用户名: 密码: 验证码:
碳酸钙粒子在水相RAFT聚合中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自从1998年被首次报道以来,可逆加成-断裂链转移(RAFT)聚合凭借其在聚合物合成方面的优势,成为应用广泛的活性自由基聚合方法。截止目前,均相反应条件下的溶液RAFT聚合和本体RAFT聚合研究较多,各种均聚物和嵌段共聚物被合成出来,且分子量分布很窄。然而,在非均相体系中的RAFT聚合,特别是水相RAFT聚合,研究相对较少。本文借助碳酸钙(CaCO3)粒子实现了疏水性单体、亲水性单体在水相的可控RAFT聚合。
     利用水相RAFT聚合合成聚苯乙烯(PS)。疏水性单体的乳液聚合多采用乳化剂来稳定乳液,而乳化剂会带来各种问题。本研究中,将苯乙烯(St)单体和RAFT试剂BDMAT(S,S'-二(,'-二甲基-''-乙酸)三硫代碳酸酯)加入到水中,在CaCO3的悬浮作用下,它们吸附在CaCO3粒子表面,可以在水相中进行可控RAFT自由基聚合。CaCO3/St重量比对水相RAFT聚合具有影响,CaCO3/St重量比提高时会提高St在水相中RAFT聚合的速率。水相RAFT聚合的动力学研究发现,[St]o/[BDMAT]o/[K2S2O8]o比例较低时,聚合速率较快。在水相RAFT聚合中,ln([M]o/[M])与时间呈线性关系,数均分子量Mn随着单体转化率提高而线性增加。与十二烷基硫酸钠(SDS)作乳化剂的传统乳液RAFT聚合对比后发现,水相RAFT聚合的速率比传统乳液RAFT聚合慢,但CaCO3存在时水相RAFT聚合可以实现活性聚合。
     聚N-异丙基丙烯酰胺(PNIPAM)在水相的RAFT合成。由于PNIPAM具有温敏性,当温度高于其低临界溶解温度时,会转变成疏水性的,因此PNIPAM的合成多在有机溶剂中进行。本研究中,CaCO3粒子存在下,在水相中实现了单体N-异丙基丙烯酰胺(NIPAM)的可控RAFT自由基聚合。考察了CaCO3/NIPAM重量比、RAFT试剂与引发剂比例的影响,进行了动力学实验。动力学研究显示,ln([M]o/[M])与时间呈线性关系,数均分子量Mn随着单体转化率提高而线性增加,聚合产物PNIPAM的分子量分布PDI都较低。这些结果说明实验所采用的水相RAFT聚合方法是活性可控的。
     采用水相RAFT聚合的方法制备了含有疏水链段和温敏链段的PNIPAM-b-PS-b-PNIPAM三嵌段共聚物,RAFT试剂为PNIPAM-TTC(聚N-异丙基丙烯酰胺-三硫代碳酸酯)。发现CaCO3粒子具有明显稳定反应体系的作用。CaCO3/St重量比对RAFT聚合速率有影响,当CaCO3/St重量比提高时,反应速率增加。动力学研究表明,ln([M]o/[M])与时间呈线性关系,数均分子量Mn随着单体转化率提高而线性增加,CaCO3粒子存在时共聚物的分子量分布明显降低。
     在大分子RAFT试剂PDMA-TTC(聚N,N-二甲基丙烯酰胺-三硫代碳酸酯)存在下,利用水相RAFT聚合的方法制备了含有疏水链段和亲水链段的PDMA-b-PS-b-PDMA三嵌段共聚物。发现CaCO3/St重量比对RAFT聚合速率有影响,当CaCO3/St重量比提高时,反应速率增加,但是对产物的分子量分布影响不大。动力学研究表明,ln([M]o/[M])与时间呈线性关系,数均分子量Mn随着单体转化率提高而线性增加,CaCO3粒子存在时可以提高反应速率并降低共聚物的分子量分布。
Since initial introduced in1998, the reversible addition-fragmentation chaintransfer (RAFT) polymerization has proven to be perhaps the most versatile of thecontrolled/living radical polymerization methods. Up to now, RAFT polymerizationunder homogeneous condition (solution/bulk) has been extensively studied, andvarious polymers including homopolymer, and block polymer with narrow molecularweight distribution have been synthesized. However, the RAFT polymerization underheterogeneous conditions, especially the aqueous RAFT polymerization, is far frombeing perfectly accomplished. A new method to achieve well-controlled aqueousRAFT polymerization of hydrophobic monomer and hydrophilic monomer in thepresence of CaCO3particles were proposed.
     Polystyrene (PS) was synthesized by aqueous RAFT polymerization. Thesurfactant plays the crucial role to ensure stability of the emulsion. However, thesurfactant brings some side effects. In this paper, the RAFT agent ofS,S'-bis(,'-dimethyl-''-acetic acid) trithiocarbonate (BDMAT) and St were addedinto water mediated with CaCO3particles, and it was found that they were adsorbedon the surface of CaCO3particles and well-controlled aqueous RAFT polymerizationwas performed. The weight ratio of CaCO3/St on the aqueous RAFT polymerizationwas investigated, and it was found that high CaCO3/St weight ratio led to fast aqueousRAFT polymerization. The aqueous RAFT polymerization kinetics was checked, andthe fast RAFT polymerization rate at low molar ratio of styrene/BDMAT/K2S2O8, thelinear ln([M]o/[M])-time plot, the linear increase in the number-average molecularweight with the monomer conversion, and the relatively low polydispersity index(PDI) values were demonstrated. The aqueous RAFT polymerization was comparedwith the general emulsion RAFT polymerization in the presence of the sodiumdodecyl sulfate (SDS) surfactant. It was found that the aqueous RAFT polymerizationseemed more valid than the emulsion RAFT polymerization, despite that aqueousRAFT polymerization ran slower than the general emulsion RAFT polymerization.
     Poly(N-isopropylacrylamide)(PNIPAM) was prepared by a new method.PNIPAM possesses a readily accessible lower critical solution temperature (LCST) inwater and the chains become hydrophobic above the LCST, so the polymerization ofPNIPAM demonstrates the need for organic solvents. In this paper, the aqueous RAFTpolymerization of N-isopropylacrylamide (NIPAM) was carried out successfully inthe presence of CaCO3particles. The weight ratio of CaCO3/NIPAM on the aqueous RAFT polymerization, the molar ratio of RAFT agent to initiator and thepolymerization kinetics were investigated. The linear ln([M]o/[M])-time plot, thelinear increase in the number-average molecular weight with monomer conversion,and the relatively low PDI values were demonstrated. The proposed method isbelieved to be a new strategy to achieve well-controlled aqueous RAFTpolymerization.
     PNIPAM-b-PS-b-PNIPAM was synthesized by aqueous RAFT polymerizationmediated with the macro-RAFT agent of PNIPAM-TTC, and the copolymer hadthermosensitive block and hydrophobic block. It was found that the polymerizationwas stable in the presence of CaCO3particles, and high CaCO3/St weight ratio led tofast aqueous RAFT polymerization. The aqueous RAFT polymerization kinetics waschecked, the linear ln([M]o/[M])-time plot, the linear increase in the number-averagemolecular weight with the monomer conversion, and the relatively low PDI values inthe presence of CaCO3particles were demonstrated.
     PDMA-b-PS-b-PDMA, which had hydrophilic block and hydrophobic block,was synthesized by aqueous RAFT polymerization mediated with the macro-RAFTagent of PDMA-TTC. It was found that high CaCO3/St weight ratio led to fastaqueous RAFT polymerization, however, the PDI of polymer had been little affected.The aqueous RAFT polymerization kinetics was checked, the linearln([M]o/[M])-time plot, the linear increase in the number-average molecular weightwith the monomer conversion were demonstrated. At the same time, in the presenceof CaCO3particles, the polymerization rate was fast and the PDI values were lowrelatively.
引文
[1]潘祖仁,于在璋.自由基聚合.北京:化学工业出版社,1983.
    [2]潘祖仁,高分子化学(增强版).北京:化学工业出版社,2007.
    [3] Verros G D, Latsos T, Achilias D S. Development of a unified framework forcalculating molecular weight distribution in diffusion controlled free radical bulkhomo-polymerization. Polymer,2005,46(2):539-552.
    [4]肖超渤,胡运华.高分子化学.武汉:武汉大学出版社,1998.
    [5]潘祖仁,翁志学,黄志明.悬浮聚合.北京:化学工业出版,1997.
    [6]曹同玉,刘庆普,胡金生.聚合物乳液合成原理性能及应用.北京:化学工业出版社.2007.
    [7]耿耀宗,曹同玉.合成聚合物乳液制造与应用技术.北京:中国轻工业出版社,1999.
    [8] Harkins W D. Theory of mechanism of emulsion polymerization. J. Am. Chem.Soc. Phys.,1945,13:381-382.
    [9] Smith W V. The kinetics of styrene emulsion polymerization. J. Am. Chem. Soc.Phys.,1948,16:592-599.
    [10] Smith W V. Chain initiation in styrene emulsion polymerization. J. Am. Chem.Soc.,1949,71:4077-4082.
    [11] Fitch R M. The homogeneous nucleation of polymer colloids. British PolymerJournal,2007,5(6):467-483.
    [12] Aslamazova T R. The role of polymer surface in the hydrodynamic stability ofparticles of emulsifier-free poly(methacrylate) latexes. Colloid Journal,1999,61(2):139-143.
    [13] Binks B P, Lumsdon S O. Pickering emulsions stabilized by monodisperse latexparticles: Effects of particle siza. Langmuir,2001.17(15):4540-4547.
    [14] Binks B P, Fletcher P D I. Particles adsorbed at the oil-water interface: Atheoretical comparison between spheres of uniform wettability and Janusparticles. Langmuir.2001,17(16):4708-4710.
    [15] Ugelstad J, El-Aasser M S, Vanderhoff J W. Emulsion polymerization: Initiatorof polymerization in monomer droplets. J. Polym. Sci. Lett.,1973,11(8):503-513.
    [16] Landfester K. Polyreactions in miniemulsions. Macromol. Rapid. Commun.,2001,22(12):896-936.
    [17] Antonietti M, Landfester K. Polyreactions in miniemulsions. Prog. Polym. Sci.,2002,27(4):689-757.
    [18] Schork F J, Luo Y W, Smulders W, et al. Miniemulsion polymerization. Adv.Polym. Sci..2005,175:129-255.
    [19] Ausa J M. Miniemulsion polymerization. Prog. Polym. Sci.,2002,27(4):1283-1346.
    [20] Li K, Stover H D H. Mono-or narrow dispersepoly(methacrylate-co-divinylbenzene) microspheres by precipitationpolymerization. J. Polym. Sci. Part A: Polym. Chem.,1999,37(15):2899-2907.
    [21] Downey J S, Frank RS, Li W H, et al. Growth mechanism ofpoly(divinylbenzene) microspheres in precipitation polymerization.Macromolecules,1999,32(9):2838-2844.
    [22] Li W H, Li K, Stover H D H. Monodisperse poly(chloromethylstyrene-co-divinylbenzene) microspheres by precipitation polymerization. J. Polym. Sci. Part A:Polym. Chem.,1999,37(14):2295-2303.
    [23] Li W H, Stover H D H. Monodisperse cross-linked core-shell polymermicrospheres by precipitation polymerization. Macromolecules,2000,33(12):4354-4360.
    [24] Zheng G D, Stover H D H. Grafting of poly(alkyl(meth)acrylates) from swellablepoly(DVB80-co-HEMA) microspheres by atom transfer radical polymerization.Macromolecules,2002,35(20):7612-7619.
    [25] Takekoh R, Li W H, Burke N A D, et al. Multilayered polymer microspheres bythermal imprinting during microsphere growth. J. Am. Chem. Soc.,2006,128(1):240-244.
    [26] Li W H, Stover H D H. Porous monodisperse poly(divinylbenzene) microspheresby precipitation polymerization. J. Polym. Sci. Part A: Polym. Chem.,1998,36(10):1543-1551.
    [27]朱明强,魏柳荷,周鹏,等.马来酸酐和苯乙烯的可逆加成-断裂链转移聚合及新型嵌段共聚物的合成.高分子学报,2001,(3):415-417.
    [28]沈一丁,李小瑞.苯乙烯马来酸酐无规共聚物的制备及性能.高分子材料科学与工程,1997,(3):32-35.
    [29] Ge Q, Quirk R P. Anionic synthesis and characterization ofpoly(styrene-b-1-butene oxide) block copolymers and their application in anionicdispersion polymerization. Abstracts of Papers of the American Chemical Society,2000,220:272-273.
    [30] Saenz J M, Asua J M. Kinetics of the dispersion copolymerization of styrene andbutyl acrylate in polar solvents. Macromolecules,1998,31(16):5215-5222.
    [31] Horak D. Magnetic polyglycidylmethacrylate microspheres by dispersionpolymerization. J. Polym. Sci. Part A: Polym. Chem.,2001,39(21):3707-3715.
    [32] Croucher M D, Winnik M A, Egan L S. Molecular details of the solvent inducedflocculation of dilute sterically stabilized polymer colloids. Colloids andSurfaces,1988,31:311-323.
    [33] Moad G, Solomon D H. The Chemistry of Free Radical Polymerization. OxfordUK: Pergamon,1995.
    [34] Monteiro M J, Bussels R, Beuermann S, et al. High-pressure “living” free-radicalpolymerization of styrene in the presence of RAFT. Australian Journal ofChemistry,2002,55(6):433~437.
    [35] Szwarc M.“Living” Polymers. Nature,1956,178:1168-1169.
    [36] Otsu T, Yoshida M, Tazaki T. Role of initiator-transfer agent-terminator in radicalpolymerizations: Polymer design by organic disulfides as iniferters. Chem. Rapid.Comun.,1982,3(2):127-132.
    [37] Otsu T, Yoshida M. Efficient synthesis of two or multi component blockcopolymers through living radical polymerization with polymeric photoiniferters.Polym. Bull.,1982,7:192-203.
    [38] Pyun J, Matyjaszewski K. Synthesis of nanocomposite organic/inorganic hybridmaterials using controlled/“living” radical polymerization. Chemistry ofMaterials,2001,13(10):3436-3448.
    [39] Matyjaszewski K, Qiu J, Shipp D A, et al. Controlled/living radicalpolymerization applied to water-borne systems. Macromolecular Symposia,2000,155:15-29.
    [40] Matyjaszewski K, Thomas P, Davis T P. Handbook of radical polymerization.Hoboken: Wiley-Interscience,2002.
    [41] Otsu T, Matsumoto A, Tazaki T, et al. Living radical polymerization of methylmethacrylate with tetraphenylsuccinodinitrile as a thermal iniferter. Memoirs ofthe Faculty of Engineering,1986,27(12):137-142.
    [42] Ward J H, Shahar A, Peppas N A. Kinetics of “living” radical polymerizations ofmultifunctional monomers. Polymer,2002,43(6):1745-1752.
    [43] Cunningham M F. Recent progress in nitroxide-mediated polymerizations inminiemulsion. Comptes Rendus Chimie,2003,6(11):1351-1374.
    [44] Rizzardo E, Solomon D H. A new method for investigating the mechanism ofinitiation of radical polymerization. Polymer Bulletin,1979,6:529-534.
    [45] Georges M K, Veregin R P N, Kazmajer P M, et al. Narrow molecular weightresins by a free-radical polymerization process. Macromolecules,1993,26(11):2987-2988.
    [46] Hawker C J, Bosman, A W, Harth E. New polymer synthesis by nitroxidemediated living radical polymerizations. Chem. Rev.,2001,101(12):3661-3688.
    [47] Devenport W, Michalak L, Malmstrom E, et al."Living" free-radicalpolymerizations in the absence of initiators: Controlled autopolymerization.Marcromolecules,1997,30(7):1929-1934.
    [48] Kato M, Kamigaito M, Sawamoto M, et al. Polymerization of methylmethacrylate with the carbon tetrachloride/dichlorotris (triphenyl-phosphine)ruthenium(Ⅱ)/methylaluminum bis(2,6-di-tert-butylphenoxide) initiating system:Possibility of living radical polymerization. Macromolecules,1995,28(5):1721-1723.
    [49] Wang J S, Matyjaszewski K. Controlled/living radical polymerization: Atomtransfer radical polymerization in the presence of transition-metal complexes. J.Am. Chem. Soc.,1995,117(20):5614-5615.
    [50] Matyjaszewski K, Xia J H. Atom transfer radical polymerization. Chem. Rev.,2001,101(9):2921-2990.
    [51] Wang J S, Matyjaszewski K. Controlled/living radical polymerization: Halogenatom transfer radical polymerization promoted by Cu(Ⅰ)/Cu(Ⅱ) redox process.Macromolecules,1995,28:7901-7910.
    [52] Percec V, Barboiu B. Living radical polymerization of styrene initiated byarenesulfonyl chlorides and CuI(bpy)nCl. Macromolecules,1995,28:7970-7972.
    [53] Chiefari J, Chong Y K, Rizzardo E. Living free-radical polymerization byreversible addition-fragmentation chain transfer: The RAFT process.Macromolecules,1998,31(16):5559-5562.
    [54] Mayadunne R T A, Rizzardo E, Chiefari J, et al. Living polymers by the use oftrithiocarbonates as reversible addition-fragmentation chain transfer agents: ABAtriblock copolymers by radical polymerization in two steps. Macromolecules,2000,33(2):243-245.
    [55] Mayadunne R T A, Rizzardo E, Chiefari J, et al. Living radical polymerizationwith reversible addition-fragmentation chain transfer using dithiocarbamates aschain transfer agents. Macromolecules,1999,32(21):6977-6980.
    [56] Chiefari J, Mayadunne R T A, Moad C L, et al. Thiocarbonylthio compounds(SdC(Z)S-R) in free radical polymerization with reversibleaddition-fragmentation chain transfer (RAFT polymerization): Effect of theactivating group Z. Macromolecules,2003,36(7),2273-2283.
    [57] Wood M R, Duncalf D J, Rannard S P, et al. Selective one-pot synthesis oftrithiocarbonates, xanthates, and dithiocarbamates for use in RAFT/MADIXliving radical polymerizations. Org. Lett.,2006,8(4):553-556.
    [58] Janlova K, Kops J, Chen X Y, et al. Synthesis by ATRP ofpoly(ethylene-co-butylene)-block-polystyrene, poly(ethylene-co-butylene)-block-poly(4-acetoxystyrene) and its hydrolysis product poly(ethylene-co-butylene)-block-poly(hydroxystyrene). Macromol. Rapid. Commun.,1999,20(4):219-223.
    [59] Arotcarena M, Heise B, Ishaya S, et al. Switching the inside and the outside ofaggregates of water-soluble block copolymers with double thermoresponsivity. J.Am. Chem. Soc.,2002,124(14):3787-3793.
    [60] Sumerlin B S, Lowe A B, Thomas D B, et al. Aqueous solution properties ofpH-responsive AB diblock acrylamido copolymers synthesized via aqueousRAFT. Macromolecules,2003,36(16):5982-5987.
    [61] Mitsukami Y, Donovan M S, Lowe A B, et al. Water-soluble polymers.81. Directsynthesis of hydrophilic styrenic-based homopolymers and block copolymers inaqueous solution via RAFT. Macromolecules,2001,34(7):2248-2256.
    [62] Luo Y W, Liu X Z. Reversible addition-fragmentation transfer copolymerizationof methyl methacrylate and styrene in miniemulsion. J. Polym. Sci. Part A:Polym. Chem.,2004,42(24):6248-6258.
    [63] Thomas D B, Sumerlin B S, Lowe A B, et al. Conditions for facile, controlledRAFT polymerization of acrylamide in water. Macromolecules,2003,36(5):1436-1439.
    [64] McLeary J B, Klumperman B. RAFT mediated polymerization in heterogeneousmedia. Soft Matter,2006,2(1):45-53.
    [65] Monteiro M J, Hodgson M, de Brouwer H. The influence of RAFT on the ratesand molecular weight distributions of styrene in seeded emulsion polymerization.J. Polym. Sci. Part A: Polym. Chem.,2000,38(21):3864-3874.
    [66] Vosloo J J, De W D, Tonge M P, et al. Controlled free radical polymerization inwater borne dispersion using reversible addition-fragmentation chain transfer.Macromolecules,2002,35(13):4894-4902.
    [67] Uzulina I, Kanagasabapathy S, Claverie J. Reversible addition fragmentationtransfer (RAFT) polymerization in emulsion. Macromolecular Symposia,2000,150,33-38.
    [68] Ferguson C J, Hughes R J, Pham B T T, et al. Effective ab initio emulsionpolymerization under RAFT control. Macromolecules,2002,35(25):9243-9245.
    [69] Luo Y, Cui X. Reversible addition-fragmentation chain transfer polymerization ofmethyl methacrylate in emulsion. J. Polym. Sci. Part A: Polym. Chem.,2006,44(9):2837-2847.
    [70] Lansalot M, Farcet C, Charleux B, et al. Controlled free-radical miniemulsionpolymerization of styrene using degenerative transfer. Macromolecules,1999,32(22):7354-7360.
    [71] Lansalot M., Davis T P, Heuts J P A. RAFT miniemulsion polymerization:influence of the structure of the RAFT agent. Macromolecules,2002,35(20):7582-7591.
    [72] de Brouwer H, Tsavalas J G, Schork F J, et al. Living radical polymerization inminiemulsion using reversible addition-fragmentation chain transfer.Macromolecules,2000,33(25):9239-9246.
    [73] Ugelstad J, Kaggerud K, Hansen F K, et al. Absorption of low molecular weightcompounds in aqueous dispersions of polymer-oligomer particles. Diemakromolekulare chemie,1979,180:737-744.
    [74] Luo Y W, Schork F J. Theoretical aspects of particle swelling in living freeradical miniemulsion polymerization. Macromolecules,2001,34(16):5501-5507.
    [75] Braunecker W A, Matyjaszewski K. Controlled/living radical polymerization:features, developments, and perspectives. Prog. Polym. Sci.,2007,32(1):93-146.
    [76] Qiu J, Charleux B, Matyjaszewski. Controlled/living radical polymerization inaqueous media: Homogeneous and heterogeneous systems. Prog. Polym. Sci.,2001,26(10):2083-2134.
    [77] Kamigaito M, Ando T, Sawamoto M. Metal-catalyzed living radicalpolymerization. Chem. Rev.,2001,101(12):3689-3745.
    [78] Matyjaszewski K. Atom transfer radical polymerization (ATRP): Current statusand future perspectives. Macromolecules,2012,45(10):4015-4039.
    [79] Perrier S, Takolpuckdee P. Macromolecular design via reversible addition-fragmentation chain transfer (RAFT)/xanthates(MADIX) polymerization. J.Polym. Sci. Part A: Polym. Chem.,2005,43(22):5347-5393.
    [80] Lowe A B, McCormick C L. Reversible addition-fragmentation chain transfer(RAFT) radical polymerization and the synthesis of water-soluble (co)polymersunder homogeneous conditions in organic and aqueous media. Prog. Polym. Sci.,2007,32(3):283-351.
    [81] Favier A, Charreyre M T. Experimental requirements for an effcient control offree-radical polymerizations via the reversible addition-fragmentation chaintransfer (RAFT) process. Macromol. Rapid. Commun.,2006,27(9):653-692.
    [82] Barner L, Davis T P, Stenzel M H, et al. Complex macromolecular architecturesby reversible addition fragmentation chain transfer chemistry: Theory andpractice. Macromol. Rapid. Commun.,2007,28(5):539-559.
    [83] Semsarilar M, Perrier S. Green reversible addition-fragmentation chain-transfer(RAFT) polymerization. Nat. Chem.,2010,2(10):811-820.
    [84] Barner-Kowollik C, Quinn J F, Morsley D R, et al. Modeling the reversibleaddition–fragmentation chain transfer process in cumyl dithiobenzoate-mediatedstyrene homopolymerizations: Assessing rate coefficients for the addition-fragmentation equilibrium. J. Polym. Sci. Part. A: Polym. Chem.,2001,39(9):1353-1365.
    [85] Li C, Benicewicz B C.-Cyanobenzyl dithioester reversible addition-fragmentation chain-transfer agents for controlled radical polymerizations. J.Polym. Sci. Part A: Polym. Chem.,2005,43(7):1535-1543.
    [86] Albertin L, Camero N R. RAFT polymerization of methyl6-O-methacryloyl--D-glucoside in homogeneous aqueous medium. A detailed kinetic study at thelow molecular weight limit of the process. Macromolecules,2007,40(17):6082-6093.
    [87] Koh M L, Konkolewicz D, Perrier S. A simple route to functional highlybranched structures: RAFT homopolymerization of divinylbenzene.Macromolecules,2011,44(8):2715-2724.
    [88] Chaduc I, Lansalot M, D’Agosto F, et al. RAFT polymerization of methacrylicacid in water. Macromolecules,2012,45(3):1241-1247.
    [89] Abreu C M R, Mendonca P V, Serra A C, et al. Reversible addition-fragmentationchain transfer polymerization of vinyl chloride. Macromolecules,2012,45(5):2200-2208.
    [90] Cunningham M F. Controlled/living radical polymerization in aqueous dispersedsystems. Prog. Polym. Sci.,2008,33(4):365-398.
    [91] Oh J K. Recent advances in controlled/living radical polymerization in emulsionand dispersion. J. Polym. Sci. Part A: Polym. Chem.,2008,46(21):6983-7001.
    [92] Shim S E, Shin Y, Lee H, et al. Emulsion polymerization of methyl methacrylateusing a surface-active RAFT agent: The role of surfactant. Polym. Bull.,2003,51(3):209-216.
    [93] Monteiro M J, de Barbeyrac J. Free-radical polymerization of styrene inemulsion using a reversible addition fragmentation chain transfer agent with alow transfer constant: Effect on rate, particle size, and molecular weight.Macromolecules,2001,34(13):4416-4423.
    [94] Zhou X, Ni P, Yu Z. Comparison of RAFT polymerization of methylmethacrylate in conventional emulsion and miniemulsion systems. Polymer,2007,48(21):6262-6271.
    [95] Pepels M P F, Holdsworth C I, Pascual S, et al. RAFT-mediated emulsionpolymerization of styrene with low reactive xanthate agents: microemulsion-likebehavior. Macromolecules,2010,43(18):7565-7576.
    [96] Luo Y, Wang X, Li B, et al. Toward well-controlled ab initio RAFT emulsionpolymerization of styrene mediated by2-(((dodecylsulfanyl) carbonothioyl)sulfanyl) propanoic acid. Macromolecules,2011,44(2):221-229.
    [97] Lin Y, Ng K M, Chan C M, et al. High-impact polystyrene/halloysitenanocomposites prepared by emulsion polymerization using sodium dodecylsulfate as surfactant. J. Colloid Interf. Sci.,2011,358(2):423-429.
    [98] McLeary J B, Tonge M P, Roos D D W, et al. Chain-transfer polymerization inhigh-surfactant-concentration ionic miniemulsions. J. Polym. Sci. Part A: Polym.Chem.,2004,42(4):960-974.
    [99] Luo Y, Liu B, Wang Z, et al. Butyl acrylate RAFT polymerization in emulsion. J.Polym. Sci. Part A: Polym. Chem.,2007,45(11):2304-2315.
    [100] Ferguson C J, Hughes R J, Nguyen D, et al. Ab initio emulsion polymerizationby RAFT-controlled self-assembly. Macromolecules,2005,38(6):2191-2204.
    [101] Rieger J, Zhang WJ, Stoffelbach F, et al. Surfactant-free RAFT emulsionpolymerization using poly(N,N-dimethylacrylamide) trithiocarbonatemacromolecular chain transfer agents. Macromolecules,2010,43(15):6302-6310.
    [102] Urbani C N, Monteiro M J. Nanoreactors for aqueous RAFT-mediatedpolymerizations. Macrolecules,2009,42(12):3884-3886.
    [103] Chan N, Cunningham M F, Hutchinson R A. Continuous controlled radicalpolymerization of methyl acrylate with copper wire in a CSTR. Polym. Chem.,2012,3(2):486-497.
    [104] Zhang M, Zhang W. Reversible addition-fragmentation chain transferpolymerization of a typical hydrophobic monomer of styrene withinmicroreactor of shell-corona hollow microspheres suspending in water. J.Polym. Sci. Part A: Polym. Chem.,2010,48(23):5446-5455.
    [105] Niu Z, He J, Russell T P, et al. Synthesis of nano/microstructures at fluidinterfaces. Angew. Chem. Int. Ed.2010,49(52):10052-10066.
    [106] Brun N, Ungureanu S, Deleuze H, et al. Hybrid foams, colloids and beyond:from design to applications. Chem. Soc. Rev.,2011,40(2):771-788.
    [107] Wang Y, Fan D, He J, et al. Silica nanoparticle covered with mixed polymerbrushes as Janus particles at water/oil interface. Colloid Polym. Sci.,2011,289(17-18):1885-1894.
    [108] Ikem V O, Menner A, Bismarck A. High internal phase emulsions stabilizedsolely by functionalized silica particles. Angew. Chem. Int. Ed.,2008,47(4):8277-8279.
    [109] Zhang Y, Zou Q, Shu X, et al. Preparation of raspberry-like polymer/silicananocomposite microspheres via emulsifer-free polymerization inwater/acetone media. Journal Colloid and Interface Science,2009,336(2):544-550.
    [110] Ma H, Luo M, Sanyal S, et al. The one-step pickering emulsion polymerizationroute for synthesizing organic-inorganic nanocomposite particles. Materials,2010,3(2):1186-1202.
    [111] Fujii S, Armes S P, Binks B P, et al. Stimulus-responsive particulate emulsifiersbased on lightly cross-linked poly(4-vinylpyridine) silica nanocompositemicrogels. Langmuir,2006,22(16):6818-6825.
    [112] Xia L X, Cao G Y, Lu S W, et al. Demulsifcation of solids-stabilized emulsionsunder microwave radiation. Journal of Macromolecular Science Part A: Pureand Applied Chemistry,2006,43(1):71-81.
    [113] Ashby N P, Binks B P. Pickering emulsions stabilised by Laponite clay particles.Phys. Chem. Chem. Phys.,2000,2(24):5640-5646.
    [114] Cauvin S, Colver P J, Bon S A F. Pickering stabilized miniemulsionpolymerization: Preparation of clay armored latexes. Macromolecules,2005,38(19):7887-7889.
    [115] Voorn D J, Ming W, van Herk A M. Polymer clay nanocomposite latex particlesby inverse pickering emulsion polymerization stabilized with hydrophobicmontmorillonite platelets. Macromolecules,2006,39(6):2137-2143.
    [116] Bon S A F, Colver P J. Pickering miniemulsion molymerization using laponiteclay as a stabilizer. Langmuir,2007,23(16):8316-8322.
    [117] Teixeira R F A, McKenzie H S, Boyd AA, et al. Pickering emulsionpolymerization using laponite clay as stabilizer to prepare armored “soft”polymer latexes. Macromolecules,2011,44(18):7415-7422.
    [118] Sheng Y, Zhao J, Zhou B, et al. In situ preparation of CaCO3/polystyrenecomposite nanoparticles. Mater. Lett.,2006,60(27):3248-3250.
    [119] Ma X, Zhou B, Deng Y, et al. Study on CaCO3/PMMA nanocompositemicrospheres by soapless emulsion polymerization. Colloids and Surfaces A:Physicochem. Eng. Asp.,2008,312(2-3):190-194.
    [120] Mishra S, Chatterjee A, Singh R. Novel synthesis of nano-calcium carbonate(CaCO3)/polystyrene (PS) core–shell nanoparticles by atomized microemulsiontechnique and its effect on properties of polypropylene (PP) composites. Polym.Adv. Technol.,2011,22(12):2571-2582.
    [121] Kato T, Sugawara A, Hosoda N. Calcium carbonate-organic hybrid materials.Adv. Mater.,2002,14(12):869-877.
    [122] Lai J T, Filla D, Shea R. Functional polymers from novel carboxyl-terminatedtrithiocarbonates as highly efficient RAFT agents. Macromolecules,2002,35(18):6754-6756.
    [123] Wang Y Q, Xin H Q, Xu W L. Determination of the conversion of styrene withUV spectroscopy in microemulsion polymerization induced by ultrasound.Spectroscopy and Spectral Analysis,2007,27(4):743-746.
    [124] Xu J, Wang X, Zhang Y, et al. RAFT-mediated batch emulsion polymerizationof styrene using poly[N-(4-vinylbenzyl)-N,N-dibutylamine hydrochloride]trithiocarbonate as both surfactant and macro-RAFT agent. J. Polym. Sci. PartA: Polym. Chem.,2012,20(12):2484-2498.
    [125] Fuchigami K, Taguchi Y, Tanaka M. Synthesis of calcium carbonate vateritecrystals and their effect on stabilization of suspension polymerization of MMA.Adv. Powder Technol.,2009,20(1):74-79.
    [126] Saikia P J, Lee J M, Lee B H, et al. Infuence of a reversibleaddition–fragmentation chain transfer agent in the dispersion polymerization ofstyrene. J. Polym. Sci. Part A: Polym. Chem.,2007,45(3):348-360.
    [127] Biasutti J D, Davis T P, Lucien F P, et al. Reversible addition–fragmentationchain transfer polymerization of methyl methacrylate in suspension. J. Polym.Sci. Part A: Polym. Chem.,2005,43(10):2001-2012.
    [128] de Brouwer H, Schellekens M A J, Klumperman B, et al. Controlled radicalcopolymerization of styrene and maleic anhydride and the synthesis of novelpolyolefin-based block copolymers by reversible addition–fragmentationchain-transfer (RAFT) polymerization. J. Polym. Sci. Part A: Polym. Chem.,2000,38(19):3596-3603.
    [129] Loiseau J, Doerr N, Suau J M, et al. Synthesis and characterization ofpoly(acrylic acid) produced by RAFT polymerization. Application as a veryefficient dispersant of CaCO3, Kaolin, and TiO2. Macromolecules,2003,36(9):3066-3077.
    [130] Stenzel M H, Davis T P. Star polymer synthesis using trithiocarbonatefunctional β-cyclodextrin cores (reversible addition-fragmentationchain-transfer polymerization). J. Polym. Sci. Part A: Polym. Chem.,2002,40(24):4498-4512.
    [131] Goto A, Fukuda T. Kinetics of living radical polymerization. Prog. Polym. Sci.,2004,29(4):329-385.
    [132] Favier A, Charreyre M, Pichot C. A detailed kinetic study of the RAFTpolymerization of a bi-substituted acrylamide derivative: Infuence ofexperimental parameters. Polymer,2004,45(26):8661-8674.
    [133] Barner-Kowollik C, Coote M L, Davis T P, et al. The reversibleaddition-fragmentation chain transfer process and the strength and limitationsof modeling: comment on “the magnitude of the fragmentation rate coefficient”.J. Polym. Sci. Part A: Polym. Chem.2003,41(18):2828-2832.
    [134] Schilli C, Lanzendorfer M G, Muller A H E. Benzyl and cumyl dithiocarbamatesas chain transfer agents in the RAFT polymerization of N-isopropylacrylamide.In situ FT-NIR and MALDI-TOF MS investigation. Macromolecules,2002,35(18):6819-6827.
    [135] Moad G, Rizzardo E, Thang S H. Radical addition-fragmentation chemistry inpolymer synthesis. Polymer,2008,49(5):1079-1131.
    [136] Boyer C, Stenzel M H, Davis T P. Building nanostructures using RAFTpolymerization. J. Polym. Sci. Part A: Polym. Chem.,2011,49(3):551-595.
    [137] Barner-Kowollik C. Handbook of RAFT polymerization. Weinheim:Wiley-VCH,2008.
    [138] Ladaviere C, Dorr N, Claverie J P. Controlled radical polymerization of acrylicacid in protic media. Macromolecules,2001,34(16):5370-5372.
    [139] Albertin L, Stenzel M H, Barner-Kowollik C, et al. Well-defined diblockglycopolymers from RAFT polymerization in homogeneous aqueous medium.Macromolecules,2005,38(22):9075-9084.
    [140] Boyer C, Bulmus V, Liu J Q, et al. Well-defined protein polymer conjugates viain situ RAFT polymerization. J. Am. Chem. Soc.,2007,129(22):7145-7154.
    [141] Kollisch H S, Barner-Kowollik C, Ritter H. Amphiphilic block copolymersbased on cyclodextrin host-guest complexes via RAFT-polymerization inaqueous solution. Chem. Commun.,2009(9):1097-1099.
    [142] Monterio M J, Cunningham M F. Polymer nanoparticles via living radicalpolymerization in aqueous dispersions: Design and applications.Macromolecules,2012,45(12):4939-4957.
    [143] Charleux B, D’Agosto F, Delaittre, G. Preparation of hybrid latex particles andcore-shell particles through the use of controlled radical polymerizationtechniques in aqueous media. Adv. Polym. Sci.,2010,233:125-183.
    [144] Save M, Guillaneuf Y, Gilbert R G. Controlled radical polymerization inaqueous dispersed media. Aust. J. Chem.,2006,59(10):693-711.
    [145] Kubota K, Fujishige S, Ando I. Single-chain transition ofpoly(N-isopropylacrylamide) in water. J. Phys. Chem.,1990,94(12):5154-5158.
    [146] Wu C, Zhou S. Thermodynamically stable globule state of a singlepoly(N-isopropylacry1amide) chain in water. Macromolecules,1995,28(15):5388-5390.
    [147] An Z S, Shi Q H, Tang, W, et al. Facile RAFT precipitation polymerization forthe microwave-assisted synthesis of well-defined, double hydrophilic blockcopolymers and nanostructured hydrogels. J. Am. Chem. Soc.,2007,129(46):14493-14499.
    [148] Fuchise K, Kakuchi R, Lin S T, et al. Control of thermoresponsive property ofurea end-functionalized poly(N-isopropylacrylamide) based on the hydrogenbond-assisted self-assembly in water. J. Polym. Sci. Part A: Polym. Chem.,2009,47(22):6259-6268.
    [149] Baltes T, Garret-Flaudy F, Freitag R. Investigation of the LCST ofpolyacrylamides as a function of molecular parameters and the solventcomposition. J. Polym. Sci. Part A: Polym. Chem.,1999,37(15):2977-2989.
    [150] Costa R O R, Freitas R F S. Phase behavior of poly(N-isopropylacrylamide) inbinary aqueous solutions. Polymer,2002,43(22):5879-5885.
    [151] Chung J E, Yokoyama M, Aoyagi T, et al. Effect of molecular architecture ofhydrophobically modifed poly(N-isopropylacrylamide) on the formation ofthermoresponsive core-shell micellar drug carriers. J. Controlled Release,1998,53(1-3):119-130.
    [152] Zhou C, Hillmyer M A, Lodge T P. Micellization and micellar aggregation ofpoly(ethylene-alt-propylene)-b-poly(ethylene oxide)-b-poly(N-isopropylacrylamide) triblock terpolymers in water. Macromolecules,2011,44(6):1635-1641.
    [153] Qin S H, Geng Y, Discher D E, et al. Temperature-controlled assembly andrelease from polymer vesicles of poly(ethylene oxide)-block-poly(N-isopropylacrylamide). Adv. Mater.,2006,18(21):2905-2909.
    [154] Ganachaud F, Monteiro M J, Gilbrty R G, et al. Molecular weightcharacterization of poly(N-isopropylacrylamide) prepared by living free-radicalpolymerization. Macromolecules,2000,33(18):6738-6745.
    [155] Housni A, Narain R. Aqueous solution behavior of p(N-isopropyl acrylamide)in the presence of water-soluble macromolecular species. Eur. Polym. J.,2007,43(10):4344-4354.
    [156] Seifert D, Kipping M, Adler H K P, et al. A study of simple RAFT transferagents for the polymerization of (meth-)acrylates and acrylamides. Macromol.Symp.,2007,254:386-391.
    [157] Carter S, Rimmer S, Sturdy A, et al. Highly branched stimuli responsivepoly[(N-isopropylacrylamide)-co-(1,2-propandiol-3-methacrylate)]s withprotein binding functionality. Macromolecular Bioscience,2005,5(5):373-378.
    [158] Li M, De P, Gondi S R, et al. End group transformations of RAFT-generatedpolymers with bismaleimides: Functional telechelics and modular blockcopolymers. J. Polym. Sci. Part A: Polym. Chem.,2008,46(15):5093-5100.
    [159] Henry S M, Convertine A J, Benoit D S W, et al. End-functionalized polymersand junction-functionalized diblock copolymers via RAFT chain extension withmaleimido monomers. Bioconjugate Chem.,2009,20(6):1122-1128.
    [160] Kujawa P, Segui F, Shaban S, et al. Impact of end-group association andmain-chain hydration on the thermosensitive properties of hydrophobicallymodified telechelic poly(N-isopropylacrylamides) in water. Macromolecules,2006,39(1):341-348.
    [161] McKee J R, Ladmiral V, Niskanen J, et al. Synthesis of sterically-stabilizedpolystyrene latexes using well-defined thermoresponsivepoly(N-isopropylacrylamide) macromonomers. Macromolecules,2011,44(19):7692-7703.
    [162] Wei K C, Su L, Chen G S, et al. Does PNIPAM block really retard themicelle-to-vesicle transition of its copolymer. Polymer,2011,52(16):3647-3654.
    [163] Li G L, Xu L Q, Tang X Z, et al. Hairy hollow microspheres of fluorescent shelland temperature-responsive brushes via combined distillation-precipitationpolymerization and thiol-ene click chemistry. Macromolecules,2010,43(13):5797-5803.
    [164] Chung P W, Kumar R, Pruski M, et al. Temperature responsive solutionpartition of organic-inorganic hybrid poly(N-isopropylacrylamide)-coatedmesoporous silica nanospheres. Adv. Funct. Mater.,2008,18(9):1390-1398.
    [165] Wu D X, Song X H, Tang T, et al. Macromolecular brushes synthesized bygrafting from approach based on click chemistry and RAFT polymerization. J.Polym. Sci. Part. A: Polym. Chem.,2010,48(2):443-453.
    [166] Chang C W, Nguyen T H, Maynard H D. Thermoprecipitation of glutathiones-transferase by glutathione-poly(N-isopropylacrylamide) prepared by RAFTpolymerization. Macromol. Rapid Commun.,2010,31(19):1691-1695.
    [167] Bouchekif H, Narain R. Reversible addition fragmentation chain transferpolymerization of N-isopropylacrylamide: A comparison between aconventional and a fast initiator. J. Phys. Chem. B,2007,111(38):11120-11126.
    [168] Convertine A J, Ayres N, Scales C W, et al. Facile, controlled, room-temperatureRAFT polymerization of N-isopropylacrylamide. Biomacromolecules,2004,5(4):1177-1180.
    [169] Hales M, Barner-Kowollik C, Davis T P, et al. Shell-cross-linked vesiclessynthesized from block copolymers of poly(D,L-lactide) and poly(N-isopropylacrylamide) as thermoresponsive nanocontainers. Langmuir,2004,20(25):10809-10817.
    [170] Ray B, Isobe Y, Matsumoto K, et al. RAFT polymerization ofN-isopropylacrylamide in the absence and presence of Y(OTf)3: Simultaneouscontrol of molecular weight and tacticity. Macromolecules,2004,37(5):7102-7110.
    [171] Ray B, Isobe Y, Morioka K, Habaue S, et al. Synthesis of isotacticpoly(N-isopropylacrylamide) by RAFT polymerization in the presence of Lewisacid. Macromolecules,2003,36(3):543-545.
    [172] Yusa S I, Fukuda K, Yamamoto T, et al. Salt effect on the heat-inducedassociation behavior of gold nanoparticles coated with poly(N-isopropylacrylamide) prepared via reversible addition fragmentation chain transfer(RAFT) radical polymerization. Langmuir,2007,23(26):12842-12848.
    [173] Schilli C M, Zhang M F, Rizzardo E, et al. A new double-responsive blockcopolymer synthesized via RAFT polymerization: Poly(N-isopropylacrylamide)-block-poly(acrylic acid). Macromolecules,2004,37(21):7861-7866.
    [174] Boyer C, Liu J, Wong L, et al. Stability and utility of pyridyl disulfdefunctionality in RAFT and conventional radical polymerizations. J. Polym. Sci.Part A: Polym. Chem.,2008,46(21):7207-7224.
    [175]刘娜. PNIPAM-PVP梳状嵌段共聚物的结构与抗蛋白吸附性能的关系:[硕士学位论文],北京化工大学,2009.
    [176] Zetterlund P B, Kagawa Y, Okubo M. Controlled/living radical polymerizationin dispersed systems. Chem. Rev.,2008,108(9):3747-3794.
    [177] Zetterlund P B, Aldabbagh F, Okubo M. Controlled/living heterogeneous radicalpolymerization in supercritical carbon dioxide. J. Polym. Sci. Part A: Polym.Chem.,2009,47(15):3711-3728.
    [178] Liu G, Qiu Q, Shen W, et al. Aqueous dispersion polymerization of2-methoxyethyl acrylate for the synthesis of biocompatible nanoparticles usinga hydrophilic RAFT polymer and a redox initiator. Macromolecules,2011,44(8):5237-5245.
    [179] Grazon C, Rieger J, Sanson N, et al. Study of poly(N,N-diethylacrylamide)nanogel formation by aqueous dispersion polymerization ofN,N-diethylacrylamide in the presence of poly(ethyleneoxide)-b-poly(N,N-dimethylacrylamide) amphiphilic macromolecular RAFTagents. Soft Matter,2011,7(7):3482-3490.
    [180] Shen W, Chang Y, Liu G, et al. Biocompatible, antifouling, and thermosensitivecore-shell nanogels synthesized by RAFT aqueous dispersion polymerization.Macromolecules,2011,44(8):2524-2530.
    [181] Wang X X, Xu J X, Zhang Y Y, et al. Agent of poly(N-isopropylacrylamide)trithiocarbonate: From homogeneous to heterogeneous RAFT polymerization. J.Polym. Sci. Part. A: Polym. Chem.,2012,50(12):2452-2462.
    [182] Ji J, Yan L F, Xie D H. Surfactant-free synthesis of amphiphilic diblockcopolymer in aqueous phase by a self-stability process. J. Polym. Sci. Part. A:Polym. Chem.,2008,46(9):3098-3107.
    [183] Wang X G, Luo Y W, Li B G, et al. Ab initio batch emulsion RAFTpolymerization of styrene mediated by poly(acrylic acid-b-styrene)trithiocarbonate. Macromolecules,2009,42(17):6414-6421.
    [184] Rieger J, Stoffelbach F, Bui C, et al. Amphiphilic poly(ethylene oxide)macromolecular RAFT agent as a stabilizer and control agent in ab initio batchemulsion polymerization. Macromolecules,2008,41(12):4065-4068.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700