用户名: 密码: 验证码:
底部框架密肋复合墙结构组合作用效应及非线性分析方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
底部框架结构是为了适应现代建筑使用功能要求而出现的一种建筑形式,由于结构存在转换层,导致其受力机理较为复杂,特别是在转换层部位刚度与承载力的匹配关系方面存在较多难题。密肋复合墙结构作为一种新型结构体系,其构造形式可以灵活设计,便于实现结构刚度及承载力的合理调整,在一定程度上适应了底部框架结构的相关要求。因此,课题组将其应用于底部框架结构中,从而提出了底部框架密肋复合墙结构。
     本文以前期研究工作为基础,充分结合密肋复合墙结构自身的构造特点,采用理论分析与有限元模拟相结合的方法,针对底部框架密肋复合墙结构中存在的几个突出问题进行了较为细致的研究,主要完成的工作及相关成果如下:
     1.底部框架密肋复合墙梁组合作用效应及影响因素分析
     基于双参数弹性地基梁理论,将密肋复合墙体等效为复合弹性地基,托梁等效为倒置的弹性地基梁,采用半解析的传递矩阵法求解了竖向荷载作用下墙梁组合界面的竖向应力分布规律,并提出了等效复合地基参数的确定方法。同时,考虑边框柱截面形式、暗梁截面高度、连接柱位置、墙体厚度、密肋框格划分形式以及砌块弹性模量等诸多因素,比较全面地分析了上部墙体的结构构造对墙梁组合作用效应的影响。
     2.底部框架密肋复合墙结构构件非线性滞回特性分析
     以试验研究为基础,借鉴现有的非线性分析方法,采用基于材料层次的精细化纤维杆单元模拟钢筋混凝土梁、柱构件,采用等效弹簧单元模拟框格约束条件下的填充砌块,建立了底部框架密肋复合墙结构的“纤维杆件+等效弹簧”分析模型,并提出了考虑强化刚度、软化刚度、退化强度、裂缝闭合、捏拢效应等特性的多参数等效弹簧恢复力模型,进而对低周反复荷载作用下底部框架密肋复合墙结构构件的非线性滞回性能进行了模拟分析,与试验结果符合较好。
     3.底部框架密肋复合墙结构动力响应时程分析
     在结构构件非线性分析的基础上,进一步建立了底部框架密肋复合墙结构的空间分析模型,通过弹塑性时程分析研究了结构在水平地震作用下的非线性动力响应规律,重点探讨了转换层上、下的层间刚度比对结构地震反应的影响,模拟了不同刚度比情况下结构的最终破坏形态,并提出了合理刚度比的取值范围。
     4.底部框架密肋复合墙结构设计计算方法及抗震设计要求
     基于墙梁组合作用的影响因素分析,参照现有的设计计算方法,考虑砌块弹性模量及墙体厚度的影响,通过多因素正交试验设计及回归分析,建立了托梁内力系数修正值的表达式,进一步完善了底部框架密肋复合墙结构的设计计算方法,并结合相关设计规范及分析结果,提出了相应的抗震设计要求。
Structure with frame at the bottom (SFB) is a kind of building style which adapts to the modern building occupancy. As there is a transfer story, the mechanical mechanism of the structure is very complex, and there are many difficult problems, especially in the matching relationship between the stiffness and bearing capacity near the transfer story. As a new kind of structure system, multi-ribbed composite wall structure (MRCWS) has the benefit of a flexible and variable constitution, and it is convenient to adjust the stiffness and bearing capacity of the structure reasonably, which adapts to the related requirements of SFB to a certain extent. Therefore, multi-ribbed composite wall structure with frame at the bottom (MRCWSFB) is proposed with the application of MRCWS in SFB.
     Based on the former research and with the constitution characteristics fully considered, some crucial issues in MRCWSFB were detailedly studied in this paper by the theoretical analysis and finite element simulation, and the main work done and related results are as follows:
     1. Analysis on the composite action effect and influence factors of wall beam in MRCWSFB
     Based on the two-parameter elastic foundation beam theory, the multi-ribbed composite wall is equivalent to a kind of composite elastic foundation, and the trimmer beam is equivalent to a beam inverted on the elastic foundation. And then the vertical stress on the interface of wall beam under vertical loads was solved using a half analytical analysis of transfer matrix method, and the method to determine the equivalent composite foundation parameters was put forward as well. Moreover, with the consideration of cross section shape of ourter columns, height of concealed beams, position of connecting columns, thickness of the wall, division forms of multi-ribbed frame and elastic modulus of blocks, comprehensive analysis was promoted for the influence of upper wall's constitution on the composite action of wall beam.
     2. Nonlinear hysteretic behavior analysis for MRCWSFB
     Based on the former tests and common nonlinear analysis method, the reinforced concrete beam and column components were simulated by the fine fiber element based on material level, and the filling blocks constrained by the multi-ribbed frame were simulated by an equivalent spring element, so that the analysis model of "fiber bar& equivalent spring" was established for MRCWSFB, and the multi-parameter equivalent spring restoring force model was put forward with the consideration of strengthening stiffness, softening stiffness, strength degradation, fracture closure and pinch effect etc., and then the nonlinear hysteretic performance of MRCWSFB was simulated under low reversed cyclic loads, which agreed well with the experimental results.
     3. Dynamic response time history analysis for MRCWSFB
     Based on the nonlinear analysis of structural components, the spacial analysis model was built for MRCWSFB. And then the nonlinear dynamic response under horizontal earthquake was analyzed through elasto-plastic time history analysis, and the seismic effect of the stiffness ratio near the transfer floor was mainly discussed. Meanwhile, the final failure modes of the structures with different stiffness ratios were simulated, and the reasonable stiffness ratio range was put forward as well.
     4. Design method and details for MRCWSFB
     Based on the influence factors analysis of composite action for wall beam, according to the existing design and calculation method and with the consideration of elastic modulus of filling blocks and thickness of wall, the modification formula for internal force index of trimming beam was put forward by orthogonal multiple-factor experiment and regression analysis, which improved the design and calculation method of MRCWSFB. Furthermore, the corresponding seismic design demands were also proposed due to the tests and analysis results.
引文
[1]唐兴荣.高层建筑转换层结构设计与施工[M].北京:中国建筑工业出版社,2002.
    [2]郑山锁,薛建阳.底部框剪砌体房屋抗震分析与设计[M].北京:中国建材工业出版社,2002.
    [3]东南大学,同济大学,天津大学.混凝土结构(中册)——混凝土结构与砌体结构设计(第四版)[M].北京:中国建筑工业出版社,2008.
    [4]高小旺,李荷,王菁等.底层框架抗震墙砖房竖向均匀性探讨[J].建筑结构,1998,26(4):3-6.
    [5]徐培福,王翠坤,肖从真.剪力墙竖向不连续结构的震害与抗震设计概念[J].建筑结构学报,2004,25(5):1-9.
    [6]清华大学,西南交通大学,北京交通大学土木工程结构专家组.汶川地震建筑震害分析[J].建筑结构学报,2008,29(4):1-9.
    [7]贾强,孙剑平.汶川大地震底框结构建筑物震害调查[J].山东建筑大学学报,2008,23(6):560-564.
    [8]李碧雄,邓建辉,王哲.5·12汶川地震底框砖房震害启示[J].西安建筑科技大学学报,2010,42(3):342-347.
    [9]唐岱新,龚绍熙,周炳章.砌体结构设计规范理解与应用[M].北京:中国建筑工业出版社,2002.
    [10]王亚勇.汶川地震建筑震害启示——抗震概念设计[J].建筑结构学报,2008,29(4):20-25
    [11]张旭红.底部框剪上部组合砖墙房屋及其橡胶垫基础隔震弹塑性地震反应分析[D].太原理工大学硕士学位论文,1998.
    [12]姚谦峰.新型节能住宅结构体系的研究与发展——第十届全国结构工程学术会议特邀报告[J].工程力学,2001(增刊):138-155.
    [13]姚谦峰,余晓峰,张荫.组合式密肋复合墙体的受力性能研究[J].工业建筑,2009,39(4):67-71.
    [14]喻磊,姚谦峰,岳亚锋.密肋复合墙体框格单元结构刚度与承载力分析[J].西安建筑科技大学学报,2006,38(1):23-29.
    [15]成晓峰,姚谦峰,黄炜等.不同框格形式密肋复合墙体抗震性能对比分析[J].水利与建筑工程学报,2010,8(2):16-19.
    [16]黄炜,姚谦峰,杨建宁等.密肋复合墙体非线性数值分析及抗剪承载力研究[J].世界地震工程,2006,22(2):124-130.
    [17]孟宏睿,姚谦峰.密肋复合墙体填充砌块的性能分析[J].混凝土,2006,(11):77-79.
    [18]姚谦峰,张亮,刘佩.密肋复合墙体宏观有效弹性模量的细观力学有限元分析[J].工程力学,2009,26(4):139-143.
    [19]常鹏,姚谦峰.密肋复合墙体受剪性能试验研究及弹塑性数值分析[J].建筑结构学报,2010,31(4):1]5-123.
    [20]姚谦峰,袁泉.小高层密肋壁板轻框结构模型振动台试验研究[J].建筑结构学报,2003,24(1):59-63.
    [21]姚谦峰,贾英杰.密肋壁板结构十二层1/3比例房屋模型抗震性能试验研究[J].土木工程 学报,2004,37(6):1-5,11.
    [22]姚谦峰,黄炜,田洁等.密肋复合墙体受力机理及抗震性能试验研究[J].建筑结构学报,2004,25(6):67-74.
    [23]姚谦峰,田洁,黄炜.密肋复合墙板耗能性能及地震损伤分析[J].世界地震工程,2006,22(4):5-12.
    [24]张杰.改进型密肋结构三道防线抗震机理及其基于位移的分灾控制设计方法研究[D].北京交通大学博士学位论文,2009.
    [25]Zhemochkin B N, Sinitsyn A P. Practical Methods of Calculation for Foundation Beams and Slabs on Elastic Foundations (without Using Winkler Hypothesis) [M] (in Russian). Moscow: Gosstroiizdat,1948.
    [26]Wood R H. Studies in Composie Construction, Part Ⅰ-The Composite Action of Brick Panel Walls Supported on Reinforced Concrete Beams[R]. National Building Studies,1952, Research Paper No.13.
    [27]Mainstone R J. Studies in Composite Construction, Part Ⅲ, Test on the New Government Offices, Whitehall Gardens[R]. National Building Studies,1960, Research Paper No.28.
    [28]Rosenhaupt S. Experimental Study of Masonry Walls on Beams[A]. Proceedings of the American Society of Civil Engineers[C],1962, Vol.88, No. ST3, pp.137-166.
    [29]Rosenhaupt S. Stresses in Point Supported Composite Walls[J]. Proceedings of the American Concrete Institute,1964, Vol.61, No.7, pp.795-810.
    [30]Coull A. Composite Action of Walls Supported on Beams[J]. Building Science,1966, Vol.1, pp. 259-270.
    [31]Burhouse P. Composite Action between Brick Panel Walls and Their Supporting Beams[A]. Proceedings of the Institution of Civil Engineers[C],1969, Vol.43, pp.175-194.
    [32]Wood R H, Simms L G. A Tentative Design Method for the Composite Action of Heavily Loaded Brick Panel Walls Supported on Reinforced Concrete Beams. Building Research Station, CP26/69,1969, pp.1-6.
    [33]Ramesh C K, David P S, Anjanayulu E. A Study of Composite Action in Brick Panel Wall Supported on Reinforced Concrete Beams[J]. Indian Concrete Journal,1970, Vol.44, pp. 442-448.
    [34]Colbourne J R. Studies in Composite Construction:An Elastic Analysis of Wall/Beam Structures. CP 15/69, Building Research Station,1969, pp.1-10.
    [35]Yettram A L, Hirst M J S. An Elastic Analysis for the Composite Action of Walls Supported on Simple Beams[J], Building Science,1971, Vol.6, pp.151-159.
    [36]Green D R. The Interaction of Solid Shear Walls and Their Supporting Structures[J]. Building Science,1972, Vol.7, No.4, pp.239-248.
    [37]Male D J, Arbon P F. A Finite Element Study of Composite Action in Walls[A]. Proceedings of the Second Australian Conference on Mechanics of Structures and Materials[C],1969, pp. 1411-1423.
    [38]Male D J, Arbon P F. A Finite Element Study of Composite Action in Walls Supported on Simple Beams[J]. Building Science,1971, Vol.6, pp.151-159.
    [39]Saw C B. Linear Elastic Finite Element of Analysis of Masonry Walls on Beams[J]. Building Science,1974, Vol.9, No.4, pp.299-307.
    [40]Saw C B. Composite Action of Masonry Walls on Beams[A]. Proceedings of Britain Ceramic Society[C],1975, No.24, pp.139-146.
    [41]Stafford Smith B, Riddington J R. The Composite Behaviour of Masonry Wall on Steel Beam Structures[A]. Proceedings of the First Canadian Masonry Symposium[C],1976, pp.292-303.
    [42]Stafford Smith B, Riddington J R. The Composite Behaviour of Elastic Wall-Beam Systems[A]. Proceedings of the Institution of Civil Engineers[C],1977, Vol.63, pp.377-391.
    [43]Riddington J R, Stafford Smith B. Composite Method of Design for Heavily Loaded Wall-Beam Structure[A]. Proceedings of the Institution of Civil Engineers[C],1978, Vol.64, pp.137-151.
    [44]Pradolin L, Stafford Smith B. The Behavior of Masonry Walls on Steel and Concrete Beams-A Comparative Experimental Study[A]. Proceedings of the Second Canadian Masonry Symposium[C],1980, pp.275-301.
    [45]Stafford Smith B, Pradolin L, J Riddington J R. Composite Design Method for Masonry Walls on Steel Beams[J]. Canadian Jounal of Civil Engineering,1982, Vol.9, pp.96-106.
    [46]Stafford Smith B, Pradolin L. Composite Design Method for Masonry Walls on Concrete Beams[J]. Canadian Jounal of Civil Engineering,1983, Vol.10,337-349.
    [47]Davis S R, Ahmed A E. Composite Action of Wall-Beams with Openings[A]. Proceedings of the Fourth International Brick Masonry Conference[C],1976, Paper No.4.b.6.
    [48]Davis S R, Ahmed A E. An Approximate Method for Analyzing Composite Wall-Beams[A]. Proceedings of the Britain Ceramic Society[C],1978,27, pp.305-320.
    [49]Davis S R, Ahmed A E. A Graphical Solution of Composite Wall-Beams[J]. The International Journal of Masonry Construction,1980, Vol.1, pp.29-33.
    [50]Davis S R. Composite Action[A]. Proceedings of the Second International Seminar on Structural Masonry for Developing Countries[C],1987, Session 5, pp.1-15.
    [51]Hossain M M, Ali S S, Rahman M A et al. Finite Element Model for Wall-beam Structure[A]. Proceedings of International Seminar on Civil Engineering Practices in the Twenty First Century[C], Roorkee, India, February 26-28,1996, Vol.1.
    [52]Hossain M M, Ali S S, Rahman M A. Properties of Masonry Constituents[J]. Journal of Civil Engineering,1997, Vol.25, No.2, pp.135-155.
    [53]Hossain M M, Ali S S, Rahman M A. Studies in Composite Action in Wall-Beam Structures:An Elastic Approach[J]. Journal of Civil Engineering,1997, Vol.25, No.2, pp.181-195.
    [54]Hossain M M, Rahman M A, Ali S S. Parametric Study of Composite Action between Brickwall and Supporting Beam[J]. Journal of Civil Engineering,2000, Vol.28, No.1, pp.51-67.
    [55]龚绍熙,李翔,吴承霞等.框支墙梁的试验研究、有限元分析和承载力计算[J].建筑结构,2001,31(9):12-16.
    [56]庄一舟.底部框剪组合墙结构体系的模型试验研究[D].大连理工大学博士学位论文,1996.
    [57]翟希梅,国艳锋,唐岱新.带洞口配筋混凝土砌块墙梁受力性能的试验研究[J].建筑砌块与砌块建筑,2008(1):8-10.
    [58]高小旺,孟俊义,廖兴祥等.七层底层框架抗震墙砖房1/2比例模型抗震试验研究[J].建筑科学,1995(4):18-23.
    [59]高小旺,孟俊义,李荷等.底部两层框架上部六层砖房1/3比例模型的抗震试验研究[J].建筑科学,1994(3):12-18,29.
    [60]梁兴文,易文宗,王庆霖等.框支连续墙梁抗震试验与分析[J].建筑结构,1996,26(9):3-8.
    [61]梁兴文,王庆霖,易文宗等.框支连续墙梁抗震性能研究及设计计算[J].建筑结构学报.1998,19(4):9-18.
    [62]梁兴文,王庆霖,梁羽风.底部框架抗震墙砖房1/2比例模型拟动力试验研究[J].土木工程学报,1999,32(2):14-21.
    [63]郑山锁,张兴虎.底层框架砖房模型的振动台试验[J].西安建筑科技大学学报,1998,30(3):280-283.
    [64]郑山锁,戴俊.底部两层框架砖房模型的振动台试验[J].西安建筑科技大学学报,1997,29(2):183-187,205.
    [65]郑山锁,杨勇,赵鸿铁.底部框剪砌体房屋抗震性能的试验研究[J].土木工程学报,2004,37(5):23-31.
    [66]解明雨,黄维平,陈熙之等.底层框剪组合墙八层房屋抗震性能分析[J].工程抗震,1995,(2):20-23.
    [67]黄维平,陈熙之,邬瑞锋等.底两层框剪组合墙八层房屋抗震性能分析[J].工程抗震,1995(4):10-13.
    [68]陈熙之,解明雨,邬瑞锋等.底层框剪组合墙八层房屋动力分析及抗震可靠度[J].工程抗震,1995(3):1-4,12.
    [69]黄维平,邬瑞锋,陈熙之等.底两层框剪组合墙八层房屋抗震可靠度分析[J].工程抗震,1996,(3):15-21.
    [70]唐岱新,朱本全,王凤来等.底层大开间框剪组合墙结构1/3比例模型房屋子结构拟动力试验研究[J].建筑结构.2001,(4):20-22,6.
    [71]黄尚安,邹银生.底部框剪配筋砌块砌体房屋弹塑性地震反应的数值模拟[J].建筑结构学报,2004,25(1):53-57.
    [72]施楚贤,黄靓,蔡勇等.框支配筋砌块砌体剪力墙抗震性能试验研究[J].建筑结构学报,2007,28(1):89-100.
    [73]施楚贤,蔡勇,余志武等.配筋混凝土砌块砌体框支剪力墙模型房屋抗震性能试验研究[J].建筑结构学报,2007,28(6):175-184.
    [74]王凤来,陈再现,刘洧骥等.底层框支配筋砌块砌体短肢剪力墙结构抗震性能试验[J].建筑砌块与砌块建筑,2008,(5):5-9.
    [75]高小旺.底层框架抗震墙砖房第二层与底层侧移刚度比的合理取值[J].工程抗震,1998(3):18-22.
    [76]高小旺,李荷.底部两层框架抗震墙砖房第三层与第二层侧移刚度比的合理取值[J].工程力学,1996(增刊):108-112.
    [77]梁兴文,王庆霖.底部框架抗震墙砖房的受力性能及侧向刚度分析[J].土木工程学报,2000,33(4):17-22.
    [78]薛建阳,赵鸿铁.底部两层框架抗震墙砖房模型试验及其动力分析[J].工业建筑,2000,30(8):13-16.
    [79]周小真,姚谦峰.格构板式轻型建筑墙板抗震性能试验研究[J].西安冶金建筑学院学报,1993,25(1):9-15.
    [80]熊耀清.密肋复合墙体损伤演化规律及损伤模型研究[D].北京交通大学博士学位论文,2008.
    [81]孟宏睿.生态轻质水泥基墙体材料性能及密肋复合墙体弹塑性分析模型研究[D].西安建筑科技大学博士学位论文,2007.
    [82]孙静,姚谦峰,熊耀清.普强高性能混凝土耐久性与受拉性能试验[J].北京交通大学学报,2007,31(4):52-55.
    [83]喻磊.密肋复合墙板框格单元的受力机理及弹塑性损伤模型研究[D].西安建筑科技大学博士学位论文,2006.
    [84]刘恒喜.格构板轻型建筑抗震性能研究[D].西安建筑科技大学硕士学位论文,1995.
    [85]姚谦峰,林得泉.格构板轻型结构体系[J].施工技术,1996(8):8-10.
    [86]田英侠.密肋复合墙板受力性能试验研究与理论分析[D].西安建筑科技大学硕士学位论文,2002.
    [87]黄炜.密肋复合墙体抗震性能及设计理论研究[D].西安建筑科技大学博士学位论文,2004.
    [88]张杰.密肋复合墙板受力性能及斜截面承载力实用设计计算方法研究[D].西安建筑科技大学硕士学位论文,2004.
    [89]孟海.密肋复合墙板试验研究及刚度分析[D].西安建筑科技大学硕士学位论文,2004.
    [90]王爱民.中高层密肋壁板结构密肋复合墙体受力性能及设计方法研究[D].西安建筑科技大学博士学位论文,2006.
    [91]何明胜.型钢混凝土边框柱密肋复合墙体试验及理论研究[D].西安建筑科技大学博士学位论文,2008.
    [92]赵冬.密肋壁板轻框结构受力性能分析及计算方法研究[D].西安建筑科技大学博士学位论文,2001.
    [93]袁泉.密肋壁板轻框结构非线性地震反应分析[D].西安建筑科技大学博士学位论文,2003.
    [94]贾英杰.中高层密肋壁板结构计算理论及设计方法研究[D].西安建筑科技大学博士学位论文,2004.
    [95]常鹏.基于性能(位移)的密肋壁板结构数值计算分析与抗震设计方法研究[D].北京交通大学博士学位论文,2006.
    [96]张旭峰.中高层密肋复合墙一剪力墙混合结构协同工作计算与设计方法研究[D].西安建筑科技大学博士学位论文,2008.
    [97]郭猛.框架-密肋复合墙结构抗震性能与设计计算方法研究[D].北京交通大学博十学位论文,2011.
    [98]低碳耐震建筑结构体系关键技术及应用研究[R].北京:北京交通大学,2010.
    [99]丁永刚.框支密肋壁板结构墙梁受力性能及设计计算方法研究[D].西安建筑科技大学博士学位论文,2006.
    [100]魏晓.框支密肋复合墙结构墙梁受力机理及抗震设计理论研究[D].西安建筑科技大学博士学位论文,2008.
    [101]田洁.框支密肋壁板结构非线性地震反应分析及基于损伤性能的抗震能力评估方法研究[D].西安建筑科技大学博士学位论文,2006.
    [102]刘海涛,姚谦峰,汪训流等.复杂受力状态下密肋复合墙体框格有限元模拟[J].华中科技大学学报,2011,39(5):47-50.
    [103]GB 50003—2001.砌体结构设计规范[S].北京:中国建筑工业出版社,2002.
    [104]GB 50011—2001.建筑抗震设计规范[S].北京:中国建筑工业出版社,2001.
    [105]GB 50010—2002.混凝土结构设计规范[S].北京:中国建筑工业出版社,2002.
    [106]姚谦峰,陈平.土木工程结构试验[M].北京:中国建筑工业出版社,2001.
    [107]姚振纲,刘祖华.建筑结构试验[M].上海:同济大学出版社,1996.
    [108]JGJ101—96.建筑抗震试验方法规程[S].北京:中国建筑工业出版社,1997.
    [109]龙驭球.弹性地基梁的计算[M].北京:人民教育出版社,1981.
    [110]Winkler E. The Theory of Elasticity and Strength. Prague, Dominicus,1867.
    [111]Feng Zhaohua, Robert D. Cook. Beam Elements on Two-Parameter Elastic Foundations[J]. Journal of Engineering Mechanics,1983, Vol.109, No.6, pp.1390-1402.
    [112]Arnold D. Kerr. Discussion of "Beam Elements on Two-Parameter Elastic Foundations" by Feng Zhaohua and Robert D. Cook (December,1983)[J]. Journal of Engineering Mechanics, 1985, Vol. 111, No.4, pp.587-588.
    [113]Meshack Chiwanga, Valsangkar A. J.Generalized Beam Element on Two-Parameter Elastic Foundation[J]. Journal of Structural Engineering,1988, Vol.114,No.6, pp.1414-1430.
    [114]黄义,何芳社.弹性地基上的梁、板、壳[M].北京:科学出版社,2005.
    [115]Filonenko-Borodich M M. Some approximate theories of the elastic foundation[J] (in Russian). Uchenye Zapiski Moskovskogo Gosudarstvennogo Universiteta,1940,46:3-18.
    [116]Pasternak P L. On a New Method of Analysis of an Elastic Foundation by Means of Two Foundation Constants[M] (in Russian), Gosudarsrvennoe Izdatelstvo Literaturi po Stroitelstvu i Arkhitekture, Moscow, U.S.S.R.,1954.
    [117]Hetenyi M. Beams on Elastic Foundation:Theory with Applications in the Fields of Civil and Mechanical Engineering[M]. Ann Arbor:University of Michigan Press,1946.
    [118]Vlasov V Z, Leontiev U N. Beams, Plates and Shells on Elastic Foundations[M] (translated from Russian). Israel Program for Scientific Translation, Jerusalem, Israel,1966.
    [119]Reissner E. A note on deflection of plates on a viscoelastic foundation[J]. Journal of Applied Mechanics,1958,25(1):144-155.
    [120]塞尔瓦杜雷.土与基础相互作用的弹性分析[M].范文田,何广汉,张式深等译.北京:中国铁道出版社,1984.
    [121]DB 13(J)64—2006.密肋壁板结构技术规程[S].河北省工程建设标准,2006.
    [122]陈滔,黄宗明.钢筋混凝土框架非弹性地震反应分析模型研究进展[J].世界地震工程,2002,18(1):91-97.
    [123]陆新征,叶列平,缪志伟等.建筑抗震弹塑性分析一一原理、模型与在ABAQUS, MSC.MARC和SAP2000上的实践[M].北京:中国建筑工业出版社,2009.
    [124]江见鲸,陆新征,叶列平.混凝土结构有限元分析[M].北京:清华大学出版社,2005.
    [125]Clough R W, Benuska K L, Wilson E L. Inelastic Earthquake Response of Tall Buildings[A]. The 3rd World Conference on Earthquake Engineering[C],1965, Vol. Ⅱ, Session Ⅱ, pp.68-89.
    [126]汪梦甫,沈蒲生.钢筋混凝土高层结构非线性地震反应分析现状[J].世界地震工程,1998,14(2):1-8.
    [127]Giberson M F. The Response of Nonlinear Multi-Story Structures Subjected to Earthquake Excitation[D]. Dcotorial Dissertation of California Institute of Technology,1967.
    [128]Powell G H, Chen P F S.3D Beam-Column Element with Generalized Plastic Hinges[J]. Journal of Engineering Mechanics,1986, Vol.112, No.7, pp.627-641.
    [129]Soleimani D, Popov E P, Bertero V V. Hysteretic behavior of reinforced concrete beam-column subassemblages[J]. ACI Structural Journal,1979, Vol.76, No.11, pp.1179-1195.
    [130]汪梦甫.高层建筑结构非线性地震反应分析[A].中国力学学会第二届青年学术讨论会论文集[C],1990.
    [131]王建平.钢筋混凝士框架一剪力墙结构在强震作用下的非线性分析与控制[D].湖南大学 博士学位论文,1995.
    [132]Park R, Paulay T. Reinforced Concrete Structures[M]. John Wiley & Sons, New York,1975.
    [133]Takizawa H, Aoyama H. Biaxial Effects In Modeling Earthquake Response Of R/C Structures[J]. Earthquake Engineering and Structural Dynamics,1976,4(6):523-552.
    [134]汪梦甫,沈蒲生.钢筋混凝土框剪结构非线性地震反应分析[J].工程力学,1999,16(4):136-144.
    [135]Kabeyasawa T, Shiohara H, Otani S. U.S.-Japan Cooperative Research on R/C Full-scale Building Test, Part 5 Discussion on Dynamic Response System[A]. Proceedings of the 8th World Conference on Eearthquake Engineering[C],1984, pp.627-634.
    [136]李国强,周向明,丁翔.钢筋混凝土剪力墙非线性动力分析模型[J].世界地震工程,2000,16(2):13-18.
    [137]Vulcano A, Bertero V V, Colotti V. Analytical Model of R/C Structural Walls[A]. Proceedings of the 9th World Conference on Eearthquake Engineering[C],1988, Vol.6, pp. 41-46.
    [138]Milev J I. Two Dimensional Analytical Model of Reinforced Concrete Shear Walls[A]. Proceedings of the 9th World Conference on Eearthquake Engineering[C],1996.
    [139]陈勤,钱稼茹,李耕勤.剪力墙受力性能的宏模型静力弹塑性分析[J].土木工程学报,2004,37(3):35-43.
    [140]郭子雄,杨勇.恢复力模型研究现状及存在问题[J].世界地震工程,2004,20(4):47-51.
    [141]Penizen J. Dynamic Response of Elasto-Plastic Frames[J]. Journal of Structural Division,1962, Vol.86, ST7, pp.1322-1340.
    [142]Dodd L L, Cooke N. The Dynamic Behaviour of Reinforced-Concrete Bridge Piers Subjected to New Zealand Seismicity[R]. Dept. of Civil Engineering, Univ. of Canterbury, Christchurch, New Zealand,1994, Research Report No.92-04.
    [143]汪训流.配置高强钢绞线无粘结筋混凝土柱复位性能的研究[D].清华大学博士学位论文,2007.
    [144]Esmaeily A, Xiao Y. Behavior of Reinforced Concrete Columns under Variable Axial Loads: Analysis. ACI Structural Journal,2005, Vol.102, No.5, pp.736-744.
    [145]过镇海,时旭东.钢筋混凝土原理和分析[M].北京:清华大学出版社,2003.
    [146]周文峰,黄宗明,白绍良.约束混凝土几种有代表性应力一应变模型及其比较[J].重庆建筑大学学报,2003,25(8):121-127.
    [147]Kent D C, Park R. Flexural Members with Confined Concrete[J]. Journal of Structural Division, 1971, Vol.97, No.7, pp.1969-1990.
    [148]Sheikh S A, Uzumeri S M. Analytical Model for Concrete Confinement in Tied Columns[J]. Journal of the Structural Division,1982, Vol.108, No.12, pp.2703-2722.
    [149]张秀琴,过镇海,王传志.反复荷载下箍筋约束混凝土的应力一应变全曲线方程[J].建筑结构学报,1982,3(9):16-20.
    [150]Mander J B, Priestley M J N, Park R. Theoretical Stress-Strain Model for Confined Concrete[J]. Journal of Structural Engineering,1988, Vol.114, No.8, pp.1804-1826.
    [151]Legeron F, Paultre P. Uniaxial Confinement Model for Normal-and High-Strength Concrete Columns[J]. Journal of Structural Engineering,2003, Vol.129, No.2, pp.241-252.
    [152]Clough R W. Effect of Stiffness Degradation on Earthquake Ductility Requirements[R]. Structural and Materials Research, Structural Engineering Laboratory, University of California, Berkeley, CA,1966, Report 66-16.
    [153]Takeda T, Sozen M A, Neilsen N N. Reinforced Concrete Response to Simulated Earthquakes[J]. Journal of the Structural Division,1970, Vol.96, No.12, pp.2557-2573.
    [154]Park Y J, Reinhorn A M, Kunnath S K. IDARC:Inelastic Damage Analysis of Reinforced Concrete Frame-Shear-Wall Structures[R]. State University of New York at Buffalo,1987, Technical Report NCEER-87-0008.
    [155]Lai S S, Will G T, Otani S. Model for Inelastic Biaxial Bending of Concrete Members[J]. Journal of Structural Engineering, Vol.110, No.11, pp.2563-2584.
    [156]包世华,方鄂华.高层建筑结构设计(第二版)[M].北京:清华大学出版社,1990.
    [157]Newmark N M. A Method of Computation for Structural Dynamics[J]. Journal of the Engineering Mechanics Division,1959,85(7):67-94.
    [158]胡聿贤.地震工程学(第2版)[M].北京:地震出版社,2006.
    [159]姚谦峰,苏三庆.地震工程[M].西安:陕西科学技术出版社,2001.
    [160]唐曹明,徐培福,徐自国等.钢筋混凝土框架结构楼层刚度比限制方法研究[J].土木工程学报,2009,42(12):128-134.
    [161]龚绍熙,陈力奋,李翔.单跨框支墙梁的有限元分析及内力计算[J].工程力学,1997(增刊):176-181.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700