用户名: 密码: 验证码:
云计算中服务组合与选择技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在云计算环境中,服务组合提供了一种高效实现复合服务的方法;另一方面,云计算又为服务组合活动提供了丰富的原子服务以供选择。然而,用户的需求纷繁复杂,包括对复合服务的功能性需求以及非功能性需求,难以选择云计算平台中最合适的原子服务及实例。因此,考虑用户多约束、多目标甚至是系统负载均衡因素的服务选择问题是极具挑战性的研究课题。同时,由于云计算环境中服务组合请求具有较高的到达率,服务选择方法需要具有较高的实时性。
     本文首先回顾了服务组合研究现状,尤其是单目标和多目标服务选择问题以及基于粒子群的服务选择方法,并分析了现有方案的优缺点;其次,由于服务选择方法无法直接处理复合服务中子任务的多种多样的拓扑结构,本文提出了一种拓扑转换机制,保证转换后的非功能参数与转换前等价,便于后续的服务选择;随后,本文同时考虑了用户服务质量(Quality of Service, QoS)要求以及系统负载均衡的因素,使用基于小生境技术的环状粒子群算法解决了多约束单目标服务选择问题;此外,本文还提出了精确子群粒子群算法,克服了粒子群固有的早熟收敛和多样性缺失的特性。该算法使用简单的聚类机制,在可行解密集区域建立子群来搜索最优解,提高了服务选择求解的精确性;最后,本文使用近似距离和外部档案机制,为多目标服务选择问题提出了一个轻量多目标粒子群算法。本文的主要创新工作概括如下:
     1.需求拓扑等价转换机制。由于复合服务中原子服务被调用的拓扑结构(即服务组合路径)多种多样(如基本拓扑结构包括串行、并行、选择、循环等),服务选择算法无法直接从原始的服务组合路径中找出符合用户非功能性参数要求的服务实例。本文提出了一种将QoS参数和系统负载均衡参数进行等价转换的拓扑转换机制,这种机制可以将各种服务组合路径转换为服务选择算法可以直接处理的聚合拓扑形式的路径,该机制详细描述了转换后的聚合服务组合路径构建方法和等价的非功能性参数计算方式。
     2.环状粒子群服务选择算法。现有的服务选择算法往往会依赖于问题的性质,比如线性、非线性、约束及目标函数的性质,但忽略了用户的QoS需求和云计算平台负载均衡需求的同时影响。本文采用了一种基于小生境技术的环状粒子群服务选择算法,该算法将粒子群算法中每三个序号相邻的粒子组成小生境环境,并将每个小生境串接使整个粒子群形成环状结构。这种结构可以增强粒子群算法对服务选择问题中次优解的抵抗力,提高了服务选择的精确度。仿真结果表明,环状粒子群算法的精确度高于标准粒子群算法,尤其是在存在大量可用服务实例的情况下。
     3.精确子群粒子群服务选择算法。粒子群算法固有的特性(如早熟收敛和多样性损失)经常会导致服务选择结果的次优解的产生。本文提出了一个同时基于串行和并行小生境的精确子群粒子群服务选择算法,该算法先将解空间划分为若干网格单元,然后定期统计网格单元中的可行解数量,接着算法将可行解较多的网格单元聚类为可行解密集区域,并在其中建立子群,算法将各子群与剩下的主群粒子隔离,使用各种群最优解排序比较的方法同时查找最优解。测试结果表明提出的算法改进了粒子群的精确度,一定程度上减少了早熟收敛和多样性损失对服务选择结果的影响。在计算复杂度仍处于可接受的条件下,该精确子群粒子群算法比其他多约束单目标服务选择算法更加精确。
     4.轻量多目标粒子群服务选择算法。对于用户多目标QoS需求,现有方案主要将多目标服务选择问题转化为多约束单目标服务选择问题求解,但这些方案必须在有解空间先验知识的情况下才能生效,而且大部分方法一次执行仅输出一个解,用户很难在可接受的算法复杂度下得到均匀分布的解集。本文基于粒子群提出了一个通用的轻量多目标服务选择算法,该算法使用近似距离这样复杂度较低的机制来评估解的拥挤程度,并使用外部档案来存储非支配解。仿真结果表明该算法在近似度、覆盖度和执行时间方面比经典的非支配排序遗传算法Ⅱ(Nondominated Sorting Genetic Algorithms-Ⅱ, NSGA-Ⅱ)更加高效。
In cloud computing environment, service composition is an efficient implementation of a composite service. Cloud computing also provides luxuriant atomic services for service composition. In service composition, users'requirements are numerous and complicated. Users'requirements include functional and non-functional demands of composite services. It is quite difficult to select proper atomic services and instances in cloud computing platform. Therefore, it's a challenging research to select service instances considering multiple constraints and multiple objectives even load balance factors. In the meantime, because of high arrival rate of service composition requests in cloud computing, high real-time service selection methods are inevitable.
     First, this dissertation reviews service composition research status, especially single-objective and multi-objective service selection problems and Particle Swarm Optimization (PSO) based service selection. Then it analyzes advantages and disadvantages of existing schemes. Since service selection methods hardly cope with various topologies of composite services, we propose a topology conversion mechanism which guarantees non-functional parameter equivalence and facilitates service selection. A Ring Particle Swarm Optimization (RPSO) algorithm based on niching technique is adopted to solve multi-constraint single-objective service selection problems considering users'QoS demands and load balance factors. An Accuracy Sub-swarms Particle Swarm Optimization (ASPSO) algorithm is proposed to resist inherent features of PSO (e.g. premature convergence and diversity loss). ASPSO uses a simple clustering mechanism to construct sub-swarms in the feasible solution dense region to enhance service selection accuracy. Finally, we propose a Lightweight Multi-Objective Particle Swarm Optimization (LMOPSO) algorithm using approximate distance and external archive for multi-objective service selection problems. Major creative work of this dissertation is summarized below:
     1. QoS-equivalence topology conversion methanism. Due to diverse service composition paths (basic topologies include sequence, parallel, selective, loop etc.) in composite services, service selection algorithms hardly find service instances from original service composition paths according to users' non-functional parameter demands. We propose an equivalent topology conversion mechanism supporting QoS parameters and systems' load balance factors. This mechanism converts various service composition paths to aggregated paths which service selection can directly deal with. It presents the construction of aggregated service composition paths and calculation of equivalent non-functional parameters.
     2. Service selection algorithm based on RPSO. Existing service selection algorithms always depend on problem characteristics, e.g. linearity, nonlinearity, constraint and objective features. Existing research neglects concurrent influence of QoS demands and load balance factors. A niching based RPSO algorithm is adopted for service selection. The proposed algorithm constructs niche with each three adjacent particles, and uses joint particle of each two adjacent niche to form a ring topology. This topology enhances PSO's resistance on sub-optima in service selection problems and improves accuracy of service selection. Simulation results demonstrate the accuracy of proposed algorithm is higher than the standard PSO, especially in the presence of massive service instances.
     3. Service selection algorithm based on ASPSO. Inherent features of PSO (e.g. premature convergence and diversity loss) always induce sub-optima in service selection results. We propose an ASPSO service selection algorithm based on serial and parallel niching techniques. ASPSO divides solution space to multiple grid units, and calculates feasible solution number of each grid unit periodically. Then, ASPSO clusters feasible solution dense units to feasible solution dense regions and constructs sub-swarms in these regions. The algorithm isolates sub-swarms and the main-swarm. It searches for optimal solution using global optima ranking method in all swarms. Simulation results demonstrate ASPSO improves the accuracy of PSO. It decreases impact of premature convergence and diversity loss. With acceptable incremental computation complexity, ASPSO is more accurate than compared algorithms in multi-constraint single-objective service selection problems.
     4. Service selection algorithm based on LMPSO. For users' multi-objective service composition requests, existing methods mainly convert multi-objective problems to multi-constraint single-objective ones. But these methods take effect with priori knowledge of solution spaces. Each existing method only outputs one solution after each execution. Users hardly acquire an evenly distributed solution set with an acceptable time complexity. LMOPSO algorithm is proposed for multi-objective service selection problems. The proposed algorithm uses lightweight approximate distance to evaluate solutions'crowding degree and external archive to store non-dominated solutions. Simulation results prove that LMOPSO is more effective and efficient than generic algorithm NSGA-II in approximation, coverage and execution time.
引文
[1]M.B. Blake, Decomposing Composition:Service-Oriented Software Engineers [J], IEEE Software,24(6),2007,68-77.
    [2]M.P. Papazoglou, P. Traverso, S. Dustdar, F. Leymann, Service-Oriented Computing:State of the Art and Researeh Challenge [J], IEEE Computer,40(11),2007,38-45.
    [3]M.P. Papazoglou, P. Traverso, S. Dustdar, F. Leymann, Service-Oriented Computing:A Research Roadmap, International Journal of Cooperative Information Systems [J],17(2), 2008,223-255.
    [4]B.P. Rimal, E. Choi, I. Lumb, A Taxonomy and Survey of Cloud Computing Systems [C], Proceedings of the 2009 Fifth International Joint Conference on INC, IMS and IDC, 2009.
    [5]M. Armbrust, A. Fox, R. Griffith, A.D. Joseph, R. Katz, A. Konwinski, G. Lee, D. Patterson, A. Rabkin, I. Stoica, et al., A View of Cloud Computing [J], Communications of the ACM,53(4),2010,50-58.
    [6]M. Armbrust, A. Fox, R. Griffith, A.D. Joseph, R.H. Katz, A. Konwinski, G. Lee, D.A. Patterson, A. Rabkin, I. Stoica, et al., Above The Clouds:A Berkeley View of Cloud Computing [M], Technical Report, Technical Report UCB/EECS-2009-28, EECS Department, University of California, Berkeley,2009.
    [7]I. Foster, Y. Zhao, I. Raicu, S. Lu, Cloud Computing and Grid Computing 360-degree Compared [C], Proceedings of Grid Computing Environments Workshop,2009.
    [8]Amazon Elastic Compute Cloud (EC2), http://aws.amazon.com/ec2/.
    [9]Google App Engine(GAE), https://appengine.google.com/.
    [10]Microsoft Azure Services Platform, http://www.microsoft.com/azure/.
    II1] CA 3Tera AppLogic, http://www.3tera.com/AppLogic/.
    [12]Rackspace Mosso, http://www.mosso.com/.
    [13]Elastic Utility Computing Architecture for Linking Your Programs To Useful Systems (Eucalyptus), http://www.eucalyptus.com/.
    [14]D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman, L. Youseff, D. Zagorodnov, The Eucalyptus Open-source Cloud-computing System [C], Proceedings of 9th IEEE/ACM International Symposium on Cluster Computing and the Grid,2009.
    [15]IBM Blue Cloud,http://www.ibm.com/cloud.
    [16]R.P. Goldberg, Survey of Virtual Machine Research [J], IEEE Computer,7(6),1974, 34-45.
    [17]J. Smith, R. Nair, Virtual Machines:Versatile Platforms for Systems and Processes [M], USA:Elsevier,2005.
    [18]P. Mell and T. Grance, Draft nist working definition of cloud computing-v15 [S],2009.
    [19]P. Mell, T. Grance, The NIST Definition of Cloud Computing (draft) [S], NIST Special Publication,800:145,2011.
    [20]Google Docs, http://docs.google.com/.
    [21]SalesForce, http://www.salesforce.com/.
    [22]Amazon Elastic Beanstalk, http://aws.amazon.com/elasticbeanstalk/.
    [23]Hadoop, http://hadoop.apache.org/.
    [24]J. W. J. Xue, S. A. Jarvis, Qos-aware Service Selection, In Advanced Information and Knowledge Processing, London,2010,225-251.
    [25]D. A. D'Mello, V. S. Ananthanarayana, S. Salian, A Review of Dynamic Web Service Composition Techniques, In Communications in Computer and Information Science, Berlin,2011,85-97.
    [26]A. Michlmayr, F. Rosenberg, P. Leitner, S. Dustdar, End-to-End Support for QoS-Aware Service Selection, Binding, and Mediation in VRESCo, IEEE Transactions on Services Computing [J],3(3),2010,193-205.
    [27]P. Plebani, B. Pernici, URBE:Web Service Retrieval Based on Similarity Evaluation [J], IEEE Transactions on Knowledge and Data Engineering,21(11),2009,1629-1642.
    [28]D. Zhovtobryukh, A Petri Net-based Approach for Automated Goal-Driven Web Service Composition [J], Simulation,83(1),2007,33-63.
    [29]D. A. Menasce, E. Casalicchio, V. Dubey, A Heuristic Approach to Optimal Service Selection in Service Oriented Architectures [C], Proceedings of the 7th International Workshop on Software and Performance,2008.
    [30]D. A. Menasce, E. Casalicchio, V. Dubey, On Optimal Service Selection in Service Oriented Architectures [J], Performance Evaluation,67(8),2010,659-675.
    [31]R. G. Daniel Schall, C. Dorn, S. Dustdar, Human Interactions in Dynamic Environments through Mobile Web Services [C], Proceedings of the IEEE International Conference on Web Services,2007.
    [32]S. Yang, Y.-Y. FanJiang, J.-Y. Kuo, S.-P. Ma, Towards a Genetic Algorithm Approach to Automating Workflow Composition for Web Services with Transactional and QoS-Awareness [C], Proceedings of 2011 IEEE World Congress on Services,2011.
    [33]Z. Yajing, D. Jing, P. Tu, Ontology Classification for Semantic-Web-Based Software Engineering [J], IEEE Transactions on Services Computing,2(4),2009,303-317.
    [34]S. Kona, A. Bansal, G. Gupta, D. Hite, Automatic Composition of Semantic Web Services [C], Proceedings of the International Conference on Web Services,2007.
    [35]U. Kuster, B. KonigRies, M. Stern, M. Klein, DIANE:An Integrated Approach to Automated Service Discovery, Matchmaking and Composition [C], Proceedings of the 16th international conference on World Wide Web,2007.
    [36]R. Kaijun, X. Nong, C. Jinjun, Building Quick Service Query List Using WordNet and Multiple Heterogeneous Ontologies toward More Realistic Service Composition [J], IEEE Transactions on Services Computing,4(3),2011,216-229.
    [37]F. Lecue, A. Leger, Semantic Web Service Composition through a Matchmaking of Domain [C], Proceedings of the European Conference on Web Services,2006.
    [38]J. El Hadad, M. Manouvrier, M. Rukoz, TQoS:Transactional and QoS-Aware Selection Algorithm for Automatic Web Service Composition [J], IEEE Transactions on Services Computing,3(1),2010,73-85.
    [39]W. Jianping, Exploiting Mobility Prediction for Dependable Service Composition in Wireless Mobile Ad Hoc Networks [J], IEEE Transactions on Services Computing,4(1), 2011,44-55.
    [40]P. Yue, L. Di, W. Yang, G. Yu, P. Zhao, Semantics-based automatic composition of geospatial web service chains [J], Computers & Geosciences,33(5),2007,649-665.
    [41]D. Tu, C. Shu, J. Shi, T. Zhu, S. Wang, H. Yu, Rank Internet Service Quality Using Multiple Features:A Machine Learning Approach [C], Proceedings of 2010 Sixth International Conference on Semantics Knowledge and Grid,2010.
    [42]F. Lecue, N. Mehandjiev, Towards Scalability of Quality Driven Semantic Web Service Composition [C], Proceedings of the 2009 IEEE International Conference on Web Services,2009.
    [43]K. Belhajjame, S. M. Embury, N. W. Paton, R. Stevens, C. A. Goble, Automatic Annotation of Web Services Based on Workflow Definitions [J], ACM Transaction on Web,2(2),2008,1-34.
    [44]X. ChengZhi, L. Peng, W. Taehyung, W. Qi, P. C. Y. Sheu, Semantic Web Services Annotation and Composition Based on ER Model [C], Proceedings of 2010 IEEE International Conference on Sensor Networks, Ubiquitous, and Trustworthy Computing, 2010.
    [45]M.B.D. Martin, J. Hobbs, O. Lassila, D. McDermott, S.N. Mcllraith, M. Paolucci, B. Parsia, T. Payne, E. Sirin, N. Srinivasan, K. Sycara, OWL-S:Semantic Markup for Web Services [S], W3C Recommendation,2004, http://www.ai.sri.com/daml/services/owl-s/1.2/overview/.
    [46]A.H.H. Ngu, M.P. Carlson, Q.Z. Sheng, H-Y. Paik, Semantic-Based Mashup of Composite Applications [J], IEEE Transaction on Service Computing,3(1),2010,2-15.
    [47]S. Kalasapur, M. Kumar, B.A. Shirazi, Dynamic service composition in pervasive computing [J], IEEE Transaction on Parallel and Distributed Systems,18(7),2007, 907-918.
    [48]F. Wagner, F. Ishikawa, S. Honiden, QoS-Aware Automatic Service Composition by Applying Functional Clustering [C], Proceedings of 2011 IEEE International Conference on Web Services,2011.
    [49]L. Fangfang, S. Yuliang, Y. Jie, W. Tianhong, W. Jingzhe, Measuring Similarity of Web Services Based on WSDL [C], Proceedings of 2010 IEEE International Conference on Web Services,2010.
    [50]V. Cardellini, E. Casalicchio, V. Grassi, F. Lo Presti, Flow-based Service Selection for Web Service Composition Supporting Multiple QoS Classes [C]. Proceedings of IEEE International Conference on Web Services,2007.
    [51]V. Agarwal, K. Dasgupta, N. Karnik, A. Kumar, A. Kundu, S. Mittal, B. Srivastava, A Service Creation Environment based on End to End Composition of Web Services [C], Proceedings of the 14th international conference on World Wide Web,2005.
    [52]J.L. Pastrana, E. Pimentel, M. Katrib, QoS-enabled and self-adaptive connectors for Web Services composition and coordination [J], Computer Languages, Systems & Structures, 37(1),2011,2-13.
    [53]E. Sirin, B. Parsiab, D. Wu, J. Hendler, D. Nau, HTN planning for web service composition using SHOP2 [J], Journal of Web Semantics,1(4), pp.377-396,2004.
    [54]A. Moraru, C. Fortuna, B. Fortuna, R. R. Slavescu, A Hybrid Approach to QoS-aware Web Service Classification and Recommendation [C], Proceedings of IEEE 5th International Conference on Intelligent Computer Communication and Processing,2009.
    [55]L. Aversano, M. D. Penta, K. Taneja, A Genetic Programming Approach to Support the Design of Service Compositions [J], International Journal of Computer Systems Science & Engineering,21,2006,247-254.
    [56]X. Dong, A. Halevy, J. Madhavan, E. Nemes, J. Zhang, Similarity Search for Web Services [C], Proceedings of the Thirtieth International Conference on Very Large Data Bases,2004.
    [57]A. Michlmayr, F. Rosenberg, P. Leitner, S. Dustdar, End-to-End Support for QoS-Aware Service Selection, Binding, and Mediation in VRESCo [J], IEEE Transactions on Services Computing,3(3),2010,193-205.
    [58]R. Berbner, M. Spahn, N. Repp, O. Heckmann, R. Steinmetz, Heuristics for QoS-aware Web Service Composition [C], Proceedings of the IEEE International Conference on Web Services,2006.
    [59]L. Li, L. Chengfei, W. Junhu, Deriving Transactional Properties of Composite Web Services [C], Proceedings of IEEE International Conference on Web Services,2007.
    [60]W. Chien-Min, W. Shun-Te, C. Hsi-Min, H. Chi-Chang, A Reliability-Aware Approach for Web Services Execution Planning [C], Proceedings of 2007 IEEE Congress on Services,2007.
    [61]T. Yu, Y. Zhang, K.-J. Lin, Efficient Algorithms for Web Services Selection with End-to-End QoS Constraints [J], ACM Transaction on the Web,1(1),2007.
    [62]L. Qianhui, L. Peipei, P. C. K. Hung, W. Xindong, Clustering Web Services for Automatic Categorization [C], Proceedings of IEEE International Conference on Services Computing,2009.
    [63]K. Fujii, T. Suda, Semantics-based Context-aware Dynamic Service Composition [J], ACM Transactions on Autonomous and Adaptive Systems,4(2),2009,1-31.
    [64]K. Fujii, T. Suda, Semantics-based Dynamic Web Service Composition [J], International Journal of Cooperative Information Systems,15(3),2006,293-324.
    [65]F. Lecue, N. Mehandjiev, Seeking Quality of Web Service Composition in a Semantic Dimension [J], IEEE Transaction on Knowledge and Data Engineering,23(6),2011, 942-959.
    [66]L. Hou, Z. Jin, B. Wu, Modeling and verifying Web services driven by requirements:An ontology-based approach [J], Science in China Series F:Information Sciences,49(6), 2006,792-820.
    [67]F. Zhiqiang, Z. Li, S. Jufang, W. Shouxin, A User's Preference based Method for Web Service Selection [C], Proceedings of 2010 Second International Conference on Computer Research and Development,2010.
    [68]D. Ardagna, B. Pernici, Adaptive Service Composition in flexible Processes, IEEE Transactions on Software Engineering [J],33(6),2007,369-384.
    [69]L. Zeng, A.N.B. Benatallah, M. Dumas, J. Kalagnanam, H. Chang, QoS-aware middleware for web services composition [J], IEEE Transaction on Software Engineering, 30(5),2004,311-327.
    [70]I. Estevez-Ayres, P. Basanta-Val, M. Garcia-Valls, J.A. Fisteus, L. Almeida, QoS-aware real-time composition algorithms for service-based applications [J], IEEE Transaction on Industrial Informatics,20(6),2009,278-288.
    [71]X. Gu, K. Nahrstedt, Distributed multimedia service composition with statistical QoS assurances [J], IEEE Transaction on Multimedia,8(1),2006,141-151.
    [72]S.C. Oh, D. Lee, S. R.T. Kumara, Effective Web Service Composition in Diverse and Large-Scale Service Networks [J], IEEE Transaction on Services Computing,1(1),2008, 15-32.
    [73]J. M. Ko, C. O. Kim, I.H. Kwon, Quality-of-service oriented web service composition algorithm and planning architecture [J], Journal of Systems and Software,81(11),2008, 2079-2090.
    [74]S.Y. Hwang, E.P. Lim, C.H. Lee, C.H. Chen, Dynamic web service selection for reliable web service composition [J], IEEE Transaction on Services Computing,1(2),2008, 104-116.
    [75]E. Park, H. Shin, Reconfigurable service composition and categorization for power-aware mobile computing [J], IEEE Transaction on Parallel and Distributed Systems,19(11),2008,1553-1564.
    [76]A. F.M. Huang, C.-W. Lan, S. J.H. Yang, An optimal QoS-based Web service selection scheme [J], Information Sciences,179(19),2009,3309-3322.
    [77]C.-F. Lin, R.-K. Sheu, Y.-S. Chang, S.-M. Yuan, A relaxable service selection algorithm for QoS-based web service composition [J], Information and Software Technology, 53(12),2011,1370-1381.
    [78]L. Qi, W. Dou, X. Zhang, J. Chen, A QoS-aware composition method supporting cross-platform service invocation in cloud environment [J], Journal of Computer and System Sciences,78(5),2012 1316-1329.
    [79]M. Alrifai, T. Risse, Combining global optimization with local selection for efficient QoS-aware service composition [C], Proceedings of the 18th international conference on World Wide Web,2009.
    [80]M. Alrifai, D. Skoutas, T. Risse, Selecting skyline services for QoS-based web service composition [C], Proceedings of the 19th international conference on World Wide Web, 2010.
    [81]Q. Yu, A. Bouguettaya, Multi-attribute optimization in service selection [J], World Wide Web,15(1),2012,1-31.
    [82]H. Wada, J. Suzuki, Y. Yamano, K. Oba, E3:A Multiobjective Optimization Framework for SLA-aware Service Composition [J], IEEE Transaction on Services Computing,5(3), 2012,358-372.
    [83]C. W. Reynolds, Flocks, herds and schools:a distributed behavioral model [J], Computer Graphics,21(4),1987,25-34.
    [84]F. Heppner, U. Grenander, A stochastic nonlinear model for coordinated bird flocks [C], Proceedings of the Ubiquity of Chaos,1990.
    [85]E. O. Wilson, E. O. Willis, Applied biogeography [J], Ecology and evolution of communities,1975,522-534.
    [86]J. Kennedy, R. Eberhart, Particle swarm optimization [C], Proceeding of IEEE International Conference on Neural Networks,1995.
    [87]Y. Shi, R. C. Eberhart, A Modified Particle Swarm Optimizer [C], Proceedings of IEEE International Conference on Evolutionary Computation,1998.
    [88]Y. Shi, R. C. Eberhart, Fuzzy Adaptive Particle Swarm Optimization [C]. Proceedings of the IEEE International Conference on Evolutionary Computation,2001.
    [89]M. Clerc, The Swarm and The Queen:Towards a Deterministic and Adaptive Particle Swarm Optimization [C], Proceedings of thel999 Congress on Evolutionary Computation,1999.
    [90]Y. Shi, R. C. Eberhart, Comparing Inertia Weights and Constriction Factiors in Particle Swarm Optimization [C]. Proceedings of 2000 IEEE Congress on Evolutionary Computation,2000.
    [91]A. Ratnaweera, S. K. Halgamuge, H. C. Watson, Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients [J], IEEE Transaction on Evolution Computing,8(3),2004,240-255.
    [92]C. K. Monson, K. D. Seppi, The Kalman Swarm-A New Approach to Particle Motion in Swarm Optimization [J], Lecture Notes in Computer Science,3102,2004,140-150.
    [93]J. Kennedy, Probability and Dynamics in the Particle Swarm [C], Proceedings of 2004 Congress on Evolutionary Computation,2004.
    [94]R. A. Krohling, Gaussian Swarm:A Novel Particle Swarm Optimization Algorithm [C], Proceedings of 2004 IEEE Conference on Cybernetics and Intelligent Systems,2004.
    [95]J. Kennedy, R. Mendes, Population Structure and Particle Swarm Performance [C], Proceedings of IEEE Congress on Evolutionary Computation,2002.
    [96]R. Mendes, J. Kennedy, J. Neves, The Fully Informed Particle Swarm:Simpler, maybe better [C]. IEEE Transaction on Evolutionary Computation,8(6),2004,204-210.
    [97]P. N. Suganthan, Particle Swarm Optimiser with Neighbourhood Operator [C], Proceedings of the 1999 Congress on Evolutionary Computation,1999.
    [98]M. Lovbjerg, T. K. Rasussen, T. Krink, Hybrid Particle Swarm Optimiser with Breeding and Subpopulations [C]. Proceedings of the third Genetic and Evolutionary Computation Conferenees, San Francisco,2001:469-476.
    [99]F. Van den Bergh, A. P. Engelbrecht, A Cooperative Approach to Particle Swarm Optimization [J], IEEE Transaction on Evolutionary Computation,8(3),2004,225-239.
    [100]M. Iwamatsu, Locating All Global Minima using Multi-Species Particle Swarm Optimizer:the Inertia Weight and the Constriction Factor Variants [C], Proceedings of 2006 IEEE Congress on Evolutionary Computation,2006.
    [101]J. H. Seo, C. H. Im, et al., Multimodal Function Optimization Based on Particle Swarm Optimization [J], IEEE Transaction on Magnetics,42(4),2006,1095-1098.
    [102]G. Ma, W. Zhou, X. Chang, A Novel Particle Swarm Optimization Algorithm Based on Particle Migration [J], Applied Mathematics and Computation,218(11),2012, 6620-6626.
    [103]A. Rodriguez, J. A. Reggia, Extending Self-Organizing Particle Systems to Problem Solving [J], Artificial Life,10(4),2004,379-395.
    [104]S. Karare, A. Kalos, D. West, A Hybrid Swarm Optimizer for Efficient Parameter Estimation [C], Proceedings of 2004 IEEE Congress on Evolutionary Computation, 2004.
    [105]P. Angeline, Evolutionary Optimization Versus Particle Swarm Optimization: Philosophy and Performance Differences [C], Proceedings of Evolutionary Programming, 1998.
    [106]S. K. S. Fan, Y. C. Liang, E. Zah ara, Hybrid Simplex Search and Paricle Swarm Optimization for the Global Optimization of Multimodal Functions [J]. Engineering Optimization,36(4),2004,404-418.
    [107]V. Miranda, N. Fonseca, New Evolutionary Particle Swarm Algorithm (EPSO) Applied to Voltage VAR Control [C], Proceedings of the 14th Power Systems Computation Conference,2002.
    [108]J. Sun, B. Feng, W. B. Xu, Paricle Swarm Optimization with Particles having Quantum Behavior [C], Proceedings of 2004 IEEE Congress on Evolutionary Computation,2004.
    [109]B. Liu, W. F. Ling, Y. H. Jin, D. X. Huang, An Effective PSO-Based Memetic Algorithm for TSP [C], Proceedings of The Second International Conference on Intelligent Computing,2006.
    [110]Y. Wang, B. Li, T. Weise, J. Wang, B. Yuan, Q. Tian, Self-Adaptive Learning based Particle Swarm Optimization [J], Information Sciences,181(20),2011,4515-4538.
    [111]S. L. Sabat, L. Ali, S. K. Udgata, Integrated Learning Particle Swarm Optimizer for Global Optimization [J], Applied Soft Computing,11(1),2011,574-584.
    [112]J. Moore, R. Chapman, Application of Particle Swarm to Multi-objective Optimization [D], Department of Computer Science and Software Engineering, Auburn University, 1999.
    [113]X. Hu, R. Eberhart, Multiobjective Optimization using Dynamic Neighborhood particle swarm optimization [C]. Proceedings of the Evolutionary Computation on,2002.
    [114]X. Hu, R.C. Eberhart, Y. Shi, Particle Swarm with Extended Memory for Multiobjective Optimization [C], Proceedings of 2003 IEEE Swarm Intelligence Symposium,2003.
    [115]C. Chow, H. Tsui, Autonomous Agent Response Learning by a Multi-Species Particle Swarm Optimization [C], Proceedings of Congress on Evolutionary Computation,2004.
    [116]K.E. Parsopoulos, D.K. Tasoulis, M.N. Vrahatis, Multiobjective Optimization using Parallel Vector Evaluated Particle Swarm Optimization [C], Proceedings of the IASTED International Conference on Artificial Intelligence and Applications,2004.
    [117]D. Liu, K.C. Tan, C.K. Goh, W.K. Ho, A Multiobjective Memetic Algorithm Based on Particle Swarm Optimization [J], IEEE Transactions on Systems, Man and Cybernetics, Part B,37(1),2007,42-50.
    [118]X. Li, A Non-dominated Sorting Particle Swarm Optimizer for Multiobjective Optimization [J], Lecture Notes in Computer Science,2723,2003,37-48
    [119]X. Li, Better Spread and Convergence:Particle Swarm Multiobjective Optimization using the Maximin Fitness Function [C], Proceeding of the Genetic and Evolutionary Computation,2004.
    [120]T. Ray, K. M. Liew, A Swarm Metaphor for Multiobjective Design Optimization [J], Engineering Optimization,34(2),2002,141-153.
    [121]C.A.C. Coello, G.T. Pulido, M.S. Lechuga, Handling Multiple Objectives with Particle Swarm Optimization [J], IEEE Transactions on Evolutionary Computation,8(3),2004, 256-279.
    [122]J. Fieldsend, S. A. Singh, Multi-objective Algorithm Based upon Particle Swarm Optimization, an Efficient Data Structure and Turbulence [C], Proceedings of The UK Workshop on Computational Intelligence,2002.
    [123]S. Mostaghim, J. Teich, The Role of ε-dominance in Multi Objective Particle Swarm Optimization Methods [C], Proceedings of the 2003 Congress on Evolutionary Computation,2003.
    [124]M.R. Sierra, C.A.C. Coello, Improving PSO-Based Multi-objective Optimization Using Crowding, Mutation and s-dominance [C], Proceedings of The Third International Conference on Evolutionary Multi-Criterion Optimization,2005.
    [125]J. E. Fieldsend, Multi-objective Particle Swarm Optimization Methods [M], Technical Report. University of Exeter,2004.
    [126]M. A. Abido, Two Level of Nondominated Solutions Approach to Multiobjective Particle Swarm Optimization [C], Proceedings of the Genetic and Evolutionary Computation Conference,2007.
    [127]P. Korudu, S. Das, S. M. Welch, Multi-objective hybrid PSO using Fuzzy dominance [C], Proceedings of the Genetic and Evolutionary Computation Conference,2007.
    [128]H. Fethallah, M.A. Chikh, M. Mohammed, K. Zineb, QoS-aware service selection based on swarm particle optimization [C], Proceeding of 2012 International Conference on Information Technology and e-Services,2012.
    [129]F. Tao, D. Zhao, Y. Hu, Z. Zhou, Resource Service Composition and Its Optimal-Selection Based on Particle Swarm Optimization in Manufacturing Grid System [J], IEEE Transaction on Industrial Informatics,4(4),2008,315-327.
    [130]S. A. Ludwig, Applying Particle Swarm Optimization to Quality-of-Service-Driven Web Service Composition [C], Proceedings of 2012 IEEE 26th International Conference on Advanced Information Networking and Applications,2012.
    [131]H.W. Kuhn, The Hungarian method for the assignment problem [J], Naval Research Logistics,2(1),1955,83-97.
    [132]X. Fan, X. Fang C. Jiang, Research on Web service selection based on cooperative evolution [J], Expert Systems with Applications,38(8),2011,9736-9743.
    [133]X. Zhao, B. Song, P. Huang, Z. Wen, J. Weng, Y. Fan, An improved discrete immune optimization algorithm based on PSO for QoS-driven web service composition [J], Applied Soft Computing,12(8),2012,2208-2216.
    [134]Z. Duan, Z.-L. Zhang, Y. T. Hou, Service overlay networks:SLAs, QoS, and bandwidth provisioning [J], IEEE/ACM Transaction on Networking,11(6),2003,870-883.
    [135]J. Liao, J. Wang, B. Wu and W. Wu, Toward a Multi-plane Framework of NGSON:a Required Guideline to Achieve Pervasive Services and Efficient Resource Utilization [J], IEEE Communications Magazine,50(1),2012,90-97.
    [136]R. Carter, M. Crovella, Measuring bottleneck link speed in packet-switched networks [J], Performance Evaluation,27,1996,297-318.
    [137]C. Dovrolis, M. Jain, End-to-end available bandwidth:measurement methodology, dynamics, and relation with TCP throughput [C], Proceedings of ACM SIGCOMM 2002, 2002.
    [138]M. R. Garey, D. S. Johnson, Computers and Intractability:A Guide to the Theory of NP-Completeness [M], New York:Freeman,1979.
    [139]J.H. Holland, Adaptation in Natural and Artificial Systems [M], Ann Arbor:University of Michigan Press,1975.
    [140]R. Brits, A.P. Engelbrecht, F. van den Bergh, Locating Multiple Optima using Particle Swarm Optimization [J], Applied Mathematics and Computation,189(2),2007, 1859-1883.
    [141]D. Parrott, X. Li, Locating and tracking multiple dynamic optima by a particle swarm model using speciation [J], IEEE Transaction on Evolution Computing,10(4),2006, 440^58.
    [142]J.-P. Li, M. E. Balazs, G. T. Parks, P. J. Clarkson, A species conserving genetic algorithm for multimodal function optimization [J], Evolution Computing,10(3),2002, 207-234.
    [143]X. Li, Niching Without Niching Parameters:Particle Swarm Optimization Using a Ring Topology [J], IEEE Transaction on Evolution Computing,14(1),2010,150-169.
    [144]Y. Shi, R. C. Eberhart, Parameter selection in particle swarm optimization [J], Lecture Notes in Computer Science,1447,1998,591-600.
    [145]Y. Shi, R. C. Eberhart, Empirical study of particle swarm optimization [C], Proceeding of IEEE Inernational Congress on Evolutionary Computation,1999.
    [146]J. Winick, S. Jamin, Inet 3.0:Internet topology generator [M], Technical Report UM-CSE-TR-456-02 (http://irl.eecs.umich.edu/jamin/), University of Michigan,2002.
    [147]A. Rowstron, P. Druschel, Pastry:Scalable, distributed object location and routing for large-scale peer-to-peer systems [C], Proceeding of IFIP/ACM International Conference of Distributed Systems Platforms (Middleware),2001.
    [148]T. Guha, S. A. Ludwig, Comparison of Service Selection Algorithms for Grid Services: Multiple Objective Particle Swarm Optimization and Constraint Satisfaction Based Service Selection [C], Proceedings of 20th IEEE International Conference on Tools with Artificial Intelligence,2008.
    [149]H. Xia, Y. Chen, Z. Li, H. Gao, Y.-P. Chen, Web Service Selection Algorithm Based on Particle Swarm Optimization [C], Proceedings of IEEE International Conference on Dependable, Autonomic and Secure Computing,2009.
    [150]J. Cao, X. Sun, X. Zheng, B. Liu, B. Mao, Efficient Multi-objective Services Selection Algorithm Based on Particle Swarm Optimization [C], Proceedings of IEEE Asia-Pacific Services Computing Conference,2010.
    [151]J. J. Liang, P. N. Suganthan, Dynamic multi-swarm particle swarm optimizer [C], Proceedings of 2005 IEEE Swarm Intelligence Symposium,2005.
    [152]S. Z. Zhao, J. J. Liang, P. N. Suganthan, M. F. Tasgetiren, Dynamic multi-swarm particle swarm optimizer with local search for Large Scale Global Optimization [C], Proceedings of IEEE Congress on Evolutionary Computation,2008.
    [153]J. J. Liang, B. Y. Qu, P. N. Suganthan, B. Niu, Dynamic Multi-Swarm Particle Swarm Optimization for Multi-objective optimization problems [C], Proceedings of IEEE Congress on Evolutionary Computation,2012.
    [154]J.-J. Liang, H. Song, B.-Y. Qu, X.-B. Mao, Path Planning Based on Dynamic Multi-Swarm Particle Swarm Optimizer with Crossover [J], Lecture Notes in Computer Science,7390,2012,159-166.
    [155]A. Torn, A. Zilinskas, Global Optimization [J], Lecture Notes in Computer Science,350, 1989.
    [156]J. Liao, Y. Liu, J. Wang, X. Zhu, Service Composition based on Niching Particle Swarm Optimization in Service Overlay Networks [J], KSII Transactions on Internet and Information Systems,6(4),2012,1106-1127.
    [157]K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A Fast and Elitist Multiobjective Genetic Algorithm:NSGA-1I [J], IEEE Transaction on Evolutionary Computation,6(2),2002, 182-197.
    [158]E. Zitzler, L. Thiele, M. Laumanns, C.M. Fonseca, V.G. da Fonseca, Performance assessment of multiobjective optimizers:an analysis and review [J], IEEE Transaction on Evolutionary Computation,7(2),2003,117-132.
    [159]D.A. Van Veldhuizen, G.B. Lamont, On measuring multiobjective evolutionary algorithm performance [C], Proceedings of the 2000 Congress on Evolutionary Computation,2000.
    [160]J. R. Schott, Fault Tolerant Design Using Single and Multicriteria Genetic Algorithm Optimization [D], Master's Dissertation, Dept. Aeronautics and Astronautics, Massachusetts Institute of Technology,1995.
    [161]E. Zitzler, K. Deb, L. Thiele, Comparison of Multiobjective Evolutionary Algorithms: Empirical Results [J], Evolutionary Computation,8(2),2000,173-195.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700