用户名: 密码: 验证码:
密肋复合板结构非线性数值模型研究与地震能量反应分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
密肋复合板结构是一种耗能减震型建筑结构新体系,其研究始于二十世纪九十年代初,经过近二十年的不断创新和完善,目前已在理论研究和工程应用方面取得了较好的阶段性成果。本文在前期试验研究的基础之上,结合密肋复合板结构自身构成特点,建立了合理有效的数值分析模型,采用有限元模拟和理论分析相结合的方法,对密肋复合板结构的地震位移响应特性与能量反应规律进行了分析和探讨,提出了该结构体系基于能量的抗震设计实用方法,为密肋复合板结构的进一步研究与应用奠定了基础。主要研究工作如下:
     1密肋复合板结构的非线性数值分析模型研究
     综合分析密肋复合板结构的构成特点和受力变形特性,基于通用有限元分析软件MSC.MARC,应用纤维梁及分层壳理论,采取自定义材料子程序模型,合理考虑界面连接要求,本文研究开发了密肋复合板结构复杂受力状态下的精细化非线性有限元分析模型,并基于课题组前期的系列试验研究进行了有效性检验。本文模型采用了相对精确的材料本构、更加合理的单元类型和简单有效的界面处理关系,相比现有数值分析模型,具有更好的计算适用性和更高的计算精确度,可以用于地震等往复荷载作用下密肋复合板结构受力与变形性能的计算模拟和分析,为准确分析该结构体系的弹塑性地震响应提供了保证。
     2密肋复合板结构的地震位移响应分析研究
     传统静力弹塑性分析方法的固定侧移模式和基本振型控制的两大假定,使其无法应用于高阶振型反应影响显著的高层建筑结构。模态静力弹塑性分析方法通过多振型的推覆分析及其组合,解决了传统静力弹塑性分析方法不能用于高层建筑结构的问题。本文将模态静力弹塑性分析方法应用于小高层密肋复合板结构的地震位移响应分析,并引入基于多点位移控制的推覆分析算法实现了稳定性和收敛性相对更好的位移控制计算。通过两个12层算例分别在小震、中震和大震时各10条地震波下的时程分析,验证了模态静力弹塑性分析方法在密肋复合板结构地震位移响应分析中的适用性,得到了该类结构构件的变形需求计算方法。
     3密肋复合板结构的地震能量反应分析研究
     以整体系数为研究变量,基于本文建立的非线性数值分析模型进行了地震作用下密肋复合板结构能量反应规律的分析与探讨,完成了大震时10条地震波下的150个密肋复合板结构弹塑性时程分析,重点研究了地震输入能量及总滞回耗能需求的确定、滞回耗能需求的分配与分布等计算方法,从而实现了各构件耗能需求的求解,即采用MPA方法计算结构总地震输入能量和总滞回耗能,采用本文基于时程分析结果拟合得出的公式计算滞回耗能按构件类型和楼层的分配,采用MPA方法确定同一楼层同一类构件水平方向上的耗能分布。
     4密肋复合板结构的基于能量实用设计方法研究
     基于砌块与界面现有损伤机理研究尚不充分的现实和其总体耗能比例相对较小的分析结论,本文将其耗能能力作为安全储备并利用Park-Ang损伤模型和构件能力设计理论,解决了变形与耗能需求难以应用于密肋复合板结构构件设计的难题。综合本文取得的研究成果,提出了密肋复合板结构基于能量抗震设计方法的实施步骤,具体包括:密肋复合板结构承载力设计;构件变形与耗能需求计算;将砌块与界面耗能作为安全储备并基于Park-Ang损伤模型得到构件极限变形要求;根据能力设计方法进行构件设计。算例分析表明,.相比时程分析计算结果,本文方法具有一定精度。
Multi-ribbed composite slab structures (MRSS) is a new structure system that has a good performance in energy dissipation and seismic behavior. From early1990s, the study on MRSS has achieved great progress in theoretical research and engineering application during the past twenty years. Based on pre-stage tests and composition characteristics of MRSS, a reasonable and effective nonlinear numerical analysis model is built. By the means of FEM simulation and theoretical analysis, the seismic displacement and energy responses of MRSS are analyzed. And then the energy-based seismic design method is proposed, which lays a foundation on further research and application of MRSS. The main research contents are as follows:
     1Research on the nonlinear numerical model of MRSS
     Considering the composition characteristics and mechnical behaviors of MRSS, a relatively fine nonlinear finite element model of MRSS under complicated conditions is developed based on general finite element software of MSC.MARC with user-defined material models. The finite element model applies fiber-beam and layered-shell theories and considers the related interface requirements. And its accuracy is verified by the comparison between the numerical simulation results and the experimental data. The proposed numerical model has a bigger application scope and a better precision than existing models for its precise material constitutive relations, suitable element styles and effective interface connections. And the model can be used in the simulation on mechanic behaviors of MRSS under reciprocating loads such as earthquake.
     2Research on seismic displacement responses of MRSS
     For the two assumptions of fixed lateral displacement mode and control by basic vibration mode, the traditional pushover analysis method can not be used in high-rise buildings whose reaction by high-order mode is obvious. The modal pushover analysis (MPA) method can be used in high-rise buildings by multi-mode pushover analysis and combination. In this thesis, the MPA method is applied in analyzing seismic displacement responses of middle-high MRSS by use of pushover algorithm based on multiple point constraints method. The time-history analyses of two12-storey MRSS examples under10seismic waves are completed. The applicability of MPA method in seismic displacement response analyses of MRSS is verified and the calculation method of deformation demand to MRSS members is obtained.
     3Research on seismic energy responses of MRSS
     Based on the developed numerical model, the rule on seismic energy responses of MRSS is studied by changing the values of whole coefficient.150elasto-plastic time-history analysis examples of MRSS under10seismic waves are completed. The calculation method of determination to input energy and hysteretic energy (EH) under earthquakes, the distribution and vertical dispersion proportions of EH related to member styles of MRSS are mainly studied. And then the solution of demand to energy-dissipation of each MRSS member is obtained, which is as follows:firstly, the total EH of the whole structure is determined by MPA method, secondly, the EH related to member styles in each floor is obtained by use of proposed formulae derived from time-history analysis results, thirdly, the proportion to EH of each member in each floor is gotten by MPA method, and finally the demand to energy-dissipation of each member is achieved.
     4Research on energy-based seismic design method of MRSS
     Based on the fact that the studies on damage mechanism of brick and interface are inadequate, in this thesis, the energy-dissipation capacities of brick and interface are used as safety reserve for their small total energy-dissipation proportion. By applying Park-Ang damage model and member capacity design theory, the problem that the demands of deformation and energy can hardly be used in member design of MRSS is solved. And then the energy-based seismic design method of MRSS is proposed, which is as follows:bearing-capacity design of MRSS, calculation of demands to member deformation and energy, determination of ultimate deformation of member based on Park-Ang damage model with consideration of above safety reserve and member design by using capacity design method. Comparison with time-history analysis results, the method has an adequate accuracy.
引文
[1]张敏政.从汶川地震看抗震设防和抗震设计.土木工程学报.2009,42(5).21-24
    [2]中华人民共和国住房和城乡建设部,中华人民共和国国家质量监督检验检疫总局.建筑抗震设计规范(GB50011-2010).北京:中国建筑工业出版社,2010
    [3]王亚勇.概论汶川地震后我国建筑抗震设计标准的修订.土木工程学报.2009,42(5).1-12
    [4]密肋壁板轻型框架结构课题组.密肋壁板轻型框架结构理论与应用研究.西安:西安建筑科技大学。2000
    [5]马宏旺,吕西林.建筑结构基于性能抗震设计的几个问题.同济大学学报.2002,30(12):1429-1434
    [6]龚思礼.建筑抗震设计手册(第二版).北京:中国建筑工程出版社.2002.3-7
    [7]孙俊,刘铮等.工程结构基于性能的抗震设计方法研究.四川建筑科学研究.2005.31(3):98-101
    [8]FEMA273, FEMA274, FEMA356. NEHRP Guidelines For The Seismic Rehabilitation Of Buildings. Washington D C:Federal Emergency Management Agency,1996.
    [9]小谷俊介.日本基于性能结构抗震设计方法的发展.建筑结构.2000,(6):3-9
    [10]王梦甫,周锡元.基于性能的建筑结构抗震设计.建筑结构,2003,(3):59-61
    [11]Ghobarah A. Performance-based design in earthquake engineering:state of development. Engineering Structures,2001,23(8):878-884
    [12]Chandler A M, Nelson T K L. Performance-based design in earthquake engineering:a multi-disciplinary review. Engineering Structures,2001,23(12):1525-1543
    [13]Chandler A M, Mendis P A. Performance of reinforced concrete frames using force and displacement based seismic assessment methods. Engineering Structures,2000,22(4):352-363
    [14]Lu Y, Hao H, Carydis P G, Mouzakis H. Seismic performance of RC frames designed for three different ductility levels. Engineering Structures,2001,23(5):537-547
    [15]Medhekar M S, Kennedy D J L. Displacement-based seismic design of buildings-theory. Engineering Structures,2000,22(3):201-209
    [16]Medhekar M S, Kennedy D J L. Displacement-based seismic design of buildings-application.Engineering Structures,2000,22(3):210-221
    [17]Teran-Gilmore A, Avila E, Rangel G. On the use of plastic energy to establish strength requirements in ductile structures. Engineering Structures,2003,25(8):965-980
    [18]Housner, G.W. Limit Design of Structures to Resist Earthquakes, Proc. Of 1st WCEE,1956
    [19]SEAOC Vision 2000 Committee. Performance-Based Seismic Engineering of Building Report Prepared by Structural Engineers Association of California, Sacramento,California, USA, 1995
    [20]ATC-40.Seismic Evaluation and Retrofit of Concrete Buildings[R].Applied Technology Council. Red Wood City,California,1996
    [21]EC8(2003)Eurocode 8:Design of structures for earthquake resistance.General rules,seismic actions and rules for buildings.EN 1998-1:2003,British Standards Institution,London
    [22]钱稼茹,吕文,方鄂华.基于位移延性的剪力墙抗震设计.建筑结构学报.1999.20(3).42-49
    [23]吕西林,王亚勇等.建筑结构抗震变形验算.建筑科学.2002.18(1).11-15
    [24]杨松涛,叶列平,钱稼茹.地震位移反应谱特性的研究.建筑结构.2002.32(5)
    [25]程耿东,李刚.基于功能的结构抗震设计中一些问题的探讨.建筑结构学报.2000.1(1):5-11
    [26]王光远,吕大刚.基于最优设防烈度和损伤性能的抗震结构优化设计.哈尔滨建筑大学学报.1999.32(5).1-5
    [27]吴波,李艺华.直接基于位移可靠度的抗震设计方法中目标位移代表值的确定.地震工程与工程振动.2002.22(6).44-51
    [28]徐培福,戴国莹.超限高层建筑结构基于性能抗震设计的研究.土木工程学报.2005.38(1).1-10
    [29]建筑工程抗震性态设计通则(cECS 160-2004).中国工程建设标准化协会.2004
    [30]Freeman S A, Nicoletti J P, Tyrell J V. "Evaluation of existing buildings for seismic risk- A case study of Puget Sound Naval Shipyard, Bremerton, Washington", Proc.lst U.S. National Conf. Earthquake Engng., EERI, Berkeley,1975:113-122.
    [31]鲍雷T,普里斯特利M J N.钢筋混凝土和砌体结构的抗震设计.中国建筑工业出版社
    [32]Mckevitt,W E.et al.Hysteretic Energy Spectra in Seismic Design.Proceedings of 7WCEE,Vol.7,1980
    [33]T.F.Zahrah,and W.J.Hall Seismic Energy Absorption in Simple Structures,Structural Research Series,No.501,Civil Engrg.Studies University of Illinois,Urbana-Champain Illinois,1982
    [34]Akiyama H. Earthquake resistant limit state design for buildings. Tokyo:University of Tokyo Press,1985
    [35]Akiyama H.Earthquake Resistant Design Based on the Energy Concept.Proceedings of 9th WCEE,905-910,1988
    [36]Uang,C-M.and Bertero.V.V.Evaluation of seismic Energy in Structures,Earthquake Engineering and Structural Dynamics, Vol.19.1990,77-90
    [37]Park Y J, Reinhorn A M and Kunnath S K.IDARC:Inelastic Damage Analysis of Reinforced Concrete Frame-Shear-Wall Structures. Report No.NCEER-87-0008,State University of New York at Buffalo
    [38]叶献国.基于非线性分析的钢筋混凝土结构地震反应与破损的数值模拟.土木工程学报.1998,Vo1.31(4):3-13
    [39]何政.钢筋混凝土结构非线性分析及地震设计设计与控制[博士学位论文].哈尔滨:哈尔滨工业大学,2000
    [40]Valles R E, Reinhorn A M, Kunnath S K, Li C and Madan A.IDARC2D Version 4.0:A Computer Program for the Inelastic Damage Analysis of Buildings.Report No. NCEER-96-0010. National Center for Earthquake Engineering research. State University of New York at Buffalo,1996
    [41]Stojadinovic B, Thewalt C R.Energy Balanced Hysteresis Models.Earthquake-engineering Research at Berkeley-1996:Papers presented at the 11th world Conference on Earthquake Engineering. Report No.UCB/EERC-96/01.Earthquake Engineering Research Center. University of California at Berkeley,1996
    [42]黄宗明,白绍良,赖明.结构非弹性地震能量反应分析的方法.第三届全国结构工程学术会议论文集,1994
    [43]丰定国,王社良.抗震结构设计(第2版).武汉:武汉理工大学出版社.2003.65-73
    [44]秋山宏.叶列平,裴星洙.基于能量平衡的建筑结构抗震设计.北京:清华大学出版社.2010
    [45]Vidic T, Fajfar P. Behavior Factors Taking into Account Cumulative Damage. In: Proceedings of Tenth European Conference on Earthquake Engineering. Vienna:1994:959-964.
    [46]Fajfar P, Vidic T, Fischinger M. A measure of earthquake motion capacity to damage medium-period structures. Soil Dynamics and Earthquake Engineering,1990,9(5):236-242.
    [47]Uang C M, Bertero V V. Use of energy as a design criterion in earthquake resistant design.Berkeley, California:Earthquake Engineering Research Center,1988.
    [48]Manfredi G. Evaluation of seismic energy demand. Earthquake Engineering & Structural Dynamics,2001,30(4):485-499.
    [49]Zahrah T F, Hall W J. Earthquake energy absorption in SDOF structures. Journal of Earthquake Engineering,1984,110(8):1757-1772.
    [50]Chou C C, Uang C M. Establishing absorbed energy spectra-an attenuation approach. Earthquake Engineering & Structural Dynamics,2000,29(10):1441-1455.
    [51]Kuwamura H, Kirino Y, Akiyama H. Prediction of earthquake energy input from smoothed fourier amplitude spectrum. Earthquake Engineering & Structural Dynamics,1994,23(10):1125-1137.
    [52]Leger P, Dussault S. Seismic-energy dissipation in MDOF structures. Journal of Structural Engineering, ASCE,1992,118(5):1251-1269.
    [53]Decanini L D, Mollaioli F. Formulation of elastic earthquake input energy spectra. Earthquake Engineering & Structural Dynamics,1998,27(12):1503-1522.
    [54]Chai Y H, Fajfar P, Romstad K M. Formulation of duration-dependent inelastic seismic design spectrum. Journal of Structural Engineering, ASCE,1998,124(8):913-921.
    [55]Sucuoglu H, Nurtug A. Earthquake ground motion characteristics and seismic energy-dissipation. Earthquake Engineering & Structural Dynamics,1995,24(9):1195-1213.
    [56]肖明葵.基于性能的抗震结构位移及能量反应分析方法研究[博士学位论文].重庆:重庆大学土木工程学院,2004.
    [57]肖明葵,刘纲,白绍良,等.抗震结构的滞回耗能谱.世界地震工程,2002,18(3):110-115.
    [58]刘哲锋,沈蒲生.地震动输入能量谱的研究.工程抗震与加固改造,2006,28(4):1-5.
    [59]Kuwamura H, Galambos T V. Earthquake load for structural reliability. Journal of Structural Engineering, ASCE,1989,115(6):1446-1463.
    [60]Chai Y H, Fajfar P. A procedure for estimating input energy spectra for seismic design. Journal of Earthquake Engineering,2000,4(4):539-561.
    [61]Riddell R, Garcia J E. Hysteretic energy spectrum and damage control. Earthquake Engineering & Structural Dynamics,2001,30(12):1791-1816.
    [62]程光煜.基于能量抗震设计理论及其在钢支撑框架结构中的应用[博士学位论文].北京:清华大学土木工程系,2007.
    [63]Kato B, Akiyama H. Seismic design of steel buildings. Journal of Structural Division, ASCE,1982,108(8):1709-1721.
    [64]肖明葵,刘波,白绍良.抗震结构总输入能量及其影响因素分析.重庆建筑大学学报,1996,18(2):20-33.
    [65]Tso W K, Zhu T J, Heidebrecht. A C. Seismic energy demands on reinforced concrete moment-resisting frames. Earthquake Engineering & Structural Dynamics,1993,22(6):533-546.
    [66]朱建华,沈蒲生.基于能量原理的钢筋混凝土框架结构层间弹塑性位移求解.工程抗震与加固改造,2005,27(5):1-4.
    [67]朱建华,沈蒲生.基于能量原理的钢筋混凝土筒体结构抗震性能研究.地震工程与工程振动,2006,26(5):109-113.
    [68]Chopra A K, Goel R K. A modal pushover analysis procedure for estimating seismic demands for buildings. Earthquake Engineering & Structural Dynamics,2002,31(3):561-582
    [69]Chopra A K, Goel R K. A modal pushover analysis procedure to estimate seismic demands for unsymmetric-plan buildings. Earthquake Engineering & Structural Dynamics,2004,33(15):1429-1429.
    [70]Chopra A K, Goel R K, Chintanapakdee C. Evaluation of a modified MPA procedure assuming higher modes as elastic to estimate seismic demands. Earthquake Spectra,2004,20(3):757-778.
    [71]Goel R K, Chopra A K. Extension of modal pushover analysis to compute member forces.Earthquake Spectra,2005,21(1):125-139.
    [72]Fajfar P, Vidic T. Consistent inelastic design spectra:hysteretic and input energy. Earthquake Engineering & Structural Dynamics,1994,23(5):523-537.
    [73]Nurtug A, Sucuoglu H. Prediction of seismic energy-dissipation in SDOF systems. Earthquake Engineering & Structural Dynamics,1995,24(9):1215-1223.
    [74]Akbas B, Shen J, Hao H. Energy approach in performance-based seismic design of steel moment resisting frames for basic safety objective. Structural Design of Tall Buildings,2001, 10(3):193-217.
    [75]史庆轩,熊仲明,李菊芳.框架结构滞回耗能在结构层间分配的计算分析.西安建筑科技大学学报(自然科学版),2005,37(2):174-188.
    [76]Gupta A, Krawinkler H. Behavior of ductile SMRFs at various seismic hazard levels. Journal of Structural Engineering, ASCE,2000,126(1):98-107.
    [77]Nakashima M, Saburi K, Tsuji B. Energy input and dissipation behaviour of structures with hysteretic dampers. Earthquake Engineering & Structural Dynamics,1996,25(5):483-496.
    [78]Connor J J, Wada A, Iwata M, et al. Damage-controlled structures.1. Preliminary design methodology for seismically active regions. Journal of Structural Engineering, ASCE,1997, 123(4):423-431.
    [79]Connor J J, Wada A, Iwata M, et al. Damage-controlled structures.1. Preliminary design methodology for seismically active regions. Journal of Structural Engineering, ASCE,1997, 123(4):423-431.
    [80]Harada Y, Akiyama H. Seismic design of flexible-stiff mixed frame with energy concentration. Engineering Structures,1998,20(12):1039-1044.
    [81]Whittaker A S, Uang C M, Bertero V V. Seismic testing of eccentrically braced dual steel systems. Earthquake Spectra,1989,5(2):429-449.
    [82]Nakashima M, Iwai S, Iwata M, et al. Energy-dissipation behavior of shear panels made of low-yield steel. Earthquake Engineering & Structural Dynamics,1994,23(12):1299-1313.
    [83]Chou C C, Uang C M. A procedure for evaluating seismic energy demand of framed structures. Earthquake Engineering & Structural Dynamics,2003,32(2):229-244.
    [84]Park Y J, Ang A S, Wen Y. Seismic damage analysis of reinforced concrete buildings. Journal of Structural Engineering, ASCE,1985, 111(4):740-757.
    [85]Chung Y S, Meyer C, Shinozuka M. Modeling of concrete damage. ACI Structural Journal, 1989,86(3):259-271.
    [86]Kunnath S K, Chai Y H. Cumulative damage-based inelastic cyclic demand spectrum. Earthquake Engineering & Structural Dynamics,2004,33(4):499-520.
    [87]McCabe S L, Hall W J. Assessment of seismic structural damage. Journal of Structural Engineering, ASCE,1989,115(9):2166-2183.
    [88]Fajfar P. Equivalent ductility factors, taking into account low-cycle fatigue. Earthquake Engineering & Structural Dynamics,1992,21(9):837-848.
    [89]Teran-Gilmore A. Performance-based earthquake-resistant design of framed buildings using energy concepts [PHD Dissertation]. Berkeley:Department of Civil Engineering, University of California at Berkeley, U.S.A.,1996.
    [90]Teran-Gilmore A, Avila E, Rangel G. On the use of plastic energy to establish strength requirements in ductile structures. Engineering Structures,2003,25(7):965-980.
    [91]Riddell R, Garcia J E. Hysteretic energy spectrum and damage control. Earthquake Engineering & Structural Dynamics,2001,30(12):1791-1816.
    [92]Bozorgnia Y, Bertero V V. Damage spectra:Characteristics and applications to seismic risk reduction. Journal of Structural Engineering, ASCE,2003,129(10):1330-1340.
    [93]Panyakapo P. Evaluation of site-dependent constant-damage design spectra for reinforced concrete structures. Earthquake Engineering & Structural Dynamics,2004,33 (12):1211-1231.
    [94]Fajfar P, Gaspersic P. The N2 method for the seismic damage analysis of RC buildings. Earthquake Engineering & Structural Dynamics,1996,25(1):31-46
    [95]Shen J, Akbas B. Seismic energy demand in steel moment frames. Journal of Earthquake Engineering,1999,3(4):519-559.
    [96]Chou C C, Uang C M. Establishing absorbed energy spectra-an attenuation approach. Earthquake Engineering & Structural Dynamics,2000,29(10):1441-1455.
    [97]Chou C C, Uang C M. A procedure for evaluating seismic energy demand of framed structures. Earthquake Engineering & Structural Dynamics,2003,32(2):229-244.
    [98]缪志伟.钢筋混凝土框架剪力墙结构基于能量抗震设计方法研究[博士学位论文].北京:清华大学土木工程系,2009.
    [99]欧进萍,吴斌,龙旭.耗能减振结构的抗震设计方法.地震工程与工程振动,1998,18(2):98-107.
    [100]周云,徐彤,周福霖.抗震与减震结构的能量分析方法研究与应用.地震工程与工程振动,1999,19(4):133-139.
    [101]魏新磊,周云,于敬海,等.基于结构能量分析的抗震设计新方法的研究.世界地震工程,2003,19(3):62-67.
    [102]肖明葵,白绍良,赖明,等.基于滞回耗能的抗震结构最大位移反应.重庆大学 学报(自然科学版),2003,26(3):133-137.
    [103]熊仲明,史庆轩,李菊芳.框架结构基于能量地震反应分析及设计方法的理论研究.世界地震工程,2005,21(2):141-146.
    [104]熊仲明,史庆轩,王社良.结构能量分析非线性地震反应的理论研究.西安建筑科技大学学报(自然科学版),2005,37(2):204-209.
    [105]杨晓明,史庆轩,丰定国.抗震结构能量设计方法中阻尼耗能的研究.西安建筑科技大学学报(自然科学版),2006,38(2):189-193.
    [106]马千里.钢筋混凝土框架结构基于能量抗震设计方法研究[博士学位论文].北京:清华大学土木工程系,2009.
    [107]姚谦峰.新型节能住宅结构体系的研究与发展.工程力学.2001,A01:138-155
    [108]姚谦峰,陈平,张荫等.密肋壁板轻框结构节能住宅体系研究.工业建筑.2003.33(1).1-5
    [109]周小真,姚谦峰.格构板式轻型建筑墙板抗震性能试验研究.西安冶金建筑学院学报.1993.25(1).9-15
    [110]喻磊.密肋复合墙板框格单元在地震作用下的受力机理及弹塑性损伤模型研究[博士学位论文].西安:西安建筑科技大学,2006.
    [111]黄炜.密肋复合墙体抗震性能及设计理论研究[博士学位论文].西安:西安建筑科技大学,2004.
    [112]张杰.密肋复合墙板受力性能及斜截面承载力实用设计计算方法研究[硕士学位论文].西安:西安建筑科技大学,2005.
    [113]王爱民.中高层密肋复合墙结构密肋复合墙体受力性能及设计方法研究[博士论文].西安.西安建筑科技大学,2006
    [114]郭猛.框架-密肋复合墙结构抗震性能与设计计算方法研究[博士论文].北京北京交通大学.2010
    [115]袁泉.密肋壁板轻框结构非线性地震反应分析[博士学位论文].西安:西安建筑科技大学.2003.
    [116]贾英杰.中高层密肋复合墙结构计算理论及设计方法研究[博士论文].西安.西安建筑科技大学.2004
    [117]常鹏.基于性能(位移)的密肋复合墙结构数值计算分析与抗震设计方法研究[博士论文].北京.北京交通大学.2006
    [118]师永恒.基于投资一效益准则的密肋复合墙结构分灾抗震设计方法研究[硕士论文].北京.北京交通大学.2007
    [119]张杰.改进型密肋结构三道防线抗震机理及基于位移的分灾控制设计方法研究[博士论文].北京.北京交通大学.2009
    [120]田洁.框支密肋复合墙结构非线性地震反应分析及基于损伤性能的抗震能力评估方法研究[博士学位论文].西安:西安建筑科技大学,2007.
    [121]李云贵,邵宏,田志昌.弹塑性动力时程分析软件EPDA.工程设计CAD与智能建筑,1999(6):53,61
    [122]王涛,孟丽岩.弯剪型层模型弹塑性动力分析方法的研究.煤炭技术,2006,25(3):77-80
    [123]Clough R, Benuska L. Nonlinear Earthquake Behavior of Tall Buildings. Journal of Mechanical Engineering, ASCE,1967,93(EM 3):129-146
    [124]Giberson M. The Response of Nonlinear Multi-Story Structures Subjected to Earthquake Excitations. Earthquake Engineering Research Laboratory, Pasadena,1967
    [125]Lai S, Will G, Otani S. Model for Inelastic Biaxial Bending of Concrete Members. Journal of Structural Engineering, ASCE,1984,110(ST11):2563-2584
    [126]Taucer F F, Spacone E and Filippou F C. A fiber beam-column element for seismic response analysis of reinforced concrete structures. EERC Report 91/17, Earthquake Engineering Research Center, University of California, Berkeley, CA,1991
    [127]Otani S. Inelastic Analysis of R/C Frame Structures. Journal of the Structural Division, ASCE,1974,100(ST7)
    [128]Takayanagi T, Schnobrich W. Non Linear Analysis of Coupled Wall Systems. EarthquakeEngineering and Structural Dynamics,1979,7:1-22
    [129]Soleimani D, Popov E P, Bertero V V. Nonlinear Beam Model for R/C Frame Analysis.7th ASCE Conference on Electronic Computation, St. Louis.1979
    [130]Meyer C, Roufaiel M S, Arzoumanidis S G. Analysis of Damaged Concrete Frames for Cyclic Loads. Earthquake Engineering and Structural Dynamics,1983,11:207-228
    [131]Darvall L P, Mendis P. Elastic-Plastic-Softening Analysis of Plane Frames. Journal of Structural Engineering, ASCE,1985,11(ST4):871-888
    [132]Roufaiel M S L, Meyer C. Analytical Modeling of Hysteretic Behavior of R/C Frames. Journal of Structural Engineering, ASCE,1987,113 (ST3):429-444
    [133]Filippou F C, Issa A. Nonlinear Analysis of Reinforced Concrete Frames under Cyclic Load Reversals. EERC Report 88-12, Earthquake Engineering, Research Center, Berkeley, 1988
    [134]江见鲸,陆新征,叶列平.混凝土结构有限元分析.北京.清华大学出版社.2005.
    [135]顾祥林,孙飞飞.混凝土结构的计算机仿真.上海:同济大学出版社,2002.
    [136]邹积麟.空间RC框架结构全过程静力弹塑性分析[博士学位论文].北京:清华大学土木工程系,2001.
    [137]Spacone E, Filippou F, Taucer F, Fiber beam-column modeling for non-linear analysis of R/C frames. Journal of Earthquake Engineering and Structural Dynamics,1996,25(7):711-725.
    [138]孙海林.高强轻骨料混凝土结构长期性能的试验研究:[博士学位论文].北京:清华大学,2006
    [139]陆新征,林旭川,叶列平.多尺度有限元建模方法及其应用.华中科技大学学报(城市科学版),2008,25(4):76-80
    [140]Fiorato A E, Sozen M A, Gamble, W L. An Investigation of the Interaction of Reinforced Concrete Frames with Masonry Filler Walls. Report UILU-ENG-70-100, Department of Civil Engineering, University of Illinois, Urbana-Champaign IL, USA,1970
    [141]Valiasis T, Stylianidis K. Masonry Infilled R/C Frames under Horizontal Loading. Experimental Results, Eur. Earthq. Engng.,1989(3):10-20
    [142]Zarnic R, Tomazevic M. Study of the Behavior of Masonry Infilled Reinforced Concrete Frames Subjected to Seismic Loading. Proceedings of the Seventh International Brick Masonry Conference, Melbourne, AUStralia, Vol. s,1985:1315-1325
    [143]Koing G. The State of the Art in Earthquake Engineering Research. Experiment and Numerical Methods in Earthquake Engineering, Edited by J. Donea and P. M. Jones,1991:1-22
    [144]Chysostomou C Z. Effects of Degrading Infill Walls on the Nonlinear Seismic Response of Two-Dimensional Steel Frames. Ph.D. Thesis, Cornell University,1991
    [145]Crisafulli F J. Seismic Behavior of Reinforced Concrete Structures with Masonry Infills, Ph. D. Thesis, Department of Civil Engineering, University of Canterbury,1997
    [146]Leuchars J M, Scrivener J C. Masonry Infill Panels Subjected to Cyclic In-Plane Loading. Bulletin of the New Zealand National Society for Earthquake Engineering, 9(2).1976:122-131
    [147]Page A. Finite Element Model for Masonry.Strue.DIV.ASCE,1978,104:1267-1285
    [148]Lourenco P B, Rots J G. Implementation of an Interface Cap Model for the Analysis for Masonry Structures. Computational Modelling of Concrete Structures.1994:123-134
    [149]朱伯龙,金国芳.混用体系中型砌块墙片有限元弹塑性分析.同济大学学报,1994,22:1~6
    [150]Cerrolaza M, Sulem J, Elbied A. A Cosserat Non-linear Finite Element Analysis Software for Blocky Structure. Advances in Engineering Softfware,1999,30(1):69-83
    [151]Gambarota L, Lagomarsino S. Damage Models for the Seismic Response of Brick Masonry Shear Walls.Part I:the Mortar Joint Model and Its Applications [J]. Earthquake Engineering And Structural Dynamics,1997,26:423-439.
    [152]王达诠.应用RVE均质化方法的砌体非线性分析[硕士学位论文].重庆:重庆大学,2002.
    [153]刘振宇,叶燎原,潘文.等效体积单元(RVE)在砌体有限元法分析中的应用.工程力学,2003,20(2):31-35
    [154]王茂龙,刘明,朱浮生,李宁.有限元法在砌体结构分析中的应用.沈阳建筑大学学报(自然科学版),2006,22(1):40-44
    [155]梁成宇.多层砌体结构非线性分析及抗震性能研究[硕士学位论文].大连:大连理工大学.2010.
    [156]Bathe, K. J. Finite Element Procedures in Engineering Analysis. Prentice-HallEnglewood Cliffs.1982.
    [157]刘海涛,姚谦峰,汪训流,袁泉.复杂受力状态下密肋复合墙体框格有限元模拟.华中科技大学学报(自然科学版),2011,39(5):47-50
    [158]江见鲸,陆新征,叶列平,混凝土结构有限元分析.北京:清华大学出版社,2005
    [159]MSC.Software.2005. MSC.Marc 2005 (Volume A):Theory and user information.
    [160]中华人民共和国住房和城乡建设部,中华人民共和国国家质量监督检验检疫总局.GB50010-2010.混凝土结构设计规范.北京:中国建筑工业出版社,2010
    [161]汪训流,陆新征,叶列平.往复荷载下钢筋混凝土柱受力性能的数值模拟.工程力学,2007,24(12):76-81
    [162]汪训流.配置高强钢绞线无粘结筋混凝土柱复位性能的研究[博士学位论文].北京:清华大学土木工程系,2007.
    [163]叶列平,陆新征,马千里,等.混凝土结构抗震非线性分析模型、方法及算例.工程力学,2006,23(z2):131-140
    [164]陆新征,叶列平,缪志伟,等.建筑抗震弹塑性分析——原理、模型与在ABAQUS, MSC.MARC和SAP2000上的实践.北京:中国建筑工业出版社,2009
    [165]BSSC. FEMA-450. NEHRP Recommended Provisions and Commentary for Seismic Regulations for New Buildings and Other Structures. Washington, D.C.:Building Seismic Safety Council,2004.
    [166]叶列平,李琪.基于性能/位移的能力-需求曲线设计方法.第六届全国地震工程会议论文集.南京:2002:430-436
    [167]黄羽立,陆新征,叶列平,施炜.基于多点位移控制的推覆分析算法.工程力学,2011,28(2):18-23
    [168]田英侠,陈平,姚谦峰等.密肋复合墙板等效弹性常数计算方法研究.工业建筑,2003,33(1):10-12
    [169]中华人民共和国住房和城乡建设部.密肋复合板结构技术规程(2011年报批稿).北京:中国建筑工业出版社,2011.
    [170]Pacific Earthquake Engineering Research Center. PEER strong motion database [DB/OL]. California:Berkley,2005 [Sep,2005]. http://peer.berkeley.edu/smcat/index.html.
    [171]过镇海,时旭东.钢筋混凝土原理和分析.北京:清华大学出版社,2003
    [172]包世华,方鄂华.高层建筑结构设计.北京:清华大学出版社,1994
    [173]Cosenza E, Manfredi G, Ramasco K. An evaluation of the use of damage functional in earthquake-resistant design[A]. Proc.9th Eur. Conf Earthquake Engineering[C]. Moscow,1990, 9:303-312
    [174]徐福江.钢筋混凝土框架一核心筒结构基于位移抗震设计方法研究[博士学位论文].北京:清华大学土木工程系,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700