用户名: 密码: 验证码:
电流变抛光液性能及其抛光技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着光电技术的发展,越来越多形貌复杂的光学元件被应用于医疗、航空、国防等领域。人们对于光学元件加工质量也提出了更高的要求,如较高的表面质量、较好的面型精度和较低的表面粗糙度等。利用场效应进行抛光的加工方式日益受到人们的关注,本文在教育部新世纪优秀人才资助计划和吉林省杰出青年基金项目的支持下,开展电流变抛光相关研究工作,并在研发的五轴联动电流变抛光机床上利用针状电极工具和环形集成电极工具对建立的理论模型进行了实验验证。
     在电流变抛光工艺中,将硬度较高、介电性能良好的磨料颗粒加入到电流变液体中作为抛光媒介。施加外电场以后,电流变抛光液的微观结构和流变性能发生改变,其表观粘度和剪切屈服应力明显增强。本文通过电流变效应微观显示系统观察了电流变抛光液的微观结构。根据建立的粒子运动方程对电流变抛光液的微观结构进行仿真,并结合粒子间的作用力、磨料颗粒粒度和体积分数等影响因素对抛光液的微观结构进行分析。根据磨料颗粒粒度的不同,建立了四种不同形式的粒子结合模型。在此基础上,研究了电流变抛光液的流变性能,包括其粘度、剪切应力和在外加电场作用下的剪切屈服特性。从电流变抛光液中粒子结合模型和相互作用研究入手,通过分析粒子间作用力和剪切应力的关系,建立电流变抛光液的剪切屈服应力模型。利用自制的圆筒式旋转流变仪和静态剪切屈服应力实验装置进行了电流变抛光液流变性能实验,获得了磨料颗粒种类、体积分数和粒度对电流变抛光液流变性能的影响规律。
     根据电流变抛光液中粒子的结合模型和相互作用力分析,建立了电流变抛光表面粗糙度预测模型和材料去除模型。利用电流变抛光装置进行了电流变抛光导体材料实验,获得工艺参数对工件表面粗糙度的影响和抛光区域内材料去除量的变化规律。理论计算和实验规律比较,结果表明,理论模型可以较好地预测电流变抛光导体材料时工件表面粗糙度和揭示抛光区域内材料去除的真实情况。
     设计和改进了集成电极工具系统。利用环形集成电极工具进行了微晶玻璃抛光实验,获得抛光时间、电压、间隙、电极转速、磨料种类和粒度对表面粗糙度的影响规律。根据流体动力润滑理论建立了电流变抛光过程中流体动压力的理论模型,分析了电流变抛光液在固态核心形成后工件表面抛光区域内的法向压力。通过测力仪测量了抛光过程中工件表面的法向压力,对理论模型进行了验证,获得电压、电极转速和工作间隙对抛光法向压力的影响。根据Preston方程分析了抛光法向压力对工件表面粗糙度的影响。
     论文的研究工作对于提升电流变抛光液性能,获得较低的抛光表面粗糙度和材料去除控制具有指导意义。
With the development of the photoelectron communications technology,largenumbers of micro-aspherical lenses with low surface roughness are applied into theoptical system of the medical, aerospace, defense and other fields. Highermanufacturing quality of optical lenses has been required, such as higher surfacequality, better surface accuracy, and lower surface roughness and so on. A newmethod utilizing field-assisted polishing has been widely applied in polishing process.Under financial support of the project named Program for Ministry of Education of PR China and Scientific Research Program for Excellent Youth of Jilin Province, P RChina, this thesis investigated the Electrorheological(ER) fluid-assisted polishingtechnique, and confirmed the validity of the presented model by polishingexperiments conducted on five-axis the ER fluid-assisted polishing machine withneedle-like tool electrode and circular-type integrated tool electrode system.
     In ER fluid-assisted polishing process, the ultra-fine abrasive particle is thepolishing media with high hardness and good dielectric properties. When the electricfield is applied, the microstructure and rheological properties of ER polishing fluidwill change, with its apparent viscosity and shear yield stress improve significantly.The microstructure formed by polarized particles perpendicular to the electrodes isobserved by CCD camera. In this thesis, simulation on microstructure of ER polishingfluid is completed by the motion equation of particles. The microstructure of ERpolishing fluid has been analyzed with the influencing factors such as abrasiveparticle size and volume fraction and so on. The combination structure of ER particleswith abrasive particles has four different types changing with the sizes of abrasiveparticles. On this basis, the rheological properties of ER polishing fluid is analyzed byintroducing the microstructure of ER polishing fluid, including the viscosity, shearstress and the shear yield stress of the ER polishing fluid under the external electricfield. In this thesis, the theoretical model of the static shear yield stress of the ERpolishing fluid is developed based on the combination structure of ER particles withabrasive particles and the attraction forces between particles in ER polishing fluid. Aseries of experiments are conducted to study the properties of ER polishing fluid onthe self-made cylinder rotational rheometer and the key factors of influence theproperties of ER polishing fluid are analyzed. The yield stress testing device isdeveloped to investigate the influential regularities of the species, sizes and volume fraction of abrasive particles on the shear yield stress of ER polishing fluid.
     In this thesis, the combination structure of ER particles with abrasive particlesand the forces exerted on the abrasive particles for material removal is discussed whenthe electric field is applied, a model for the prediction of surface roughness in ERfluid-assisted polishing of conductive materials is established. Polishing experimentswith different abrasive particles for different conductive materials are conducted andthe regularity for the key process parameters to the surface roughness and materialremoval in polishing region is acquired. The experimental results have goodagreement to theoretical model which confirm the validity of the presented model.
     This thesis designed and promoted integrated tool electrode system. A series ofexperiments are also conducted to polish glass-ceramic by a circular-type integratedtool electrode in the ER fluid-assisted polishing process and the influential regularitiesof polishing process parameters on the surface roughness are acquired. Based on thetheory of hydrodynamic lubrication, the formation of solid core in polishing process isinvestigated and a mathematical model taking into account the normal pressure isderived. The normal pressure of ER fluid-assisted polishing fluid in polishing area ismeasured by the dynamometer, which confirms the validity of the presented model.The influence of key process parameters such as voltage, rotational speed of electrodetool and gap on the normal pressure is investigated. The relationship between surfaceroughness and the normal pressure is analyzed by Preston’s equation.
     The research work has guiding significance for the promotion to the properties ofER polishing fluid, lower roughness surface and material removal.
引文
[1] M. Y. Yang, H. C. Lee. Local material removal mechanism considering curvature effectin the polishing process of the small aspherical lens die [J], Journal of MaterialsProcessing Technology,2001,116(2-3):298–304.
    [2] W.K. Chen, T. Kuriyagawa, H. Huang, et. al. Machining of micro aspherical mouldinserts [J], Precision Engineering,2005,29(3):315–323.
    [3] C.J. Evans, E. Paul, D. Dornfeld, D.A. Lucca, et. al. Material Removal Mechanisms inLapping and Polishing [J], CIRP Annals-Manufacturing Technology,2003,52(2):611–633.
    [4] Biing-Hwa Yan, Hsinn-Jyh Tzeng, Fuang Yuan Huang, et. al. Finishing effects of spiralpolishing method on micro lapping surface [J], International Journal of Machine Toolsand Manufacture,2007,47(6):920–926.
    [5] Hon-yuen Tam, Haobo Cheng. An investigation of the effects of the tool path on theremoval of material in polishing [J]. Journal of Materials Processing Technology,2010,210(5):807–818.
    [6] Fritz Klocke, Olaf Dambon, Richard Zunke. Modeling of contact behavior betweenpolishing pad and workpiece surface [J], Production Engineering,2008,2(1):9–14.
    [7] P. van der Velden. Chemical mechanical polishing with fixed abrasives using differentsubpads to optimize wafer uniformity [J], Microelectronic Engineering,2000,50(1-4):41–46.
    [8] W. Li, Y. Wang, Shouhong Fan, et. al. Wear of diamond grinding wheels and materialremoval rate of silicon nitrides under different machining conditions [J]. MaterialsLetters,2007,61:54–58.
    [9] J. Webster, M. Tricard. Innovations in Abrasive Products for Precision Grinding [J],CIRP Annals-Manufacturing Technology,2004,53,(2):597–617.
    [10] Yongsong Xie, Bharat Bhushan. Effects of particle size, polishing pad and contactpressure in free abrasive polishing [J], Wear,1996,200(1-2):281–295.
    [11] E. Ukar, A. Lamikiz, L.N. López de Lacalle, et. al. Laser polishing of tool steel withCO2laser and high-power diode laser [J], International Journal of Machine Tools andManufacture,2010,50(1):115–125.
    [12] Christian Nüsser, Isabel Wehrmann, Edgar Willenborg. Influence of IntensityDistribution and Pulse Duration on Laser Micro Polishing [J], Physics Procedia,2011,12:462–471.
    [13] A. Curodeau, J. Guay, D. Rodrigue, et. al. Ultrasonic abrasive μ-machining withthermoplastic tooling [J]. International Journal of Machine Tools and Manufacture,2008,48(14):1553–1561.
    [14] N. Kobayashi, Y. Wu, M. Nomura, T. Sato. Precision treatment of silicon wafer edgeutilizing ultrasonically assisted polishing technique [J], Journal of Materials ProcessingTechnology,2008,201(1-3):531–535.
    [15] H. Suzuki, S. Hamada, T. Okino, M. Kondo. Ultraprecision finishing of micro-asphericsurface by ultrasonic two-axis vibration assisted polishing [J], CIRP Annals-Manufacturing Technology,2010,59(1):347–350.
    [16] Sang-Jun HAN, Yong-Jin SEO. Voltage-induced material removal mechanism of copperfor electrochemical-mechanical polishing applications [J], Transactions of NonferrousMetals Society of China,2009,19:262–265.
    [17] Kyung-In Jang, Jongwon Seok, Byung-Kwon Min, et. al. An electrochemomechanicalpolishing process using magnetorheological fluid [J], International Journal of MachineTools and Manufacture,2010,50(10):869–881.
    [18] H. Hocheng, Y.H. Sun, S.C. Lin, et. al. A material removal analysis of electrochemicalmachining using flat-end cathode [J], Journal of Materials Processing Technology,2003,140:264–268.
    [19] N. Ramachandran, N. Ramakrishnan. A review of abrasive jet machining [J], Journal ofMaterials Processing Technology,1993,39(1-2):21–31.
    [20] Dong-Sam Park, Myeong-Woo Cho, Honghee Lee, et. al. Micro-grooving of glass usingmicro-abrasive jet machining [J], Journal of Materials Processing Technology,2004,146(2):234–240.
    [21] M. Tricard, W.I. Kordonski, A.B. Shorey, et. al. Magnetorheological Jet Finishing ofConformal, Freeform and Steep Concave Optics [J], CIRP Annals-ManufacturingTechnology,2006,55(1):309–312.
    [22] T. Arnold, G. B hm, R. Fechner, et. al. Ultra-precision surface finishing by ion beam andplasma jet techniques—status and outlook [J], Nuclear Instruments and Methods inPhysics Research Section A: Accelerators, Spectrometers, Detectors and AssociatedEquipment,2010,616(2-3):147–156.
    [23] Manabu Wakuda, Yukihiko Yamauchi, Shuzo Kanzaki. Material response to particleimpact during abrasive jet machining of alumina ceramics [J], Journal of MaterialsProcessing Technology,2003,132(1-3):177–183.
    [24] V.K. Gorana, V.K. Jain, G.K. Lal. Forces prediction during material deformation inabrasive flow machining [J], Wear,2006,260(1-2):128–139.
    [25] A-Cheng WANG, Lung TSAI, Kuo-Zoo LIANG, et. al. Uniform surface polishedmethod of complex holes in abrasive flow machining [J], Transactions of NonferrousMetals Society of China,2009,19:250–257.
    [26] T. Mori, K. Hirota, Y. Kawashima. Clarification of magnetic abrasive finishingmechanism [J], Journal of Materials Processing Technology,2003,143–144:682–686
    [27] Shaohui Yin, Takeo Shinmura. A comparative study: polishing characteristics and itsmechanisms of three vibration modes in vibration-assisted magnetic abrasive polishing[J], International Journal of Machine Tools&Manufacture,2004,44:383-390.
    [28] A.C.Wang, S.J.Lee. Study the characteristics of magnetic finishing with gel abrasive [J],International Journal of Machine Tools&Manufacture,2009,49:1063–1069.
    [29] S.L. Ko, Yu M. Baron, J.I. Park. Micro deburring for precision parts using magneticabrasive finishing method [J], Journal of Materials Processing Technology,2007,187-188:19–25.
    [30] V.K. Jain. Magnetic field assisted abrasive based micro-/nano-finishing [J], Journal ofMaterials Processing Technology,2009,209(20):6022–6038.
    [31] Shaohui Yin, Takeo Shinmura. A comparative study: polishing characteristics and itsmechanisms of three vibration modes in vibration-assisted magnetic abrasive polishing[J], International Journal of Machine Tools&Manufacture,2004,44:383–390.
    [32] Yang Yan, Kang Boseon, Huang Shiguo, Chen Xing. Glass Polishing Technology UsingMR Fluids [J], Journal of Rare Earths,2007,25:367–369
    [33] V.K. Jain, P. Ranjan, V.K. Suri, R. Komanduri. Chemo-mechanical magneto-rheologicalfinishing (CMMRF) of silicon for microelectronics applications [J], CIRP Annals-Manufacturing Technology,2010,59:323–328.
    [34] Anant Kumar Singh, Sunil Jha, Pulak M. Pandey. Design and development ofnanofinishing process for3D surfaces using ball end MR finishing tool [J]. InternationalJournal of Machine Tools and Manufacture,2011,51(2):142–151.
    [35] Jongwon Seok, Yong-Jae Kim, Kyung-In Jang, et. al. A study on the fabrication ofcurved surfaces using magnetorheological fluid finishing [J], International Journal ofMachine Tools and Manufacture,2007,47(14):2077–2090.
    [36] Bongsu Jung, Kyung-In Jang, Byung-Kwon Min, et. al. Magnetorheological finishingprocess for hard materials using sintered iron-CNT compound abrasives[J],International Journal of Machine Tools and Manufacture,2009,49(5):407–418.
    [37] A. Sadiq, M.S. Shunmugam. Investigation into magnetorheological abrasive honing(MRAH)[J], International Journal of Machine Tools and Manufacture,2009,49(7-8):554–560.
    [38] Shai N. Shafrir, John. C. Lambropoulos, Stephen D. Jacobs. A magnetorheologicalpolishing-based approach for studying precision microground surfaces of tungstencarbides [J], Precision Engineering,2007,31(2):83–93.
    [39] H.B. Cheng, Yeung Yam, Y.T. Wang. Experimentation on MR fluid using a2-axis wheeltool [J], Journal of Materials Processing Technology,2009,209,12-13:5254–5261.
    [40] Sunil Jha, V. K. Jain. Design and development of the magnetorheological abrasive flowfinishing (MRAFF) process [J], International Journal of Machine Tools andManufacture,2004,44(10):1019–1029.
    [41] Wook-Bae Kim, Sung-Jun Park, Byung-Kwon Min, et. al. Finishing technique for smallparts using dielectrophoretic effects of abrasive particles [J], Journal of MaterialsProcessing Technology,2004,147:377–384.
    [42] Takeshi Tanaka. A Study of Basic Characteristics of Polishing Using Particle-TypeElectro-Rheological Fluid [J], Key Engineering Materials,2007,329:201-206.
    [43] W. B. Kim, S. J. Lee, Y. J. Kim, et. al. The electromechanical principle ofelectrorheological fluid-assisted polishing [J], International Journal of Machine Toolsand Manufacture,2003,43:81–88.
    [44] A.G. Olabi, A. Grunwald. Design and application of magneto-rheological fluid [J],Materials and Design,2007,28:2658–2664.
    [45] Kaku Tsuoshi Suyoshi, Kuriyagawa Tsunmemoto, Yoshihsra Nobuhito. Study onelectrorheological fluid assisted micro-aspherical polishing [J], Kosaku Kikai BumonKoenkai Koen Ronbunshu,2004,5:197–198.
    [46] W. Winslow. Induced fibration of suspensions [J], Journal of Applied Physics,1949,20(2):1137–1140
    [47] Zhanpeng Liu, Fang Tian, Yuanbin Lin, et. al. Electrorheological properties ofpoly(linear trans-quinacridone)-based suspensions [J],Colloids and Surfaces A:Physicochemical and Engineering Aspects,2008,312(1):79–82.
    [48] Na Ni, Yan-Li Shang, Jun-Ran Li, et. al.A new class of electrorheological material,preparation and electrorheological property of K2O-doped Y2O3material [J]. Journal ofAlloys and Compounds,2006,418(1-2):63–67.
    [49] Anna Krztoń-Maziopa, Monika Ciszewska, Janusz P ocharski. Electrorheological fluidsbased on polymer electrolytes [J], Electrochimica Acta,2005,50(19):3838–3842.
    [50] Jian Bo Yin, Xiao Peng Zhao. Electrorheological fluids based on glycerol-activatedtitania gel particles and silicone oil with high yield strength [J], Journal of Colloid andInterface Science,2003,257(2):228-236.
    [51] Khaled Cherif, Salma Moalla, Sadok Sassi, et. al. Electrorheological response ofmodified silica suspensions [J], Journal of the European Ceramic Society,2007,27(2-3):1199–1202
    [52]魏宸官.电流变技术—机理·材料·工程应用[M].北京理工大学出版社,2000.
    [53] Dubois, Jean-Marie. New prospects from potential applications of quasicrystal linematerials [J], Mater Sci Eng,2000,294–296.
    [54] Grushko B, Wittenberg R.Solidification of AIC ufealloys for mingicosahedral phase [J],Mater Res.1996,11:217.
    [55] Alice P. Gast, Charles F. Zukoski. Electrorheological fluids as colloidal suspensions [J],Advances in Colloid and Interface Science,1989,30:153–202
    [56] Thomas C. Halsey. Electrorheological Fluids [J], Science,1992,258:761–766.
    [57] Tian Hao, Hao Yu, Yuanze Xu. The Conductivity Confined Temperature Dependence ofWater-Free Electrorheological Fluids [J], Journal of Colloid and Interface Science,1996,184(2):542–549.
    [58] Tian Hao. Electrorheological suspensions [J], Advances in Colloid and Interface Science,2002,97:1–35.
    [59] R. Tao. Constitutive equations for electrorheological fluids based on moleculardynamics. Rheology Series [J], Advances in the Flow and Rheology of Non-NewtonianFluids,1999,8:659–676.
    [60] R. Tao.Structure and dynamics of dipolar fluids under strong shear [J], ChemicalEngineering Science,2006,61:2186–2190.
    [61] M. Shen, J.G. Cao, H.T. Xue, et. al. Structure of polydisperse electrorheological fluids:Experiment and theory [J], Chemical Physics Letters,2006,423:165–169.
    [62] He-ping Zhao, Zheng-you Liu, You-yan Liu. Analysis of particle–particle forces inelectrorheological fluids [J], Physica B: Condensed Matter,2001,299(1-2):64–69.
    [63] Barry J. Cox, Ngamta Thamwattana, James M. Hill. Electrostatic force between coatedconducting spheres with applications to electrorheological nanofluids [J], Journal ofElectrostatics,2007,65(10-11):680–688.
    [64] Jianbo Yin, Xiaopeng Zhao, Xiang Xia, et. al. Electrorheological fluids based onnano-fibrous polyaniline [J], Polymer,2008,49(20):4413–4419.
    [65] C.S. Choi, S.J. Park, H.J. Choi. Carbon nanotube/polyaniline nanocomposites and theirelectrorheological characteristics under an applied electric field [J], Current AppliedPhysics,2007,7(4):352–355.
    [66] Yang Liu, Fu-Hui Liao, Jun-Ran Li, et. al. The electrorheological properties ofnano-sized SiO2particle materials doped with rare earths [J], Scripta Materialia,2006,54(2):125–130.
    [67] Ying Dan Liu, Fei Fei Fang, Hyoung Jin Choi, et. al.Fabrication of semiconductingpolyaniline/nano-silica nanocomposite particles and their enhanced electrorheologicaland dielectric characteristics [J], Colloids and Surfaces A: Physicochemical andEngineering Aspects,2011,381(1-3):17–22.
    [68] A. Eich, B. A. Wolf, L. Bennett, S. Hess.J. Chem. Electro-and magneto-rheology ofnematic liquid crystals: Experiment and nonequilibrium molecular dynamics computersimulation [J], Phys,2000,113(9):3829–3229.
    [69] Peter J Rankin, John M Ginder, Daniel J Klingenberg. Electro-and magneto-rheology[J], Current Opinion in Colloid&Interface Science,1998,3(4):373–381
    [70] W. Wen, P. Sheng. Two-and three-dimensional ordered structures formed byelectro-magnetorheological colloids [J], Physica B,2003,338:343–346
    [71] Weijia Wen, Xianxiang Huang, Shihe Yang, et. al. The giant electrorheological effect insuspensions of nanoparticles [J], Nature Materials,2003,2:727–730.
    [72] Xianxiang Huang, Weijia Wen, Shihe Yang, Ping Sheng.Mechanisms of the giantelectrorheological effect [J], Solid State Communications,2006,139:581–588
    [73] Jian Bo Yin, Xiao Peng Zhao. Giant electrorheological activity of high surface areamesoporous cerium-doped TiO2templated by block copolymer [J], Chemical PhysicsLetters,2004,398(4-6):393–399.
    [74] Cécile Gehin, Jacques Persello, Daniel Charraut, et. al. Electrorheological properties andmicrostructure of silica suspensions [J], Journal of Colloid and Interface Science,2004,273(2):658–667.
    [75] Biao Wang, Yulan Liu, Zhongmin Xiao. Dynamical modelling of the chain structureformation in electrorheological fluids [J], International Journal of Engineering Science,2001,39(4):453–475.
    [76] L. Rejon, I. Casta eda-Aranda, O. Manero. Rheological behavior of electrorheologicalfluids: effect of the dielectric properties of liquid phase [J], Colloids and Surfaces A:Physicochemical and Engineering Aspects,2001,182(1-3):93–107.
    [77] Yu. F. Deinega,G. V. Vinogradov. Electric fields in the rheology of disperse systems [J],Rheologica Acta,1984,23(6):636–651
    [78] DL Klass and TW Martinek. Electroviscous Fluids. I. Rheological Properties [J]. J. Appl.Phys.1967,38:75.
    [79] Young Gun Ko, Ung Su Choi, Yong Jin Chun. Influence of particle size on shearbehavior of amine-group-immobilized polyacrylonitrile dispersed suspension underelectric field [J], Journal of Colloid and Interface Science,2009,335:183–188
    [80] M.S. Cho, H.J. Choi, M.S. Jhon. Shear stress analysis of a semiconducting polymerbased electrorheological fluid system [J], Polymer,2005,46(25),28:11484–11488.
    [81] Yongsok Seo. A new yield stress scaling function for electrorheological fluids [J],Journal of Non-Newtonian Fluid Mechanics,2011,166(3-4):241–243.
    [82] Heping Zhao, Zhengyou Liu, Youyan Liu. Mechanical properties of a newelectrorheological fluid [J], Solid State Communications,2000,116(6):321–325.
    [83] Z. P. Shulman, R. G. Gorodkin, Korobko, et. al. The electrorheological effect and itspossible uses [J], Journal of Non-Newtonian Fluid Mechanics,1981,8(1-2):29–41.
    [84] M. Kohl. Fluidic actuation by electrorheological microdevices [J], Mechatronics,2000,10(4-5):583-594.
    [85] Z. Kesy, A. Kesy, J. P ocharski, et. al. An example of design—Embodiment forelectrorheological fluid based mechatronic transmission components [J], Mechatronics,2006,16(1):33–39.
    [86] K. Yoshida, M. Kikuchi, J. H. Parka, et. al. Fabrication of micro electro-rheologicalvalves (ER valves) by micromachining and experiments [J], Sensors and Actuators A:Physical,2002,95(2-3):227–233.
    [87] R. Bansevicius, J.A. Virbalis. Two-dimensional Braille readers based onelectrorheological fluid valves controlled by electric field [J], Mechatronics,2007,17(10):570–577.
    [88] K. Ramkumar, N. Ganesan. Vibration and damping of composite sandwich box columnwith viscoelastic/electrorheological fluid core and performance comparison [J],Materials&Design,2009,30(8):2981-2994.
    [89] Jia-Yi Yeh. Vibration analyses of the annular plate with electrorheological fluid dampingtreatment [J], Finite Elements in Analysis and Design,2007,43(11-12):965–974.
    [90] Wen-Hwar Kuo, Tsong-Neng Wu, Jenhwa Guo, et. al. Design and performanceevaluation of a serial multi-electrode electrorheological damper [J], Journal of Soundand Vibration,2006,292(3-5):694–709.
    [91] A. Bouzidane, M. Thomas. An electrorheological hydrostatic journal bearing forcontrolling rotor vibration [J], Computers&Structures,2008,86(3-5):463–472.
    [92] Seung-Bok Choi, Young-Min Han. Vibration control of electrorheological seatsuspension with human-body model using sliding mode control [J], Journal of Soundand Vibration,2007,303(1-2):391–404.
    [93] Seungchul Lim, Sang-Min Park, Kab-Il Kim. AI vibration control of high-speed rotorsystems using electrorheological fluid [J], Journal of Sound and Vibration,2005,284(3-5):685–703.
    [94] Z. B. Dlodlo, D. J. Brookfield. Compensator-based position control of anelectrorheological actuator [J], Mechatronics,1999,9(8):895–917.
    [95] G. J. Monkman. Exploitation of compressive stress in electrorheological coupling [J],Mechatronics,1997,7(1):27–36.
    [96] J. Sharana Basavaraja, Satish C. Sharma, Satish C. Jain.A study of misalignedelectrorheological fluid lubricated hole-entry hybrid journal bearing [J], TribologyInternational,2010,43(5-6):1059–1064.
    [97] Choi Young-Tai. Vibration control of a landing gear system featuringelectrorheological/magnetorheological fluids [J], Journal of aircraft,2003,40(3):432–439.
    [98] Sung-Jun Park, Wook-Bae Kim and Sang-Jo Lee. A Study on the Surface FinishingTechnique using Electrorheological Fluid [J], International Journal of PrecisionEngineering and Manufacturing,,2004,5(2):23–30
    [99]路家斌,阎秋生,田虹,等.电磁流变效应微磨头抛光加工电磁协同作用机理[J],摩擦学学报,2010,30(2):190-196.
    [100] Julong Yuan, Shiming Ji, Donghui Wen, et. al. Effect of Electrorheological FluidAssistance on Micro Ultrasonic Machining [J], Advanced Materials Research,2009,69-70:148–52.
    [101] Y.Y. Tsai, C.H. Tseng, C.K. Chang. Development of a combined machining methodusing electrorheological fluids for EDM [J], Journal of materials processing technology,2008,201:565–569.
    [102] T. Kuriyagawa, K. Syoji. Development of electrorheological fluid assisted machining for3-dimensional small parts [J], Journal of Japan Society for Precision Engineering,1999,65(1):145–149.
    [103]毕非凡.电流变辅助精细加工机理研究[D],广东工业大学硕士学位论文,2005.
    [104] T. Kuriyagawa, M. Saeki, K. Syoji. Electrorheological fluid-assisted ultra-precisionpolishing for small three-dimensional parts [J], Precision Engineering,2002,26:370–380.
    [105] Yoichi Akagami, Koichi Asari. Characterization of Particle Motion for Polishing andTexturing under AC Field by Using Particle Dispersion Type ER Fluid [J], Journal ofIntelligent Material Systems and Structures,1998,9(8):672–675.
    [106] Tsuyoshi Kaku, Tsunemoto Kuriyagawa, Nobuhito Yoshihara. Electrorheologicalfluid-assisted polishing of WC micro aspherical glass moulding dies [J], InternationalJournal of Manufacturing Technology and Management,2006,9:109–119.
    [107] W. B. Kim, B. K. Min, S. J. Lee. Development of a padless ultraprecision polishingmethod using electrorheological fluid [J], Journal of Materials Processing Technology,2004,155/156:1293–1299.
    [108] J. B. Lu, Q. S. Yan, H. Tian, et. al. Polishing properties of tiny grinding wheel based onFe3O4electrorheological fluid[J], Journal of Materials Processing Technology,2009,209:4954–4957.
    [109] Hui Li, Haobo Cheng, Yunpeng Feng, et. al. Investigation of electrorheological fluid foroptical finishing [J]. Frontiers of Optoelectronics in China,2011,4(2):213-216.
    [110] L. Zhang, T. Kuriyagawa, T. Kaku, et. al. Investigation into electrorheologicalfluid-assisted polishing[J], International Journal of Machine Tools and Manufacture,2005,45:1461-1467.
    [111] L. Zhang, Y. W. Zhao, X. S. He, et. al. An investigation of effective area inelectrorheological fluid-assisted polishing of tungsten carbide [J], International Journalof Machine Tools and Manufacture,2008,48:295–306.
    [112]赵云伟,张雷,张从领,等.电流变抛光工艺研究.新技术新工艺[J],2007,3:28–30.
    [113]赵云伟.电流变抛光硬质合金模具理论与实验研究[D],吉林大学硕士学位论文,2007.
    [114]柳文杰.电流变抛光光学玻璃的研究[D],吉林大学,2007.
    [115] Wook-Bae Kim, Sang-Jo Lee, Yong-Jun Kim, et. al. Surface Finishing Technique forMicro3-Dimensional Structures Using ER Fluid [J], International Journal of PrecisionEngineering and Manufacturing,2004,5(1):13–21.
    [116] Takeshi Tanaka. A Study of Basic Characteristics of Polishing Using Particle-TypeElectro-Rheological Fluid [J], Key Engineering Materials,2007,329:201-206.
    [117]张从领,张雷,张立锋,等.抛光用电流变液性能实验研究[J],吉林大学学报,2005,20-23.
    [118] Kuriyagawa Tsunemoto, Shoji Katsuo,Tsubo Takahiro.Development ofElectrorheological Fluid Assisted Micro-Aspherical Generator [J], Nihon KikaiGakkai Nenji Taikai Koen Ronbunshu,2000,2000(3):521–522.
    [119]张从领.电流变抛光实验与理论研究[D],吉林大学,2006.
    [120] L. Zhang, X. S. He, H. R. Yang, et. al. An integrated tool for five-axis electrorheologicalfluid-assisted polishing [J], International Journal of Machine Tools and Manufacture,2010,50:737-740.
    [121]贺新升.电流变抛光设备开发与关键技术研究[D],吉林大学,2009.
    [122]李峰.非球面零件电流变抛光实验台开发[D],吉林大学,2007.
    [123]贺新升,张雷,杨赫然.电流变抛光微小非球面试验装置的研究[J],东北大学学报,2008,6:293-295.
    [124]张莹.环形集成电极工具电流变抛光研究[D],吉林大学硕士学位论文,2010.
    [125] Takehito Kikuchi, Junsunsuke Fujiwapa, Junji Furusho,et al. Polishing Using ER SlurryOn One-Sided Patterned Electrodes [J], International Journal of Modern Physics B,2005,19(7-9):1682–1688.
    [126] Tsuyoshi Kaku, Nobuhito YoshiharaI, Jiwang Yan, et.al. Development of a Resin-CoatedMicro Polishing Tool by Plasma CVD Method: Electrorheological fluid-assistedpolishing of Tungsten carbide micro aspherical molding dies [J], Key EngineeringMaterials,2007,329:213–218.
    [127] Y. Akagami, N. Umehara, Development of electrically controlled polishing withdispersion type ER fluid under AC electric field [J], Wear,2006,260:345–350.
    [128]张雷,贺新升,张莹,杨赫然.新型电流变抛光工具开发及其抛光实验[J],吉林大学学报,2010,40(4):1009-1014.
    [129] Lei Zhang, Ying Zhang, Xin-sheng He, et al. Development of a circular-type integratedelectrode tool for ER fluid-assisted polishing [J], International Journal ofNanomanufacturing,2011,7:361–360.
    [130]杨赫然.电流变抛光装置开发与抛光轨迹规划[D],吉林大学硕士学位论文,2008.
    [131] Juan de Vicente, Javier Ramírez. Effect of friction between particles in the dynamicresponse of model magnetic structures [J]. Journal of Colloid and Interface Science,2007,316:67–876.
    [132] W.B. Kim, S.J. Lee, Y.J. Kim, E.S. Lee. The electro-mechanical principle ofelectrorheological fluid-assisted Polishing [J], Int.J. Mach. Tool Manuf,2003,43:81–88.
    [133] D.J. Klingenberg, F. V. Swol and C.F.Zukoski. Dynamic simulation of electrorheologicalsuspensions [J], The Journal of chemical physics,1989(91):7888–7895.
    [134] R. Tao and Qi Jiang. Simulation of structure formation in an electrorheological fluid [J],Phys. Rev. Lett,1994,73:205–208
    [135]曹建国.在电场和剪切流共同作用下电流变液结构实验理论研究[D],复旦大学硕士学位论文,2006.
    [136] W. Wen, P. Sheng. Two-and three-dimensional ordered structures formed byelectro-magnetorheological colloids [J], Physica B,2003,338:343–346
    [137] Zhiqiang Ren, Yanping Han, Ruoyu Hong, et al. On the viscosity of magnetic fluid withlow and moderate solid fraction [J], Particuology,2008,6:191–198.
    [138] T.C. Jordan, M. T. Shaw. Electrorheology [J], IEEE Transactions on ElectricalInsulation,1980,24(5):849–878.
    [139] Sunil Jha and V. K. Jain, Rheological characterization of magnetorheological polishingfluid for MRAFF [J], The International Journal of Advanced Manufacturing Technology,2009,7-8:656–668.
    [140] Bossis G, Lacis S, Meunier A, et al. Magnetorheological fluids [J], Journal ofMagnetism and Magnetic Materials,2002,25:224–228.
    [141] W. D. Callister, Materials Science and Engineering [M], Wiley, New York,1997.
    [142] M. Das, V. K.Jain and P. S. Ghoshdastidar, Fluid flow analysis of magnetorheologicalabrasive flow finishing (MRAFF) process [J], International Journal of Machine Toolsand Manufacture,2008,48:415–426.
    [143] T.A. Nguyen, D.L. Butler. Simulation of surface grinding process, part2: interaction ofthe abrasive grain with the workpiece [J],.International Journal of Machine Tools&Manufacture,2005,45:1329–1336.
    [144] Rajendra K. Jain a, V.K. Jain. Specific energy and temperature determination in abrasiveflow machining process [J], International Journal of Machine Tools&Manufacture,2001,41:1689–1704.
    [145] Sunil Jha, V.K. Jain. Modeling and simulation of surface roughness inmagnetorheological abrasive flow finishing (MRAFF) process [J], Wear,2006,261:856–866
    [146] M. Ravi Sankar, V.K. Jain, J. Ramkumar. Rotational abrasive flow finishing(R-AFF)process and its effects on finished surface topography [J], International Journal ofMachine Tools&Manufacture,2010,50:637–650.
    [147] R. Jain, V. K. Jain and P. M. Dixit, Modeling of material removal and surface roughnessin abrasive flow machining process [J], International Journal of Machine Tools andManufacture,1999,39:1903–1923.
    [148] J.D.Kim and M.S. Choi, Simulation for the prediction of surface-accuracy in magneticabrasive machining [J], Journal of Material Processing Technology,1995,53:630-642.
    [149] Amit M. Wani,Vinod Yadava, Atul Khatri. Simulation for the prediction of surfaceroughness in magnetic abrasive flow finishing (MAFF)[J], Journal of MaterialsProcessing Technology,2007,190:282–290.
    [150] J. Y. Jang, M. M. Khonsari, Thermohydrodynamic Design Charts for Slider Bearings[J],Journal of Tribology,1997,119:859–869.
    [151] Gianpaolo Savio, Roberto Meneghello, Gianmaria Concheri.A surface roughnesspredictive model in deterministic polishing of ground glass moulds [J], InternationalJournal of Machine Tools&Manufacture,2009,49:1–7.
    [152] O. Pinkus and B. Sternlicht, Theory of Hydrodynamic Lubrication [M], McGraw-Hill,New York,1961.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700