用户名: 密码: 验证码:
激光熔覆沉积修复TC11钛合金叶片的基础问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
相较于常规修复技术,激光熔覆沉积技术具有修复精度高、对基体的热影响和热输入小、沉积材料组织性能优良、界面结合强度高等优点,近年来逐渐成为零件再制造领域研究及发展的重点。对受损叶片盘外形及使用性能的恢复是实现对其高质量修复的必要条件,结合某一型号TC11钛合金压气机整体叶片盘的修复需要,论文对激光熔覆沉积过程中熔覆层外形尺寸控制、沉积材料及界面热影响区组织性能控制等基础问题展开研究。
     为提高压气机叶盘的气动效率,叶片普遍被设计成扭转的自由曲面轮廓,为精确恢复此类断裂叶片的几何外形,需严格依据待修复区域的高度来制定熔覆扫描轨迹,因此对熔覆层的形状特征参数的控制及预测成为恢复叶片外形亟需解决的基础问题。论文将侧向送粉式激光熔覆沉积过程中单层单道熔覆层的横截面面积作为研究的目标控制参量,在此方面完成的工作及结论简述如下:
     (1)通过定义粉末输送效率(即粉末流场中送入熔池的粉末粒子占所有输送粉末的质量比例),依据质量守恒定律,分别建立“圆柱”及高斯型流场下的粉末输送模型,推导粉末输送效率的解析式,并据此计算了不同工艺参数(激光功率、扫描速度、送粉率)组合下该目标参量的理论预测值。修正后的理论值虽然较实验测量结果偏大,但能够真实反映出工艺参数对熔覆层横截面面积的影响规律,且高斯型流场的粉末输送模型更接近于真实物理模型。
     (2)基于高斯型粉末流场,利用平面向量的儿何关系进一步推导数学模型,可计算任意送粉条件参数(离焦距离、送粉角度、熔池宽度)调整后的粉末输送效率。
     影响零件使用性能的一个重要因素是材料内部的组织特征。激光熔覆沉积修复后,TC11钛合金叶片的组织分布为:沉积仿形区的魏氏组织、热影响区呈过渡演变的混合组织及叶片基材的等轴组织。为提高修复叶片的服役寿命,论文针对薄壁零件在沉积区和热影响区组织特征的控制问题展开了实验及理论研究,分别将初生p晶粒尺寸、晶内单个片层α相厚度(针对仿形区激光熔覆沉积材料),和等轴α相的分布(针对热影响区材料)作为目标控制参量,在此方面获得的结论简述如下:
     (1)实验研究表明降低激光功率或增加扫描速度可以减小初生β晶粒尺寸;增大激光功率、扫描速度、层间停留时间可以细化晶内片层α相。在理论研究方面,对比分析了不同工艺条件下的温度场特征参数(峰值温度、β相变点以上的持续时间、固液界面处的温度梯度、β相变点以下的冷却速度),工艺参数对目标参量影响规律的理论预测与实验结果能够很好吻合,表明依据该理论分析方法调整工艺参数,可以实现对TC11钛合金激光熔覆沉积组织的控制。
     (2)实验研究表明降低激光功率、增加扫描速度或层间停留时间能够减弱基材等轴α相的扩散转变,减小热影响区面积。在理论研究方面,基于修正后的JMA方程,递推出描述激光熔覆沉积复杂热历史过程的扩散相变模型,计算了不同工艺条件下基材热影响区等轴α相的分布情况;依据此模型,认为温升阶段的升温时间、峰值温度均与等轴相的转变量呈正相关,并基于对热影响区温度场的分析,获得了工艺参数对基材目标控制参量的影响规律,该理论预测能与实验结果相一致,因此可将此模型作为锻态薄壁基材热影响区组织控制的理论依据。
     结合上述基础研究成果,确定出优化的激光熔覆沉积修复工艺,成功实现对某受损TC11钛合金整体叶片盘的高质量修复。
Compared with other conventional repair technology, laser cladding deposition presents advantages of high precision, small heat input and influence to substrate, superior performance of deposited materials, high bonding strength and so on. This process has become a key method of research and development in remanufacturing field recently. The recovery of shape and performance for damaged blade is a necessary condition in high quality repair. Based on the background of repairing a blisk in TC11titanium alloy, fundamental researches including controls of cladding size and microstructure in repaired part are studied in this paper.
     In order to improve the aerodynamic efficiency of compressor blisk, the blade is generally designed in an irregular twist surface contour. To accurately restore the shape of such broken blade, track of laser scanning should be designed strictly according to the height of the area to be repaired. Therefore, control and prediction on the size of cladding layer has become an urgent basic problem for blade repairing. The cross-sectional area of single laser cladding layer by lateral powder feeding is set as the target control parameter in this study. The main work and conclusions in this regard are as follows:
     (1) By defining the powder transport ratio as the mass ratio of powder particles fed into the molten pool to all powders transported, based on the conservation of mass, powder transport models for flow field with cylindrical and Gaussian distribution, and corresponding analytical formula of powder transport ratio are proposed. Then, the target parameter for different process parameters (laser power, scanning speed, powder feed rate) are calculated. Although modified theoretical predictions are still larger than experimental results, above two models could reflect the effects of process parameters on the cross-sectional area and the Gaussian model is more reasonable.
     (2) Based on the Gaussian powder flow field, powder transport ratios according to arbitrary adjustments of injection condition parameters (de focusing distance, powder-feeding angle, pool width) could be calculated by geometrical relationship of plane vectors.
     Microstructure of material is one of important factors affecting parts performance. Micro structure of TC11titanium alloy blades after repaired by laser cladding deposition shows widmanstatten structure in profiling zone, mixed structure with gradual transition in heat affected zone (HAZ), and equiaxed structure in initially forged substrate. To improve service lives of repaired blades, controls on the first two regional microstructures in thin-walled parts are investigated from experimental and theoretical aspects. Size of initial β grain, thickness of intragranular single a phase (for materials as deposited), and distribution of equiaxed a phase (for materials with mixed structure in HAZ) are set as target control parameters. In this aspect, main conclusions are summarized as follows:
     (1) In experimental studies, size of initial β grain could be reduced by decreasing laser power or increasing scanning speed, and intragranular lamellar a phase could be refined with the rise of laser power, scanning speed, and interlayer stay time. In theoretical research, characteristic parameters of temperature field for different process parameters are compared, such as peak temperature, duration time above P phase transition, temperature gradient at the solid-liquid interface, cooling rate below β phase transition. For effects on the target parameter, predictions and experimental results could be in good agreement. According to above theoretical analysis, microstructure control of deposited materials in TCI1titanium alloy can be realized by adjustment of process parameters.
     (2) Experimental results indicate that transition of equiaxed to lamellar phase and thermal influence on forged substrate are weakened with the reduction of laser power, increase of scanning speed and interlayer stay time. In theoretical research, based on the modified JMA equation, diffusion transformation model for the complicate thermal history during laser cladding deposition is established. Distributions of equiaxed a phase in HAZ corresponding to different process parameters are calculated. A positive correlation between transition of equiaxed phase and duration time, peak temperature in heating stage can be deduced. After comparing the temperature field parameters in HAZ, influences of process parameters on the target parameter are obtained. The theoretical prediction is in accordance with experimental results, so the model could be used as basis for microstructure control in H AZ of forged thin-walled parts.
     Combined with above fundamental researchs, a damaged blisk in TC11titanium alloy is repaired in high-quality by using an optimized technology program.
引文
[1]Sha W., Malinov S. Titanium Alloys:Modelling of Microstructure, Properties and Applications[M]. CRC,2009:1-2,148
    [2]莫依谢耶夫.钛合金在俄罗斯飞机及航空航天上的应用[M].北京:航空工业出版社,2008:147
    [3]曹春晓.航空用钛合金的发展概况[J].航空科学技术.2005(4):3-6
    [4]王华明,张述泉,王向明.大型钛合金结构件激光直接制造的进展与挑战[J].中国激光.2009(12):3204-3209
    [5]Leyens C., Peters M. Titanium and Titanium Alloys[M]. New York:John Wiley, 2006:1-17
    [6]李绍杰.航空发动机叶片铸造缺陷激光熔覆修复与熔覆过程的温度场数值模拟[D].贵阳:贵州大学,2006
    [7]关桥.发动机叶片与部件修复工程中的焊接技术(上)[J].航空工艺技术.1993(02):2-12
    [8]Toyserkani E., Khajepour A., Corbin S. Laser Cladding[M]. Boca Raton:CRC Press, 2005:33,57
    [9]徐志刚.大涵道比涡扇发动机材料和工艺关键技术[J].中国民航大学学报.2008,26(10):65-67
    [10]黄春峰.航空发动机整体叶盘结构及发展趋势[J].现代零部件.2005(04):96-98
    [11]马建宁,张定华,王增强,等.大型飞机用发动机的特点及关键制造技术[J].航空制造技术.2008(13):56-60
    [12]白瑞金,张利国.涡轮叶片修复及其市场分析[J].航空制造技术.2002(12):37-40
    [13]孙明霞,梁春华,张世福.激光技术在风扇/压气机整体叶盘结构修理中的应用[J].航空制造技术.2013(09):62-65
    [14]Dmtc. PropulsionSystems[EB/OL]. http://dmtc.com.au/programs/propulsion-system/, 2012-09-05
    [15]黄卫东,林鑫.激光立体成形高性能金属零件研究进展[J].中国材料进展.2010,2010(06):12-27
    [16]王海波.基于PMAC的激光三维堆积层高随动控制研究[D].苏州大学,2009
    [17]关振中.激光加工工艺手册[M].北京:中国计量出版社,1998:278-279
    [18]熊征.激光熔覆强化和修复薄壁型零部件关键技术基础研究[D].华中科技大学,2009
    [19]黄卫东等.激光立体成形:高性能致密金属零件的快速自由成形[M].西安:西北工业大学出版社,2007:38-181
    [20]张永忠,石力开.高性能金属零件激光快速成形技术研究进展[J].航空制造技术.2010(08):47-50
    [21]Schneider M. F. Laser Cladding with Powder, Effect of some Machining Parameters on Clad Properties[D]. Enschede:1998
    [22]Konig W. Surface Treatment with the Laser Beam:A Discussion of Various Methods[M]. Tulsa:Penn Well Corporation,1989:117-121
    [23]Molian P. A. Principles and Applications of Laser for Wear-Resistant Coatings.1st International Conference on Surface Modification Technology[C]. Metallurgical Society,1988:237-265
    [24]Oberlander B. C., Lugscheider E. Comparison of Properties of Coatings Produced by Laser Cladding and Conventional Methods[J]. Materials Science and Technology. 1992,8(8):657-665
    [25]Webber Tim. Advances in the Application of Laser Cladding of Multi-dimensional Part Geometries. Lasers in Motion for Industrial Applications[C]. Los Angeles: SPIE,1987:137-146
    [26]Bremer Claus. Automated Repair and Overhaul of Aero-Engine and Industrial Gas Turbine Components. ASME Turbo Expo 2005[C]. Nevada:2005:841-846
    [27]Gandy D. W., Frederick G., Stover J. T., et al. Overview of Hot Section Components Repair Methods. ASM Materials Solutions Conference & Exposition, Energy & Utilities Program[C]. Missouri:ASM International,2000:9-12
    [28]王小艳,陈静,林鑫,等.A1Si1 2粉激光成形修复7050铝合金组织[J].中国激光.2009(06):1585-1590
    [29]郭永利,梁工英,李路.铝合金的激光熔覆修复[J].中国激光.2008(02):303-306
    [30]杨永强,王迪,吴伟辉.金属零件选区激光熔化直接成型技术研究进展(邀请论文)[J].中国激光.2011(06):54-64
    [31]Sexton L., Lavin S., Byrne G., et al. Laser Cladding of Aerospace Materials[J]. Journal of Materials Processing Technology.2002,122(1):63-68
    [32]薛蕾,陈静,张凤英,等.飞机用钛合金零件的激光快速修复[J].稀有金属材料与工程.2006(11):1817-1821
    [33]李嘉宁,陈传忠.激光熔覆技术在航空领域中的研究现状[J].航空制造技术.2010(05):51-54
    [34]赵文珍.材料表面工程导论[M].西安:西安交通大学出版社,1998:136
    [35]Livsey N. B. Apparatus for Application of Metallic Coatings to Metallic Substrates[P]. US Patent:4300474,1981-11-17
    [36]Cooke L. Increasing Life through Repair[J]. Turbo-machinery International. 2007(3/4):38
    [37]Humphries, Michael J., Ironia N. J. MCrAlY Cladding Layers and Method for Making Same[P]. US Patent:4532191,1985-7-30
    [38]Guo W., Greer S. C. Laser Powder Fusion Repair of Z-notches with Nickel Based Superalloy Powder[P]. US Patent:7009137,2006-03-05
    [39]Tewari, Sudhir K. Laser Repair Method for Nickel Base Superalloys with High Gamma Prime Content[P]. US Patent:6495793,2002-10-17
    [40]Chen J. Q., Greenville S. C., Jackson J. Method of Repairing Nickel-Based Alloy Articles[P]. US Patent:20090057275,2009-3-5
    [41]Nowotny Steffen, Scharek Siegfried, Beyer Eckhard, et al. Laser Beam Build-Up Welding:Precision in Repair, Surface Cladding, and Direct 3D Metal Deposition[J]. Journal of Thermal Spray Technology.2007,16(3):344-348
    [42]Richter K. H., Orban S., Nowotny S. Laser Cladding of the Titanium Alloy Ti6242 to Restore Damaged Blades. Laser Materials Processing Conference[C]. San Francisco:Fraunhofer,2004:1506
    [43]Meier D., Reinhold Dorfen. Repair Method for Lengthening Turbine Blades[P]. US Patent:5701669,1997-12-30
    [44]张霜银.激光快速成形TC4钛合金的组织和力学性能研究[D].西北工业大学,2006
    [45]韩彦峰,高勃,胡江,等.激光快速成形技术制作纯钛基底冠[J].中国激光.2007(06):876-880
    [46]杨健,黄卫东,陈静,等.TC4钛合金激光快速成形力学性能[J].航空制造技术.2007(05):73-76
    [47]昝林.激光快速成形TC21钛合金的组织和力学性能研究[D].西北工业大学,2007
    [48]贾文鹏,林鑫,谭华,等.TC4钛合金空心叶片激光快速成形过程温度场数值模拟[J].稀有金属材料与工程.2007(07):1 1 93-1199
    [49]王维,林鑫,陈静,等.TC4零件激光快速修复加工参数带的选择[J].材料开发与应用.2007(03):19-23
    [50]贾文鹏,林鑫,陈静,等.空心叶片激光快速成形过程的温度/应力场数值模拟[J].中国激光.2007(09):1308-1312
    [51]林鑫,薛蕾,陈静.钛合金零件的激光成形修复[J].航空制造技术.2010(08):55-58
    [52]薛蕾,陈静,林鑫,等.激光快速修复Ti-6A1-4V合金的显微组织与力学性能[J]. 稀有金属材料与工程.2007(06):989-993
    [53]张永忠,席明哲,石力开.激光熔覆沉积制备多层316L不锈钢-S-llite31合金梯度功能材料[J].金属热处理.2007(09):4547
    [54]魏增敏,张永忠,高士友,等.激光快速成形技术的发展及其在功能梯度材料制备上的应用[J].材料导报.2005(05):77-80
    [55]孙景超,张永忠,黄灿,等.激光熔化沉积Ti60合金和TiC_P/Ti60复合材料的显微组织及高温拉伸性能[J].中国激光.2011(03):108-113
    [56]孙景超,张永忠,宫新勇,等.激光熔化沉积Ti60合金、TiC_p/Ti60复合材料的高温拉伸持久寿命及断裂过程[J].中国激光.2012(01):71-76
    [57]Huang C., Zhang Y. Z., Shen J. Y., et al. Thermal Stability and Oxidation Resistance of Laser Clad TiVCrAlSi High Entropy Alloy Coatings on Ti-6A1-4V Alloy[J]. Surface and Coatings Techonolgy.2011,206(6):1389-1395
    [58]Huang C., Zhang Y. Z., Vilar R., et al. Dry Sliding Wear Behavior of Laser Clad TiVCrAlSi High Entropy Alloy Coatings on Ti-6A1-4V Substrate[J]. Materials & Design.2012,41:338-343
    [59]黄灿.钛合金表面激光熔覆TiCrAISi系多主元合金涂层的研究[D].北京有色金属研究总院,2012
    [60]宫新勇,刘铭坤,李岩.TC11钛合金零件的激光熔化沉积修复研究[J].中国激光.2012,39(2):203001-203005
    [61]Xiong Zheng, Chen Guang-Xia, Zeng Xiao-Yan. Effects of Process Variables on Interfacial Quality of Laser Cladding on Aeroengine Blade Material GH4133[J]. Journal of Materials Processing Technology.2009,209(2):930-936
    [62]Lu Z. L., Li D. C., Tong Z. Q., et al. Investigation into the Direct Laser Forming Process of Steam Turbine Blade[J]. Optics and Lasers in Engineering.2011,49(9-10): 1101-1110
    [63]朱蓓蒂,曾晓雁,胡项.汽轮机末级叶片的激光熔覆研究[J].中国激光.1994, 21(6):526-529
    [64]刘中华,宋思远,徐志明.汽轮机末级叶片激光熔覆的研究[J].热力透平.2010(02):113-115
    [65]刘中华,宋思远,徐志明.汽轮机末级叶片激光熔覆镍基合金研究[J].汽轮机技术.2010(02):158-160
    [66]刘振侠.激光熔凝和激光熔覆的数学模型及数值分析[D].西北工业大学,2003
    [67]Hoadley A., Rappaz M. A Thermal Model of Laser Cladding by Powder Injection[J]. Metallurgical and Materials Transactions B.1992,23:631-642
    [68]王志坚,董世运,徐滨士.激光熔覆工艺参数对金属成形效率和形状的影响[J].红外与激光工程.2010(02):315-319
    [69]Lalas C., Tsirbas K., Salonitis K., et al. An Analytical Model of the Laser Clad Geometry[J]. The International Journal of Advanced Manufacturing Technology. 2007,32(1):34-41
    [70]Hussam E. C., Bruno C., Samuel B., et al. Analysis and Prediction of Single Laser Tracks Geometrical Characteristics in Coaxial Laser Cladding Process[J]. Optics and Lasers in Engineering.2012,50(3):413-422
    [71]张庆茂.送粉激光熔覆应用基础理论的研究[D].中国科学院长春光学精密机械与物理研究所,2000
    [72]张庆茂,刘文今,杨森.送粉式激光熔覆层横截面面积的分析模型[J].金属热处理学报.2001(04):65-69
    [73]Pelletier J. M., Sahour M. C., Pilloz M., et al. Influence of Processing Conditions on Geometrical Features of Laser Claddings Obtained by Powder Injection[J]. Journal of Materials Science.1993,28(19):5184-5188
    [74]Chryssolouris G., Zannis S., Tsirbas K., et al. An Experimental Investigation of Laser Cladding[J]. CRIP Annals-Manufacturing Technology.2002,51(1):145-148
    [75]Tan Hua, Zhang Fengying, Wen Rujun, et al. Experiment Study of Powder Flow Feed Behavior of Laser Solid Forming[J]. Optics and Lasers in Engineering.2012, 50(3):391-398
    [76]李倩.钛合金激光熔覆工艺与形状修复试验研究[D].大连理工大学,2010
    [77]崔崑,曾晓雁,朱蓓蒂,等.激光工艺参数对熔覆层宏观质量的影响[J].金属热处理.1993(07):23-28
    [78]Frenk A., Vandyoussefi M., Wagniere J. Analysis of the Laser-cladding Process for Stellite on Steel[J]. Metallurgical and Materials Transactions B.1997,28:501-508
    [79]刘运武,杨洗陈,王云山.激光熔敷中粉末粒子流对光能吸收的研究[J].天津工业大学学报.2003(05):13-16
    [80]Fu Yunchang, Loredo A., Martin B., et al. A Theoretical Model for Laser and Powder Particles Interaction during Laser Cladding[J]. Journal of Materials Processing Technology.2002,128(1-3):106-112
    [81]郎旭元.基于单道激光熔覆金属零件快速成形的数值模拟及试验研究[D].南华大学,2007
    [82]Picasso M., Marsden C, Wagniere J. A Simple but Realistic Model for Laser Cladding[J]. Metallurgical and Materials Transactions B.1994,25:281-291
    [83]Kumar Atul, Paul C. P., Pathak A. K., et al. A Finer Modeling Approach for Numerically Predicting Single Track Geometry in Two Dimensions during Laser Rapid Manufacturing [J]. Optics and Laser Technology.2012,44(3):555-565
    [84]Toyserkani Ehsan, Khajepour Amir, Corbin Steve.3-D Finite Element Modeling of Laser Cladding by Powder Injection:Effects of Laser Pulse Shaping on the Process[J]. Optics and Lasers in Engineering.2004,41(6):849-867
    [85]Hofman J. T., De Lange D. F., Pathiraj B., et al. FEM Modeling and Experimental Verification for Dilution Control in Laser Cladding[J]. Journal of Materials Processing Technology.2011,211(2):187-196
    [86]王志坚.装备零件激光再制造成形零件几何特征及成形精度控制研究[D].华南 理工大学,2011
    [871 Deoliveira U., Ocelik V., Dehosson J. Analysis of Coaxial Laser Cladding Processing Conditions[J]. Surface and Coatings Technology.2005,197(2-3): 127-136
    [88]Lin Jehnming. A Simple Model of Powder Catchment in Coaxial Laser Cladding[J]. Optics and Laser Technology.1999,31(3):233-238
    [89]Andrew J. P., Li L. The Significance of Deposition Point Standoff Variations in Multiple-layer Coaxial Laser Cladding (Coaxial Cladding Standoff Effects)[J]. International Journal of Machine Tools and Manufacture.2004,44(6):573-584
    [90]Liu Jichang, Li Lijun. Effects of Process Variables on Laser Direct Formation of Thin Wall[J]. Optics and Laser Technology.2007,39(2):231-236
    [91]Liu Jichang, Li Lijun. Study on Cross-section Clad Profile in Coaxial Single-pass Cladding with a Low-power Laser[J]. Optics and Laser Technology.2005,37(6): 478-482
    [92]Wang Weifu, Wang Maocai, Jie Zhang, et al. Research on the Microstructure and Wear Resistance of Titanium Alloy Structural Members Repaired by Laser Cladding[J]. Optics and Lasers in Engineering.2008,46(11):810-816
    [93]Berjeza N. A., Velikevitch S. P., Mazhukin V. I., et al. Influence of Temperature Gradient to Solidification Velocity Ratio on the Structure Transformation in Pulsed-and CW-Laser Surface Treatment[J]. Applied Surface Science.1995,86(1-4): 303-309
    [94]林鑫,薛蕾,陈静.激光成形修复Ti-6A14V钛合金零件的组织与性能[J].中国表面工程.2009,22(1)
    [95]Gaumann M., Bezencon C., Canalis P., et al. Single-crystal Laser Deposition of Superalloys:Processing Microstructure Maps[J]. Acta Materialia.2001,49(6): 1051-1062
    [96]李大生,刘继常.激光熔覆金属层柱状晶/等轴晶转变模型的研究进展[J].机械工程材料.2008(02):8-10
    [97]彭曙,卢锦堂,王新华,等.柱状晶向等轴晶转变的数值模拟研究进展[J].材料导报.2008(04):1-4
    [98]Hunt J. D. Steady State Columnar and Equiaxed Growth of Dendrites and Eutectic[J]. Materials Science and Engineering.1984,65(1):75-83
    [99]Gaumann M., Trivedi R., Kurz W. Nucleation Ahead of the Advancing Interface in Directional Solidification[J]. Materials Science and Engineering:A.1997,226-228: 763-769
    [100]Wang C. Y., Beckermann C. Prediction of Columnar to Equiaxed Transition during Diffusion Controlled Dendritic Alloy Solidification[J]. Metallurgical and Materials Transactions A.1994,25(5):1081-1093
    [101]Wang C. Y., Beckermann C. Equiaxed Dendritic Solidification with Convection: Part I. Multiscale/multiphase Modeling[J]. Metallurgical and Materials Transactions A.1996,27(9):2754-2764
    [102]Wang C. Y., Beckermann C. Equiaxed Dendritic Solidification with Convection: Part Ⅱ. Numerical Simulations for an Al-4 Wt pct Cu alloy[J]. Metallurgical and Materials Transactions A.1996,27(9):2765-2783
    [103]王孜.钢锭中柱状晶向等轴晶区域转变的机理[J].大型铸锻件.1987(04):75
    [104]苏志坚,陈进,中岛敬治,等.电磁搅拌下低合金钢柱状晶向等轴晶转变准则(一)[J].铸造技术.2010(04):421424
    [105]Lin Xin, Li Yanmin, Wang Meng, et al. Columnar to Equiaxed Transition during Alloy Solidification[J]. Science in China Series E:Technological Sciences.2003, 46(5):475-489
    [106]王垫,孟牧,王华明,等.热处理及激光多道搭接对激光熔化沉积TC18钛合金组织的影响[J].红外与激光工程.2010,39(3)
    [107]王金友,葛志明,周彦邦.航空用钛合金[M].上海:上海科学技术出版社,1985:202-221
    [108]Malinov Savko, Sha Wei. Modeling Thermodynamics, Kinetics, and Phase Transformation Morphology while Heat Treating Titanium Alloys[J]. JOM.2005, 57(9):42-45
    [109]Malinov S., Markovsky P., Sha W. Resistivity Study and Computer Modelling of the Isothermal Transformation Kinetics of Ti-8Al-lMo-lV Alloy[J]. Journal of Alloys and Compounds.2002,333(1-2):122-132
    [110]Lewis G. K., Schlienger E. Practical Considerations and Capabilities for Laser Assisted Direct Metal Deposition[J]. Materials and Design.2000,21(4):417-423
    [111]Kobryn P. A., Moore E. H. The Effect of Laser Powder and Traverse Speed on Microstructurel, Porosity, and Build Height in Laser-Deposited Ti-6A1-4V[J]. Scripta Materialia.2000,43(4):299-305
    [112]李鹏.基于激光熔覆的三维金属零件激光直接制造技术研究[D].华中科技大学,2005
    [113]Crespo Antonio, Vilar Rui. Finite Element Analysis of the Rapid Manufacturing of Ti-6A1-4V Parts by Laser Powder Deposition[J]. Scripta Materialia.2010,63(1): 140-143
    [114]Crespo Antonio, Deus Augusto, Vilar Rui. Modeling of Phase Transformations and Internal Stresses in Laser Powder Deposition.17th International Symposium on Gas Flow, Chemical Lasers, and High-Power Lasers[C]. Lisboa:SPIE,2009:713120
    [115]Fan Y., Cheng P., Yao Y. L., et al. Effect of Phase Transformations on Laser Forming of Ti-6A1-4V Alloy[J]. Journal of Applied Physics.2005,98(1):13518
    [116]Bontha S., Klingbeil N. W., Kobryn P. A., et al. Thermal Process Maps for Predicting Solidification Microstructure in Laser Fabrication of Thin-wall Structures[J]. Journal of Materials Processing Technology.2006,178(1-3):135-142
    [117]Li L., Steen W. M. Sensing, Modeling and Closed Loop of Powder Feeder for Laser Surface Modification. ICALEO[C]. Orlando:SPIE,1993:965-974
    [118]Carvalho P. A., Braz N., Pontinha M. M., et al. Automated Workstation for Variable Composition Laser Cladding-its Use for Rapid Alloy Scanning[J]. Surface and Coatings Technology.1995,72(1-2):62-70
    [119]Hu Dongming, Kovacevic Radovan. Sensing, Modeling and Control for Laser-based Additive Manufacturing[J]. International Journal of Machine Tools and Manufacture. 2003,43(1):51-60
    [120]鲍利索娃.钛合金金相学[M].北京:国防工业出版社,1986:248,269-270
    [121]周义刚,王凯旋,曾卫东.基于体视学原理的钛合金显微组织定量分析[J].稀有金属材料与工程.2009(03):398-403
    [122]刘其斌,李绍杰,范兴娟.高温合金激光熔覆过程温度场的数值模拟[J].热加工工艺.2007(19):76-79
    [123]Arif A. Numerical Prediction of Plastic Deformation and Residual Stresses Induced by Laser Shock Processing[J]. Journal of Materials Processing Technology.2003, 136(1-3):120-138
    [124]Liu Jichang, Li Lijun. In-time Motion Adjustment in Laser Cladding Manufacturing Process for Improving Dimensional Accuracy and Surface Finish of the Formed Part[J]. Optics and Laser Technology.2004,36(6):477-483
    [125]Chen Wen-Lih, Yang Yu-Ching, Lee Haw-Long. Estimating the Absorptivity in Laser Processing by Inverse Methodology [J]. Applied Mathematics and Computation.2007,190(1):712-721
    [126]王家金.激光加工技术[M].北京:中国计量出版社,1992:114,447
    [127]周建兴,刘瑞祥,陈立亮,等.凝固过程数值模拟中的潜热处理方法[J].铸造.2001,50(7):404-407
    [128]Boivineau M., Cagran C., Doytier D., et al. Thermophysical Properties of Solid and Liquid Ti-6A1-4V Alloy[J]. International Journal of Thermophysics.2006,27(2): 507-529
    [129]Cho Chongdu, Zhao Guiping, Kwak Si-Young, et al. Computational Mechanics of Laser Cladding Process[J]. Journal of Materials Processing Technology.2004, 153-154:494-500
    [130]杨冠军,罗雷,毛小南.电子束冷床熔炼TC4合金温度场模拟[J].中国有色金属学报.2010(S1):404-409
    [131]Shen Z. H., Zhang S. Y., Lu J., et al. Mathematical Modeling of Laser Induced Heating and Melting in Solids[J]. Optics and Laser Technology.2001,33(8): 533-537
    [132]工程材料实用手册编辑委员会.工程材料实用手册[M].北京:中国标准出版社,2002:429
    [133]杨世铭.传热学[M].北京:高等教育出版社,1987:11,28
    [134]Mazumder J., Mohanty P. S., Kar A. Mathematical Modelling of Laser Materials Processing [J]. International Journal of Materials and Product Technology.1996, 11(3-4):193-252
    [135]杨森,刘振侠,黄卫东.激光熔凝温度场的数值计算[J].西北大学学报(自然科学版).2001(03):199-202
    [136]Griffith M. L., Schlienger M. E., Harwell L. D., et al. Understanding Thermal Behavior in the LENS Process[J]. Materials and Design.1999,20(2-3):107-113
    [137]杨森,赵金兰,杨欣.激光熔覆制备梯度功能涂层的研究现状[J].激光技术.2007,31(2):220-224
    [138]张朝晖.ANSYS 8.0热分析教程与实例解析[M].北京:中国铁道出版社,2006:45-89
    [139]马琳,原津萍,张平.多道激光熔覆温度场的有限元数值模拟[J].焊接学报.2007,28(7):109-112
    [140]赵永,黄安国,林雪楠,等.激光熔覆过程模拟[J].电焊机.2007,37(3):37-40
    [141]崔忠圻,刘北兴.金属学与热处理原理[M].哈尔滨:哈尔滨工业大学出版社,2007:57
    [142]黄伯云,李成功,石力开,等.中国材料工程大典[M].北京:化学工业出版社,2006:607
    [143]Ahmed T., Rack H. J. Phase Transformations during Cooling in a+β Titanium Alloys[J]. Materials Science and Engineering:A.1998,243(1-2):206-211
    [144]Huang Y. C., Suzuki S., Kaneko H., et al. Continuous Cooling-transformation of β-phase in Binary Titanium Alloys [J]. Science, Technology, and Application of Titanium.1970:695-698
    [145]周义刚,曾卫东,俞汉清.近p锻造推翻陈旧理论发展了三态组织[J].中国工程科学.2001,3(5):61-66

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700