用户名: 密码: 验证码:
二层二跨预压装配式预应力混凝土框架抗震性能试验与理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
发展预制装配式混凝土结构是建筑工业化的必由之路,预制装配式结构可以提高机械化水平,加快施工进度,降低劳动强度,实现低能耗、低排放的建造过程,有效实现建筑业的绿色发展要求。由于装配式结构节点连接可靠性差,难以满足反复荷载下的受力要求。本文将预应力技术应用于预制装配式混凝土结构,通过节点预压连接形成整体受力节点和连续受力框架,满足结构抗震要求,使得装配式结构在地震区得以应用。
     本文对2榀二层二跨预压装配式预应力混凝土框架在拟动力和拟静力试验下进行了系统的试验研究和理论分析。探讨了试验框架的动力特性、承载能力、滞回性能、截面延性及耗能能力等抗震性能。采用多种有限元分析软件对试验框架进行数值模拟和受力分析,可为预压装配式预应力混凝土框架的实际应用提供可以借鉴的方法。本文主要研究内容及成果如下。
     对预压装配式框架进行水平加载拟动力试验,研究预压装配式框架的动力性能、破坏机制、变形性能、刚度退化及耗能能力等抗震性能,得到了两榀框架加载时程曲线。试验结果表明,框架层间屈服位移角实测值在1/107~1/173之间,小于《建筑抗震设计规范》混凝土框架弹塑性层间位移角1/50的限值。加载至框架屈服,残余变形很小,卸载后变形基本恢复,预压装配式结构有着很强的变形恢复能力。
     对预压装配式框架进行水平加载拟静力试验,了解预压装配式框架延性特征和耗能能力,得到框架在反复荷载下的滞回曲线。框架屈服后,梁端率先出现塑性铰,柱刚度尚未出现大的退化,预压装配式框架属“强柱弱梁”型结构。由于预应力筋有较强的变形恢复能力,卸载后梁的残余变形不大。试验实测的框架各层位移延性系数在3.67-4.44之间,试验框架具有较好的延性性能。加载至最后循环,一、二层层间最大位移角分别为1/29、1/36,满足“大震不倒”的要求。框架节点由于施加了预压力并受到柱轴压力的作用处于双向受压状态,提高了节点核心区的抗裂性能,符合抗震设计“强节点”的要求。
     对拟动力试验框架采用DRAIN-2DX程序中纤维梁-柱单元建立分析模型,对预压装配式框架进行弹塑性时程分析;利用MIDAS/Gen释放梁端刚域的功能,考虑装配式框架梁、柱的半刚性连接,进行预应力装配式框架动力反应分析。层间屈服位移角计算值与实测值两者较为吻合。对拟静力试验框架采用弹塑性静力Pushover分析,得到框架的基底剪力-顶点位移关系曲线和框架出现塑性铰的位置及顺序图,分析结果与实测状况基本一致。采用ANSYS程序模拟拟静力试验框架得到框架柱极限荷载,极限荷载计算值和分析值误差不大。
     考虑预压装配式框架节点半刚性的影响,对其梁端截面延性和弯矩调幅系数进行了研究。导出了预压装配式PC框架梁端满足承载力要求的截面延性系数和弯矩调幅限值,给出了弯矩调幅限值建议公式,以及弯矩调幅系数限值。在试验研究和理论分析的基础上,提出预压装配式预应力框架结构基本设计规定、内力分析原则和抗震构造措施,为预制预应力混凝士预压装配式框架的应用提供试验依据和理论基础,以推动该结构体系在国内的应用。
The development of prefabricated concrete structure is the indispensable way for the industrialization of the building. The prefabricated structure can improve the level of mechanization, speed up the construction progress, reduce labor intensity, accomplish the low-power, low-emission construction process, and achieve the requirement of the green development of the construction industry effectively. As the reliability of the fabricated structure node connection is poor, it is difficult to meet the requirement under repeated loading force. The technology of the prestressing force in this article is applied to the prestressed fabricated concrete frame by the node prestressed connection to form the overall force node and the continuous force framework, meeting the seismic requirement and making the assembly structure applied in the earthquake zone.
     In this article, the two-bay two-story double-span prestressed fabricated concrete frame under the pseudo-dynamic and quasi-static experiment is taken into the systematical test and researching along with the theoretical analysis. It studies a lot of seismic performances, such as the dynamic characteristics of the test framework, carrying capacity, revolving performance, section ductility and energy dissipation capacity. Numerical simulation and stress analysis are undertaken by using finite element analysis software in the test framework to provide practical methods for the applications of the prestressed fabricated concrete frame. The main content and results are as follows.
     The prestressed fabricated concrete frame is taken into level loading to carry out the pseudo-dynamic test, and it studies a lot of seismic performance, such as the dynamic performances, failure mechanisms, deformation properties, stiffness degradation and energy dissipation capacity of the prefabricated frame. It finally concludes the two-bay framework loading-time curve. The test results show that measured values of the framework layer yield displacement angle is between1/107and1/173, which is below1/50, namely the limit displacement angle in the elastic-plastic layer between the concrete frame in "Seismic Design of Buildings".When it is loaded to the frame yielding, the residual deformation is slight. The deformation basically recovers after unloading. In other words, there is a strong deformation recovering capabilities for the prestressed fabricated structures.
     The pre-fabricated frame is implemented into level loading along with the pseudo-static test. The article perceives the ductility characteristics and energy dissipation capacity of the prestressed assembly framework to get the curve of the hysteresis with the framework under the cyclic load. After the framework yields, on the beam end firstly lies the plastic hinge, and the on the column stiffness lies little degradation. The pre-fabricated frame is a "strong-pole-and-weak-beam" structure. As the prestressing tendons possess very strong deformation recovering ability, there is little residual deformation after unloading. The measured displacement ductility coefficient of the different layers in the framework is between3.67with4.44. The test framework has very good ductility. When it is loaded to the last cycle, the maximum displacement angle between the1st and the2nd layer is1/29,1/36, which can meet the requirements that an intense earthquake cannot destroy it. The frame joints under the pre-pressure and the axial compression are in the biaxial compression state, and improve the crack resistance of the core area on the nodes, which is corresponding with the requirement of the strong nodes in the seismic design.
     Through using fiber beam-column element in the DRAIN-2DX program, the pseudo-dynamic test framework in taken into the analytic model and the pre-fabricated frame is taken into the nonlinear time analysis. By utilizing MIDAS/Gen that can release stiffness domain of the beam end, it considers in the assembly frame beams the semi-rigid connection of the columns and the poles, and the prestressing fabricated frame is taken into the dynamic response analysis. As for the yield displacement angle between layers, the calculated values are consistent with the measured values. Analyzing the pseudo-static test framework with the Pushover, it concludes the base shear-the vertex displacement curve and the plastic hinge location along with the sequence diagram of the framework. The analyzed result is consistent with the measured position in the framework. By the ANSYS program, it simulates the static force test frame to conclude the frame column ultimate load, and the calculated value and analyzed value for the ultimate load are almost consistent.
     Considering the influence of the node semi-rigid in the prestressed fabricated frame, it studies the beam end section ductility and the moment modulation coefficient. It concludes the section ductility coefficient and the limitation of moment redistribution on the post-tensioned precast PC frame beam end to meet the capacity requirements, and gives the recommended formula for the moment modulation limit, as well as the moment modulation coefficient limit. Based on the experiment and theoretical analysis, it gives the basic design provision of the prestressed fabricated concrete frame, the analysis principles of the internal force and measures on seismic structure. It provides the experimental foundation and the theoretical basis for the application of making the prestressed fabricated concrete frame to promote the application of the structure system in our country.
引文
[1]严薇,曹永红等.装配式结构体系的发展与建筑工业化[J],重庆建筑大学学报,2004,26(5):131-136.
    [2]徐有邻.我国混凝土预制构件行业持续发展的建议提纲[J],混凝土,2000(4):27-29.
    [3]薛伟辰.预制混凝土框架结构体系研究与应用进展[J],工业建筑,2002,32(11):47-50.
    [4]薛伟辰.现代预应力结构设计[M].北京:中国建筑工业出版社,2003.
    [5]房贞政.预应力结构理论与应用[M].北京:中国建筑工业出版社,2005.
    [6]L.莫克,E.栾凯.钢筋混凝土装配式建筑[M].中国建筑工业出版社,1985.
    [7]杨华雄.整体预应力装配式板柱建筑设计与施工[M].北京:中国计划出版社,1995.
    [8]宋玉普.新型预应力混凝土结构[M].机械工业出版社,2006.
    [9]崔建宇,孙建刚,王博,渡边史夫.装配式预制混凝土结构在日本的应用[J],大连民族学院学报,2009,11(1):67-70.
    [10]Nakaki.S.D.,Stanton.J.F.,The PRESSS five-story precast concrete test building [J], PCI Journal Precast/Prestressed Concrete Institute,2001,46(5):20-26.
    [11]Haluk.Sucuoglu., Effect of connection rigidity on seismic response of precast concrete frame[J]. PCI Journal Precast/Prestressed Concrete Institute,1995(1):94-103.
    [12]Marco Menegotto, Precast structures and L'AQUILA 2009 Earthquake,International Seminar on Precast Concrete Structures, Lisboa, October 2010.
    [13]中国建筑科学研究院建筑标准研究所主编.厂房建筑设计研究选编[M],北京:中国建筑工业出版社,1980.
    [14]国家建委建筑科学研究院编写组.预应力混凝土技术资料选编[M].北京:中国建筑工业出版社,1977.
    [15]北京建筑工程学院建筑技术教研组.装配式建筑设计[M].北京:中国建筑工业出版社,1983.
    [16]装配式大板建筑编写组.装配式大板建筑[M].北京:中国建筑工业出版社,1977.
    [17]李晨光,刘航,高鸿升等.新IMS整体预应力装配式板柱体系试验和工程实践[J].建筑技术,2000.31(12):838-839.
    [18]中国建筑工业出版社编唐山地震抗震调查总结资料选编[M].北京:中国建筑工业出版社,1997.
    [19]吴之乃,王有为,吴慧娟.建筑业10项新技术及应用[M].北京:中国建筑工业出版社,2001.
    [20]张晓勇,孙晓阳,陈华,韩桂圣,周军红.预制全装配式混凝土框架结构施工技术[J],施工技术,2012,41(1):77-80.
    [21]郭正兴,董年才,朱张峰.房屋建筑装配式混凝土结构建造技术新进展[J],施工技术,2011,40(6):1-3.
    [22]陈子康,周云,张季超,吴从晓.装配式混凝土框架结构的研究与应用[J],工程抗震与加固改造,2012,34(4):1-11.
    [23]唐九如.装配式钢筋混凝土框架梁柱齿槽接头的试验研究[A].报告集编写组.混凝土 研究报告集第2集[C].北京:中国建筑工业出版社,1985.
    [24]赵斌,吕西林,刘丽珍.全装配式预制混凝土结构梁柱组合件抗震性能试验研究[J],地震工程与工程振动,2005,25(1):81-87.
    [25]种迅,孟少平,潘其健等.部分无黏结预制预应力混凝土框架及其节点抗震能力研究[J].地震工程与工程振动,2007,27(4):55-60.
    [26]孟少平,吴京,吕志涛.预应力混凝土框架结构抗震耗能机制的选择[J].工业建筑,2002.32(10):4-7.
    [27]孟少平.预应力混凝土框架结构抗震能力及设计方法的研究[D].南京:东南大学.2002.10.
    [28]久田俊彦著,姜敦超译.地震与建筑[M].北京:地震出版社,1978:149-172.
    [29]中国建筑工业出版社编.唐山地震调查总结资料选编.北京:中国建筑工业出版社,1977.
    [30]董挺峰,李振宝,周锡元.装配式混凝土框架结构及其抗震性能研究[J].建筑技术,2006,37(11):844-847.
    [31]李振宝,董挺峰,闫维明,周锡元.混合连接装配式框架内节点抗震性能研究[J].北京工业大学学报,2006,32(10):895-700.
    [32]林同炎等.预应力混凝土结构设计[M].北京:中国铁道出版社,1983.
    [33]中国建筑科学研究院主编.钢筋混凝土结构研究报告选集(2)[M].北京:中国建筑工业出版社,1981.
    [34]Englekirk.Robert.E.,An innovative design solution for precast prestressed concrete buildings in high seismic zones[J]. PCI Journal Precast/Prestressed Concrete Institute,1996(4):44-53.
    [35]Englekirk.Robert.E.,Development and test of a ductile connector for assembling precast concrete beam and columns[J],PCI Journal,1995(2):36-53.
    [36]林宗凡,E.I.Sagan,M.E.Kreger.装配式抗震框架延性节点研究[J].同济大学学报,1998,26(2):134-137.
    [37]Morgen.B.,Kurama.Y.,Seismic design of friction-danped precast concrete frame structures [J], Structures.ASCE,2006 (1)
    [38]Morgen.B.,Kurama.Y.,Seismic,A friction damper for post-tensioned precast concrete moment frames[J],PCI Journal Precast/Prestressed Concrete Institute,2004,49(4):112-133.
    [39]Brian G. Morgen and Yahya C, Kurama. Seismic Design of Friction-Damped Precast Concrete Frame Structures[A]. ASCE Conf. Proc.2005.
    [40]Staton John, William C Stone, Geraldine S Cheok. A Hybrid Reinforced Precast Frame for Seismic Regions. PCI Journal,1997.2.
    [41]Brand.D.Weldon,Yahya.C.Kurama,. Coupling of concrete walls using post-tensioned precast concrete beams[J],Structures.ASCE,2005 (10).
    [42]Aaleti S, Sritharan S.A simplified analysis method for characterizing unbonded post-tensioned precast wall systems [J]. Engineering Structures,2009,31:2966-2975.
    [43]後藤寿之,保坂畴雄.柬京货物夕一ミルナ矩复合施设の构造设计PC建筑特集设计报告[A].日本,1992.
    [45]柳炳康,张瑜中,晋哲锋等.预压装配式预应力混凝土框架结合部抗震性能试验研究[J],建筑结构学报,2005,26(2):60-65.
    [46]董挺峰,李振宝,周锡元.装配式混凝土框架结构及其抗震性能研究.建筑技术[J],2006,37(11):844-847.
    [47]晋哲峰.预压装配式预应力梁柱节点在低周反复荷载作用下抗震性能分析[D].合肥工业大学硕士学位论文,2004.
    [48]徐远征.低周反复荷载作用下预压装配式预应力混凝土框架抗震性能试验研究[D].合肥:合肥工业大学,2005.
    [49]过镇海,时旭东.钢筋混凝土原理与分析[M].北京:清华大学出版社,2003.
    [50]薛伟辰,程斌,李杰.低周反复荷载下预应力高性能混凝土梁抗震性能[J].地震工程和工程振动,2003,23(1):78-83.
    [51]李忠献.工程结构试验理论与技术[M].天津大学出版社,2004.
    [52]建筑抗震试验方法规程(JGJ101-96)[S].北京:中国建筑工业出版社,1996.
    [53]欧国浩.预压装配式预应力混凝土框架极限承载力分析[D].合肥:合肥工业大学,2005.
    [54]蔡健,周靖,方小丹.钢筋混凝土框架抗震位移延性系数研究[J].工程抗震与加固改造,2005,27(3):2-6.
    [55]张继文,蒋朝文.细晶高强钢筋混凝土梁柱组合体抗震性能试验研究[J].北京:工业建筑,2009,39(11):33-39.
    [56]柳炳康主编.工程结构抗震设计[M].武汉:武汉理工大学出版社,2010.
    [57]陈红嫒,房贞政,林飞.无粘结部分预应力混凝土框架抗震性能试验研究[J].地震工程与工程震动,2002.4:60-65.
    [58]赵国藩.高等钢筋混凝土结构学[M].北京:机械工业出版社,2005.
    [59]邱法维,潘鹏,钱稼茹等.建筑结构拟动力实验软件的开发与应用[J].建筑结构学报.2000.22-32.
    [60]吕西林,范力,赵斌.装配式预制混凝土框架结构缩尺模型拟动力试验研究[J].建筑结构学报,2008,29(4).58-65.
    [61]房贞政,陈勇,郑则群.无粘结预应力混凝土框架节点拟静力试验研究[J].建筑结构,2003,33(5):10-12.
    [62]潘其健.预制预应力混凝土框架结构抗震能力的试验研究[D].南京:东南大学土木工程学院,2006.
    [63]姜锐.SAP2000在静力弹塑性分析中的应用[J].郑州大学学报,2004,25(4):19-23.
    [64]叶燎原,潘文.结构静力弹塑性分析的原理和计算实例[J].建筑结构学报,2000,21(1):37-43.
    [65]李克银等.有限元分析法在预应力混凝土T梁验算中的应用[J].交通科技,2004.4,9-11.
    [66]黄鑫,刘瑛,黄河.基于pushover原理的SAP2000结构弹塑性分析实例[J].青岛理工大学学报,2007,28(4):19-23.
    [67]汪大绥,何军力,张凤新.静力弹塑性分析的基本原理与计算实例[J].世界地震工程,2004,20(1):45-53.
    [68]彭俊生,罗永坤.结构概念分析与SAP2000应用[M].成都:西南交通大学出版社,2010,226-248.
    [69]陈世明,何琳,陈卓.SAP2000结构分析教程[M].人民交通大学出版社,2009.
    [70]梁兴文,叶艳霞.混凝土结构非线性分析[M].中国建筑工业出版社,2007.
    [71]王昌兴.MIDAS/Gen应用实例教程及疑难解答[M].中国建筑工业出版社,2010.1.
    [72]柳炳康,施法科,刘海涛,欧国浩.反复荷载下预压装配式框架接合部受力性能试验研究[J].合肥工业大学学报,2005.28(1).
    [73]罗小勇.预应力混凝士结构的非线性分析[D].长沙:湖南大学,2000:2-22.
    [74]郑文忠.预应力混凝土结构抗震性能研究概况[J].哈尔滨建筑大学学报,1996.29(4).
    [75]魏巍,冯启民.几种pushover分析方法对比研究[J].地震工程与工程振动,2002,22(4):66-73.
    [76]Brand.D.Weldon,Yahya.C.Kurama,. Coupling of concrete walls using post-tensioned precast concrete beams[J],Structures.ASCE,2005 (10)
    [77]Korkmaz.H.H., Tankut.T., Performence of a precast concrete beam-to-beam connection subject to reversed cyclic loading [J], Engineering Structure,2005,27 (4):1392-1407.
    [78]Loo YC, Yao BZ. Static and Repeated Load Rest on Precast Concrete Beam-to-Column Connections, PCI Journal,1995(2):106-115.
    [79]陆铁坚,刘桂平,余志武.高层钢-混凝土混合结构抗震性能评估[J].工程抗震与加固改造,2008,30(2),96-100.
    [80]熊向阳,戚震华.用静力弹塑性分析pushover方法评估建筑结构的抗震性能[J].工程力学,2001增刊.
    [81]朱杰江,吕西林,容柏生.复杂体型高层结构的推覆分析方法和应用,地震工程与工程振动,2003,23(2):26-36.
    [82]薛伟辰,程斌,李杰.低周反复荷载下预应力高性能混凝土梁的抗震性能[J].地震工程和工程振动,2003,23(1):78-83.
    [83]李晨光,刘航等.新IMS整体预应力装配式板柱体系试验和工程实践[J].建筑技术,2000.12.
    [84]崔烨.静力弹塑性Pushover分析方法的研究和改进[D].西安:西安建筑科技大学,2004,10-27.
    [85]焦振刚,陶学康.预应力混凝土结构的抗震性能及设计反应谱的探讨[J].工程抗震,2000.9,3:19-26.
    [86]欧进萍,侯钢领,吴斌.概率pushover分析方法及其在结构体系抗震可靠度评估中的应用[J].建筑结构学报,2001,(6):60-66.
    [87]江见鲸,陆新征,叶列平.钢筋混凝土结构非线性有限元分析[M].清华大学出版社,2004.
    [88]钱稼茹,张微敬,朱丹等.北京A380机库结构地震反应分析[J].土木工程学报,2008,41(2),9-16
    [89]Jinkoo Kim, Taewan Kim. Seismic Performance Evaluation of Non-seismic Designed Flat-Plate Structures. Journal of Performance of Constructed Facilities,2008,22(6),356-363.
    [90]M.Mazloom. Pushover, Response Spectrum and Time History Analyses of Safe Rooms in a Poor Performance Masonry Building.2008 Seismic Engineering Conference Commemorating the 1908 Messina and Reggio Calabria Earthquake,1767-1774.
    [91]邱智学,黄菊花等.有限元模型转换及其在金属板料成形数值模拟中的应用[J].塑性工 程学报,2004.11(4),40-43.
    [92]荆玉龙,王凤霞.基于能力谱法的PSSI体系Pushover分析[J].黑龙江科技学院学报,2007,17(1),48-50.
    [93]李伟,李浩,赵建昌.静力弹塑性分析(pushover)方法在RC框架结构抗震能力分析中的应用[J].甘肃科技,2005,21(5):128-130.
    [94]尚晓江,邱峰,赵海峰,李文颖等ANSYS结构有限元高级分析方法与范例应用[M].中国水利水电出版社,2006.1.
    [95]赖永标,胡仁喜,黄书珍ANSYS11.0土木工程有限元法分析典型范例[M].北京:电子工业出版社,2007:47-51.
    [96]刘海涛.预压装配式框架节点受力性能试验研究及三维有限元分析[D].合肥:合肥工业大学,2004.
    [97]尚晓江,邱峰,赵海峰,李文颖等ANSYS结构有限元高级分析方法与范例应用[M].中国水利水电出版社,2006.
    [98]张朝晖ANSYS工程应用范例入门与提高[M].清华大学出版社,2004.10.
    [99]博弈创作室ANSYS7.0基础教程与实例详解[M].中国水利水电出版社.2003.
    [100]陆铁坚,刘桂平,余志武.高层钢-混凝土混合结构抗震性能评估[J].工程抗震与加固改造,2008,30(2),96-100.
    [101]Jinkoo Kim, Taewan Kim. Seismic Performance Evaluation of Non-seismic Designed Flat-Plate Structures. Journal of Performance of Constructed Facilities,2008,22(6),356-363.
    [102]M.Mazloom. Pushover, Response Spectrum and Time History Analyses of Safe Rooms in a Poor Performance Masonry Building.2008 Seismic Engineering Conference Commemorating the 1908 Messina and Reggio Calabria Earthquake,1767-1774.
    [103]唐九如.钢筋混凝土框架节点抗震[M].南京:东南大学出版社,1989.
    [104]施刚,石永久等.多层钢框架半刚性端板连接的试验研究[J].《清华大学学报(自然科学版)》2004.44.3,391-394.
    [105]Sriram Aaleti, Sri Sritharan, A simplified analysis method for characterizing unbonded post-tensioned precast wall systems[J], Engineering Structures,2009 (31):2966-2975.
    [106]Antonios Tsitos, Experimental and numerical investigation of the progressive collapse of steel frames [D], A dissertation for the degree of Doctor of Philosophy submitted to the Department of Civil, Structural and Environmental Engineering of State University of New York at Buffalo, Buffalo, NY, U.S.A.2009:19-68.
    [107]Brian G. Morgen and Yahya C. Kurama. Seismic Design of Friction-Damped Precast Concrete Frame Structures [J]. Journal of Structural Engineering ASCE,2007:1501-1512.
    [108]董挺峰等.装配式混凝土框架结构及其抗震性能研究[J].建筑技术.2006.37(11),844-847.
    [109]Haluk Sucuoglu. Effect of Connection rigidity on Seismic Response of Pre-cast Concrete Frames [J], PCI Journal,1995(1); 94-103.
    [110]Krawinkler H,Seneviratna G D P K,Pros and cons of a pushover analysis of seismic perfoenance evaluation,Engineering Structures,1998,20(4-6).
    [111]王燕,李华军等.半刚性梁柱节点连接的初始刚度和结构内力分析[J].工程力学,2003.12.65-69.
    [112]陆铁坚等.钢-混凝土组合梁与混凝土柱节点的抗震性能试验研究[J].建筑结构学报,2008.2.70-74.
    [113]Sucuoglu H,Anderson JG,Zeng YH, Predicting intensity and damage distribution during the 1995 Dinar, Turkey, earthquake with generated strong motion accelerograms [J].Bulletin of the Seismological Society of America,2003.93(3).
    [114]柳炳康,田井锋,张瑜中等.低周反复荷载下预压装配式PC框架延性性能和耗能能力[J].建筑结构学报,2007,28(3):74-81.
    [115]蔡建国,冯健,王蜂岚等.考虑节点刚度的预制混凝土框架结构分析[J].东南大学学报:自然科学版,2009,39(5):1054-1058.
    [116]孟少平,吕志涛.预应力混凝土超静定结构的弯矩调幅系数与抗裂度[J].建筑结构学报,1999,20(2):60-67.
    [117]陆惠民,吕志涛.PPC超静定结构弯矩调幅限值及方法的研究[J].东南大学学报:自然科学版,1999,29(2):70-75.
    [118]傅剑平,游渊,白绍良.钢筋混凝土抗震框架节点传力机构分析[J].重庆建筑大学学报,1996.3.
    [119]李振宝,郭二伟,周宏宇等.RC框架节点核芯区剪切破坏-抗震性能试验[J].世界地震工程,2009,25(3):61-66.
    [120]Geraldine S.Cheok, H.S.Lew, Ph.D. Model Precast Concrete Beam-to-Column Connections Subject to Cyclic Loading. [J]. PCI Journal. July-August,1993,80-92.
    [121]Kaya M, Arslan.A. Analytical modeling of post-tensioned precast beam-to-column connections[J]. Materials and Design,2009,30:3802-3811.
    [122]尚守平.结构抗震设计[M].北京:高等教育出版社,2003:143-147.
    [123]薛伟辰,姜东升,陈以一等.预应力混凝土空间节点抗震性能试验研究[J].建筑结构学报,2007,28(1):43-51.
    [124]赵鸿铁.钢筋混凝土梁柱节点的抗裂性[J].建筑结构学报,1990,11(6).
    [125]中国有色工程设计研究总院.混凝土结构构造手册(第三版)[M].中国建筑工业出版社,2003.06.
    [126]卢志红等.配箍筋缺口梁的抗剪承载力[J].华侨大学学报,1994.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700