧模型的空间梁柱单元(I):理论模型.计算力学学报.2008,25(1):129-133.
    [1-100]方明霁,李国强,孙飞飞,等.基于多弹簧模型的空间梁柱单元(I):理论模型.计算力学学报.2008,25(1):129-133.
    [1-101]齐虎,孙景,江淋. OPENSEES中纤维模型的研究[J].世界地震工程.2007,23(4):48-54.
    [1-102]梁吉,邵丽芳.基于位移形函数和力形函数的梁柱单元理论对比研究[J].兰州理工大学学报.2008,34(5):131-134.
    [1-103]傅剑平.钢筋混凝土框架节点抗震性能与设计方法研究[D].2002,7.
    [1-104]傅剑平,张川,白绍良.钢筋混凝土抗震框架节点各机构传递剪力的定量分析[J].建筑结构学报.2005,26(1):91-96.
    [1-105] Gustavo Parra-Montesinos and James K. Wight. Modeling shear behavior of hybrid RCSbeam-column connections [J]. ASCE,2001,127(1):3-11.
    [1-106] Imulation And Damage Models For Performance Assessment Of Reinforced ConcreteBeam-Column Joints[D]. Arash Altoontash.2004.8.
    [1-107] Cheng-Chih Chen, Nan-Jiao Lin. Analytical model for predicting axial capacity andbehavior of concrete encased steel composite stub columns [J]. Journal of ConstructionalSteel Research,2005,62(2006):424-433.
    [1-108] Ashraf Ayoub. Nonlinear Analysis of Reinforced Concrete Beam–Columns withBond-Slip[J]. Journal of Engineering Mechanics.2006,132(11):1177-1186.
    [1-109] Laura N. Lowes and Arash Altoontash. Modeling Reinforced-Concrete Beam-Column JointsSubjected to Cyclic Loading [J]. Journal of Structural Engineering,2003,129(12):1686-1697.
    [1-110] Hiroshi Kuramoto and Isao Nishiyama. Seismic Performance and Stress TransferringMechanism of Through-Column-Type Joints for Composite Reinforced Concrete and SteelFrames[J]. Journal of Structural Engineering,2004,130(2):352-360.
    [1-111] Gustavo Parra-Montesinos and James K. Wight. Seismic Response Of Exterior RCColumn-To-Steel Beam Connections[J]. Journal of Structural Engineering,2000,126(10):1113-1121.
    [1-112] Frank J. Vecchio and Michael P.Collons.The Modified Compression-Field Theory ForReinforced Concrete Elements Subjiected To Shear[J]. ACI JOURNAL,1986,219-231.
    [1-113] Mansour Ziyaeifara, Hiroshi Noguchi. A refined model for beam elements and beam-columnJoints[J]. Computers and Structures,2000,76:551-564.
    [1-114] K.B. Nakshatrala, D.Z. Turner, K.D. Hjelmstad, A. Masud. A stabilized mixed finiteelement method for Darcy flow based on a multiscale decomposition of the solution [J].Computer methods in applied mechanics and engineering.2006,195:4036-4049.
    [1-115] Costas P. Antonopoulos and Thanasis C. Triantafillou, Analysis of FRP-Strengthened RCBeam-Column Joints [J]. Journal of Composites for Construction,2002,6(1):41-51.
    [1-116] Tauqir M. Sheikh,Gregory G.Deierlein, Joseph A. Yura. Beam-Column MomentConnections For Composite Frames: Part1[J]. Journal of Structural Engineering,1989,115(11):2858-2876.
    [1-117] Tauqir M. Sheikh,Gregory G.Deierlein, Joseph A. Beam-Column Moment Connections ForComposite Frames: Part2[J]. Journal of Structural Engineering,1989,115(11):2877-2896.
    [1-118] L. Simo es da Silva a, Rui D. Simo es, Paulo J.S. Cruz. Experimental behaviour of end-platebeam-to-column composite joints under monotonical loading [J]. Engineering Structures,2001,23:1293-1409.
    [1-119] M. Kattner, M. Crisinel. Finite Element Modeling Of Semi-Rigid Composite Joints [J].Computer&Structures,2000,78,341-353.
    [1-120] Juan E. Carrion, Keith D. Hjelmstad, James M. LaFave. Finite element study of compositecuff connections for pultruded box sections[J]. Composite Strctures,2005,70:153-169.
    [1-121] L.X. Fang, S.L. Chan b, Y.L. Wong. Strength analysis of semi-rigid steel-concretecomposite frames [J]. Journal of Constructional Steel Research,1999,52:269-291.
    [1-122] Otani, S. Inelastic analysis of reinforced-concrete frame structures [J]. Journal of structuredivision of American Society of Civil Engineers,1974,100(7):1433-1449.
    [1-123] El-Metwally, S.E. and Chen, W. F. Moment-rotation of reinforced concrete beam-columnconnections [J]. ACI Structural Journal,1988,85(4):384-394.
    [1-124] Alath, S. and Kunnath, S. K. Modeling inelastic shear deformation in RC beam-columnjoints[J]. Engineering Mechanics: Proceeding of10th.1995,2,822-825.
    [1-125] Deng, C. G., Bursi, O.S. and Zandonini,R. A hysteretic connection element and itsapplications. Computer&Structures,2000,78:93-110.
    [1-126] Nilanjan Mitra and Laura N. Lowes. Evaluation, Calibration, and Verification of aReinforced Concrete[J]. Journal of Structural Engineering. Beam–Column Joint Model,2007.133(1):105-120.
    [1-127] Laura N. Lowes, Nilanjan Mitra, Arash Altoontash. A Beam-Column Joint Model forSimulating the Earthquake Response of Reinforced Concrete Frames [D]. University ofCalifornia, Berkeley.2003,8.
    [1-128] M.Youssef and A. Ghobarah. Modeling of RC beam-column joints and structural walls [J].Journal of Earthquake Engineering,2001,5(1):93-111.
    [1-129] Hitoshi Chiphara. New model for shear failure of RC interior Beam-column connections [J].Journal of Structural Engineering,2001,127(2):0152-0160.
    [1-130] Arash Altoontash. simulation and damage models for performance assessment of reinforcedconcrete beam-column joints.[D].2004.
    [1-131] El-Tawil, S., and Deierlein, G. G. Strength and ductility of concrete encased compositecolumns[J]. Struct. Eng.1999,125(9),1009-1019.
    [1-132] El-Tawil, S., and Deierlein, G. G. Nonlinear Analyses Of Mixed Steel-Concrete MomentFrames. Part I: Beam-Column Element Formulation [J]. Struct. Eng.2001,127(6),647-655.
    [1-133] El-Tawil, S., and Deierlein, G. G. Nonlinear analyses of mixed steel-concrete momentframes. Part II: Implementation and verification [J]. Struct. Eng.2001,127(6),656-665.
    [1-134] El-Tawil, S., Kanno, R., and Deierlein, G. G. Inelastic models for composite momentconnections in RCS frames. Composite Construction in Steel and Concrete III, C. DaleBuckner and Bahram Shahrooz, eds., ASCE, Reston, Va.,1997,197-210.
    [1-135] El-Tawil, S., Kuenzli, C. M., and Hassan, M. Pushover of hybrid coupled walls. Part I:Design and modeling [J]. Struct. Eng.,2002,128(10),1272-1281.
    [1-136] El-Tawil, S., and Kuenzli, C. M. Pushover of hybrid coupled walls. Part II: Analysis andbehavior [J]. Struct. Eng.,2002,128(10),1282-1289.
    [1-137] El-Tawil, S., Sanz-Picon, C. F., and Deierlein, G. G. Evaluation of ACI-318and AISC(LRFD) strength provisions for composite columns[J]. Constr. Steel Res.,1995,34(1),103-126.
    [1-138] Prodromos D. Zararis. Discussion of “Shear Compression Failure in Reinforced ConcreteDeep Beams”[J]. Journal of Structural Engineering,2003,129(4):544-553.
    [1-139]李磊,郑山锁,王斌,.型钢高强混凝土框架的循环退化效应[J].工程力学,2010,27(8):等125-132.
    [1-140]张宏仁.型钢高强高性能框架结构地震损伤分析[D].西安:西安建筑科技大学,2010,06.
    [1-141]孔冰.型钢混凝土框架-钢板剪力墙结构体系抗震性能分析[D].哈尔滨:哈尔滨工业大学,2009,06.
    [1-142]楚留声,白国良.型钢混凝土框架pushover分析[J].地震工程与工程振动,2009,29(2):51-56.
    [1-143]吴迈,余建星,张忠秀,等.钢-混凝土组合结构体系抗震可靠性研究[J].地震工程与工程振动,2006,26(3):97-103.
    [1-144]钟善桐,刘大林.高层钢管混凝土框筒体系的分析[J].哈尔滨建筑大学学报,2001,34:17-22.
    [1-145]侯维.巨型框-筒组合结构抗震性能研究[D].长沙:湖南大学,2008,4.
    [1-146]王华明.考虑节点变形的钢筋混凝土平面框架弹塑性抗震分析[D].天津:天津大学,2006,12.
    [1-147]徐丽华.钢管混凝土排柱剪力墙结构的抗震性能分析[D].兰州:兰州理工大学,2010.
    [1-148]吴春洋. SRC-RC框架-核心筒高层混合结构基于性能的抗震分析[D].北京:北京建筑工程学院,200812.
    [2-1]王连广,李立新,王德选.钢与混凝土组合结构非线性分析[M].沈阳:东北大学出版社.2000.12.
    [2-2] M. Reza Salari, Enrico Spacone, Analysis Of Steel-Concrete Composite Frames WithBond-Slip[J]. Journal of Structural Engineering.2001,127(11):1243-1250.
    [2-3] Hyo-Gyoung Kwak, Filip C. Filippou. Finite Element Analysis Of Reinforced ConcreteStructures Under Monotonic Loads[D]. Department Of Civil Engineering University OfCalifornia berkeley, California.1990,11.
    [2-4]张劲,王庆扬,胡守营,等. ABAQUS混凝土损伤塑性模型参数验证[J].建筑结构,2008,38(8):127-130.
    [2-5] Amit H. Varma, James M. Ricles, Richard Sause, Le Wu Lu. Seismic Behavior AndModeling Of High-Strength Composite Concrete-Filled Steel Tube (CFT) Beam–Columns[J]. Journal of Constructional Steel Research,2002,58:725-758.
    [2-6]杨勇,薛建阳,赵鸿铁.考虑粘结滑移的型钢混凝土结构ANSYS模拟方法研究[J].西安建筑科技大学学报(自然科学版).2006,38(3):302-309.
    [2-7]方明霁,李国强,孙飞飞,等.基于多弹簧模型的空间梁柱单元(I):理论模型[J].计算力学学报.2008,25(1):129-133.
    [2-8]方明霁,李国强,孙飞飞,等.基于多弹簧模型的空间梁柱单元(II):理论模型[J].计算力学学报.2008,25(1):134-138.
    [2-9]余勇,吕西林.方钢管混凝土柱的三维非线性分析[J].地震工程与工程振动.1999,19(1):57-64.
    [2-10] Enrico Spacone, Filip C. Filippou, Fabio F. Taucer. Fibre Beam-Column Model ForNon-Linear Analysis Of R/C Frames: Part I. Formulation[J]. Earthquake Engineering AndStructural Dynamics.1996,25:711-725.
    [2-11] Enrico Spacone, Filip C. Filippou, Fabio F. Taucer. Fibre Beam-Column Model ForNon-Linearanalysis Of R/C Frames: Part II. Applications[J]. Earthquake Engineering AndStructural Dynamics.1996,25:727-742.
    [2-12] Enrico Spacone, Sherif El-Tawil. Nonlinear Analysis of Steel-Concrete Composite Structures:State of the Art[J]. Journal of Engineering Mechanics.2004,130(2):159-168.
    [2-13] Guido Camata, Enrico Spacone, Riadh Al-Mahaidi,Victor Saouma. Analysis of TestSpecimens for Cohesive Near-Bond Failure of Fiber-Reinforced Polymer-Plated Concrete[J].Journal of Composites for Construction.2004,8(6):528-538.
    [2-14] Ashraf Ayoub. Nonlinear Analysis of Reinforced Concrete Beam–Columns with Bond-Slip[J].Journal of Engineering Mechanics.2006,132(11):1177-1186.
    [2-15]郭子雄,张志伟,等.型钢混凝土柱恢复力模型试验研究[J].地震工程与工程振动,2009,29(5):79-85.
    [2-16]陈小刚,牟在根,张举兵.型钢混凝土柱抗震性能实验研究[J].北京科技大学学报,2009,31(21):1516-1524.
    [2-17] Cheng-Chih Chen, Nan-Jiao Lin. Analytical model for predicting axial capacity and behaviorof concrete encased steel composite stub columns. Journal of Constructional Steel Research,62,(2006):424–433.
    [2-18] Sheikh SA, Uzumeri SM. Analytical model for concrete confinement in tied columns. Journalof the Structural Division, ASCE1982;108(12):2703-22.
    [2-19] Mander JB, Priestley MJN, Park R. Theoretical stress–strain model for confined concrete.Journal of Structural Engineering1988;114(8):1804-26.
    [2-20]朱雁茹,郭子雄.基于OpenSEES的SRC柱低周反复加载数值模拟[J].广西大学学报:自然科学版,2010,35(4):555-559.
    [2-21] MENEGOTTO M, PINTO PE. Method of analysis for cyclically loaded reinforced concreteplane frames including changes in geometry and non-elastic behavior of elements undercombined normal force and bending[C] Lisbon: International Association for Bridge andStructural Engineering.1973:15-22.
    [2-22] FILIPPOU F C. Effects of bond deterioration on seismic response of reinforced concreteframe [D]. Berkeley, CA: University of California,1983.
    [2-23]混凝土结构设计规范(GB50010-2010)[S].北京:中国建筑工业出版社,2010.
    [3-1]朱雁茹,郭子雄.基于OpenSEES的SRC柱低周反复加载数值模拟[J].广西大学学报:自然科学版,2010,35(4):555-559.
    [3-2]杨红,吴晶晶,万志军.模型化方法对钢筋混凝土框架地震反应的影响分析[J].地震工程与工程振动,2008,28(2):20-28.
    [3-3]方明霁,李国强,孙飞飞,等.基于多弹簧模型的空间梁柱单元(I)&(II)[J].计算力学学报.2008,25(1):129-138.
    [3-4] F.D.Queiroz, G.Queiroz, D.A.Nethercot. Two-dimensional FE model for evaluation ofcomposite beams, I: Formulation and validation [J]. Journal of Constructional Steel Research,2009,1055-1062.
    [3-5]张传超,郑山锁,李磊.基于纤维模型的CFT框架柱滞回性能模拟及模型灵敏度分析[J].世界地震工程,2010,26(4):128-134.
    [3-6]梁吉,邵丽芳.基于位移形函数和力形函数的梁柱单元理论对比研究[J].兰州理工大学学报.2008,34(5):131-134.
    [3-7]赵红华,钱若军.多因素耦合影响下的杆系结构几何非线性分析.同济大学学报(自然科学版).2004,32(7):861-865.
    [3-8] Enrico Spacone, Sherif El-Tawil. Nonlinear Analysis of Steel-Concrete CompositeStructures:State of the Art[J]. Journal of Engineering Mechanics.2004,130(2):159-168.
    [3-9]陈滔.基于有限单元柔度法的钢筋混凝土框架三维非线性弹性地震反应分析[D].重庆:重庆大学土木工程学院,2003.
    [3-10]张传超,郑山锁,李磊,等.基于柔度法的纤维梁柱单元及其参数分析[J].工业建筑,2010,40(12):90-94.
    [3-11]叶飞,基于OpneSEES的RC框架结构抗地震倒塌性能分析[D].湖南大学,2011.
    [3-12]邓国专.型钢高强高性能混凝土结构力学性能及抗震设计的研究[D].西安:西安建筑科技大学,2008.
    [3-13] Enrico Spacone,Filip C. Filippou, Fabio F. Taucer. Fiber Beam-Column Model ForNon-Linear Analysis Of R/C Frames: Part I. Formulation [J]. Earthquake Engineering AndStructural Dynamics.1996,25:711-725.
    [3-14] Enrico Spacone,Filip C. Filippou, Fabio F. Taucer. Fiber Beam-Column Model ForNon-Linear analysis Of R/C Frames: Part II. Applications[J]. Earthquake Engineering AndStructural Dynamics.1996,25:727-742.
    [3-15] MANDER J B, PRIESTLEY M J N, PARK R. Theoretical stress–strain model for confinedconcrete[J]. Journal of Structural Engineering,1988,114(8):1804–1826.
    [3-16]陈滔,黄宗明.基于有限单元柔度法的材料与几何双重非线性空间梁柱单元.工程力学,2006,23(5):524-545.
    [3-17]聂建国,陶慕轩.采用纤维梁单元分析钢-混凝土组合结构地震反应的原理[J].建筑结构学报,2011,32(10):1-10.
    [3-18] John Henry Weathersby. Investigation Of Bond Slip Between Concrete And SteelReinforcement Under Dynamic Loading Conditions[D]. Louisiana State University andAgricultural and Mechanical College.2003.
    [3-19]郑山锁,邓国专,田威,等.型钢与混凝土之间粘结强度的力学分析[J].工程力学,2007,24(1):96-105.
    [4-1]袁锋,施刚,霍达等.钢框架梁柱节点转角测量方法及力学模型比较研究[J].建筑结构学报.2010, S1,91-96.
    [4-2]施刚.钢框架半刚性端板连接的静力和抗震性能研究[D].北京:清华大学;2005.
    [4-3] Nilanjan Mitra and Laura N. Lowes. Evaluation, Calibration, and Verification of aReinforced Concrete [J]. Journal of Structural Engineering. Beam–Column Joint Model,2007.133(1):105-120.
    [4-4] Arash Altoontash. Simulation And Damage Models For Performance Assessment OfReinforced Concrete Beam-Column Joints [D].2004.8.
    [4-5] L. Simo es da Silva, Rui D. Simo es, Paulo J.S. Cruz. Experimental Behaviour Of End-PlateBeam-To-Column Composite Joints Under Monotonical Loading [J].2001,(23):1383–1409.
    [4-6]傅剑平,张川,白绍良.钢筋混凝土抗震框架节点各机构传递剪力的定量分析[J].建筑结构学报.2005,26(1):91-96.
    [4-7]王继武.型钢混凝土框架梁柱节点受力性能有限元分析(D).重庆:重庆交通大学,2009,03.
    [4-8]钟善桐,白国良.高层建筑组合结构框架梁柱节点分析与设计[M].北京:人民交通出版社,2006.
    [4-9]曾磊.型钢高强高性能混凝土框架节点抗震性能及设计计算理论研究[D].西安:西安建筑科技大学博士学位论文.2008.
    [4-10] Gregory G. Deierlein, Tauqir M. Sheikh, Joseph A. Yura, and James Q. Jirsa. Beam-ColumnMoment Connections For Composite Frames: Part1[J]. Journal of Structural Engineering,1989,115(11):2858-2876.
    [4-11] Gregory G. Deierlein, Tauqir M. Sheikh, Joseph A. Yura, and James Q. Jirsa. Beam-ColumnMoment Connections For Composite Frames: Part2[J]. Journal of Structural Engineering,1989,115(11):2877-2896.
    [4-12] Gustavo Parra-Montesinos and James K. Wight. Modeling Shear Behavior of Hybrid RCSBeam-Column Connections [J]. Journal of Structural Engineering,2001,127(1):3-11.
    [4-13]晏兴威.框架边节点强度的试验[J].长安大学学报,2003,23(6):60-61.
    [4-14]徐亚丰,贾连光,王连广,等.钢骨高强混凝土框架边节点抗剪承载力分析[J].东北大学学报(自然科学版),2005,26(2):167-170.
    [4-15]刘庆文,王方斌,洪平.预应力混凝土宽扁梁框架边节点受力性能有限元分析[J].南昌航空大学学报(自然科学版),2012,26(1):91-94.
    [4-16]戴绍斌,黄俊,彭少民.混凝土柱-钢梁边节点受力性能非线性有限元分析[J].武汉理工大学学报.2007,29(2):11-16.
    [4-17]徐亚丰,于淑芹,向常艳,等.钢骨高强混凝土框架边节点的损伤分析[J].沈阳建筑科技大学学报(自然科学版),2005,21(4):306-309.
    [4-18] N.H.T. To, J.M. Ingham and S.Sritharam. Monotonic Non-linear Analysis Of ReinforcedConcrete Knee Joints Using Strut-and-tie Computer Models [J]. Bulletin Of The NewZealand Society For Earthquake Engineering.2001,34(3):169-190.
    [4-19]崔建宇,孙建刚,宋玉普,等.钢筋混凝土框架顶层边节点受力模型[J].工程力学,2010,27(7):148-153.
    [5-1] Krawinkler, H., Bertero, V. V. and popov, E. P(.1975).“Shear behavior of Steel frame joints”.Journal of the Structural Division, ASCE,101, ST11, Nov.1975, pages2317-2336, Proc.paper11717.
    [5-2] Arash Altoontash, simulation and damage models for performance assessment of reinforcedconcrete beam-column joints. For the degree of doctor of philosophy.
    [5-3]曾磊.型钢高强高性能混凝土框架节点抗震性能及设计计算理论研究[D].西安:西安建筑科技大学博士学位论文,2008.
    [5-4]唐九如.钢筋混凝土框架节点抗震.南京:东南大学出版社,1989.
    [5-5] Nilanjan Mitra and Laura N. Lowes. Evaluation, Calibration, and Verification of aReinforced Concrete Beam–Column Joint Model[J]. Journal of Structural Engineering,2007,133(1):105-120.
    [5-6] Mansour Ziyaeifara, Hiroshi Noguch. A refined model for beam elements and beam-columnjoints[J]. Computers and Structures,2000,76:551-554.
    [5-7]赵鸿铁.钢与混凝土组合结构[M].北京:科学出版社,2001.
    [5-8]张誉,李向民,李辉.钢骨高强混凝土梁柱十字节点抗剪性能的研究[J].建筑结构,1999,4:6-9.
    [5-9]唐九如,陈雪红.劲性砼梁柱节点受力性能与抗剪强度[J].建筑结构学报,1990,11(4):28-36.
    [5-10] Gustavo Parra-Montesinos and James K. Wight. Modeling shear behavior of hybrid RCSbeam-column connections [J]. ASCE,2001,127(1):3-11.
    [5-11] Cheng-Chih Chen, Nan-Jiao Lin. Analytical model for predicting axial capacity and behaviorof concrete encased steel composite stub columns [J].Journal of Constructional SteelResearch,2005,62:424-433.
    [5-12] Mander JB, Priestley MJN, Park R. Journal of Structural Engineering,1988,114(8):1804-1826.
    [5-13]曾磊,许成祥,郑山锁.考虑高强度混凝土脆性影响的型钢混凝土框架节点受剪承载力计算公式[J].2010,40(7):99-102.
    [6-1]杨红,吴晶晶,王志军.模型化方法对钢筋混凝土框架地震反应的影响分析[J].地震工程与工程震动,2008,28(2):20-28.
    [6-2]钢结构设计规范(GB50017-2010).
    [6-3]唐九如.钢筋混凝土框架节点抗震.南京:东南大学出版社,1989.
    [6-4] Arash ALtoontash. Simulation And Damage Models for Performance Assessment ofreinforced Concrete Beam-Column Joint [J]. The Department of Civil And Environmentalengineering, Stanford university.2004,8.
    [6-5] Krawinkler, et al. Shear behavior of steel frame joints. Journal of The Structural Division.1975,(2317-2336)
    [6-6] El-Tawil S., Vidarsson E., Mikesell T. and Kunnath K.(1999). Inelastic behavior and designof steel panel zones. Journal of Structural engineering.1999,125(2):183-193.
    [6-7]曾磊.型钢高强高性能混凝土框架节点抗震性能及设计计算理论研究[D].西安:西安建筑科技大学,2008.
    [6-8] L.X. Fang, S.L. Chan b, Y.L. Wong. Strength analysis of semi-rigid steel-concrete compositeframes[J]. Journal of Constructional Steel Research,1999,52:269-291.
    [6-9]邓国专.型钢高强高性能混凝土结构力学性能及抗震设计的研究[D].西安:西安建筑科技大学,2008.
    [6-10]中华人民共和国国家标准.金属材料室温拉伸试验方法(GB/T228-2002).北京:中国计划出版社,2002.
    [6-11]中华人民共和国国家标准.钢及钢产品力学性能试验取样位置及试样制备(GB/T2975-1998).北京:中国计划出版社,1998.
    [6-12] Mander JB, Priestley MJN, Park R. Theoretical stress–strain model for confined concrete.Journal of Structural Engineering1988,114(8):1804-26.
    [6-13] Menegotto M, Pinto PE. Method of analysis for cyclically loaded reinforced concrete planeframes including changes in geometry and non-elastic behavior of elements under combinednormal force and bending[C] Lisbon: International Association for Bridge and StructuralEngineering,1973:15-22.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700