用户名: 密码: 验证码:
离子型聚合物的制备及在蛋白质分离中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
毛细管电泳(capillary electrophoresis, CE)是指荷电粒子或离子依靠直流电场驱动力作用,在毛细管中以不同速度定向运动的行为。由于其具有分离效率高、样品消耗量少、分析速度快、操作简便等特点被广泛的应用于各种分离分析领域,其中如应用于氨基酸、核酸、多肽、蛋白质等生物大分子的分离。我们通常使用的熔融硅毛细管是由具有良好的导热和紫外透过性的熔融硅制备。在缓冲溶液的作用下,未经修饰的熔融硅毛细管内壁上的Si-OH会发生解离,形成带有负电荷的内表面(Si-O-),当这类毛细管用于分离蛋白质类生物大分子时,会因为毛细管内壁和蛋白质间的静电或疏水等相互作用而产生十分严重的吸附现象。从而导致蛋白质的分离效率下降,迁移时间重现性差、峰拖尾、变形,甚至无法实现有效分离等问题。
     为解决或缓解这种现象,研究人员已进行了很多尝试,如采用极端pH值,两性离子添加剂,高离子强度等方法,但目前最常见有效的办法是通过共价键合或物理吸附两种途径在毛细管内壁上形成聚合物涂层。聚合物涂层可以起到掩蔽毛细管内壁上的Si-OH,抑制Si-OH的解离,从而阻抗蛋白质在内壁上吸附等作用。从涂层的稳定性方面来说,通过共价键合到毛细管内壁上的涂层要好于物理吸附涂层,但是共价键合涂层管制备过程繁琐且难控制,涂层再生性差。相比之下,物理吸附涂层管则制备简单易于控制,再生性强,因而近年来物理吸附涂层越来越受到研究人员的青睐。
     围绕物理吸附涂层的制备,取得的主要研究成果如下:
     1.利用硝酸铈铵(CAN)在硝酸溶液中引发的普通自由基聚合反应合成了不同接枝率的接枝共聚物羟乙基纤维素接枝聚甲基丙烯酸N,N-二甲氨基乙酯(HEC-g-PDMAEMA),然后使其通过物理吸附在毛细管内壁上形成HEC-g-PDMAEMA涂层。研究结果表明,相对于未经修饰的毛细管,HEC-g-PDMAEMA涂层管能有效地抑制电渗流,且涂层毛细管的电渗流不仅可以通过缓冲溶液的pH值来调节,还可以通过选择不同接枝率的接枝共聚物HEC-g-PDMAEMA来调节,这使得酸性蛋白质和碱性蛋白质可以在同一毛细管中实现分离。我们还详细研究了不同的接枝率和缓冲溶液pH值的改变对蛋白质分离结果的影响。最后,我们使用HEC-g-PDMAEMA涂层管对现实生活中的样品鸡蛋清蛋白和奶粉蛋白进行了定性定量分析。
     2.通过ATRP方法制备了三嵌段共聚物(聚甲基丙烯酸N,N-二甲氨基乙酯-b-聚氧乙烯-b-聚甲基丙烯酸N,N-二甲氨基乙酯,PDMAEMA-b-PEO-b-PDMAEMA),并用碘甲烷使三嵌段共聚物PDMAEMA链段上的叔胺完全季铵化。季铵化的三嵌段共聚物两端是带正电荷的PDMAEMA链段,中间链段为具有优异阻抗蛋白吸附性能的PEO。季铵化的三嵌段共聚物(QDED)与毛细管内壁通过静电和氢键相互作用结合在一起,形成物理吸附涂层。比较不同pH值的缓冲溶液和不同PDMAEMA链段长度的QDED涂层管的电渗流变化,选择合适的分离条件进行蛋白质的分离。研究结果表明:相同pH值下PDMAEMA链段越长,电渗流(绝对值)就越大;不同PDMAEMA嵌段长度的三嵌段共聚物QDED在pH值3.0到7.0范围内可实现蛋白质混合物的快速高效分离。和未经修饰的毛细管相比较,QDED涂层管能够一次性分离蛋白质的混合物(酸性,中性和碱性)。并使用QDED涂层管对鸡蛋清中的相应蛋白做了定量分析。
     3.通过可逆加成断裂链转移(RAFT)聚合合成了单体比例不同的无规共聚物poly(DMA-co-SBMA),这种共聚物是由抗污性能优异的聚(甲基丙烯酸甲酯磺基甜菜碱)(PSBMA)和具有自涂覆性能的聚合物Ⅳ,N-二甲基丙烯酰胺(PDMA)组成的。用接触角仪和X射线光电子能谱仪分别研究了聚合物在玻璃片上形成涂层的亲水性和组成。研究了不同离子强度和不同pH值对蛋白质分离效率的影响,并比较了无规共聚物涂层管、未经修饰的毛细管以及PSBMA涂层管蛋白质分离效率的差异。结果表明,对于无规共聚物涂层玻璃片,随着SBMA含量的增加,涂层的亲水性和涂覆能力都在逐渐增加。在80mM的缓冲溶液中,poly(DMA-co-SBMA)涂层管拥有最高的分离效率,最高可达到1509000N/m;在pH值3.0~5.0范围内,10min即可实现四种碱性蛋白质的分离;蛋白质迁移时间的RSD在0.23%~2.92%之间。
Capillary electrophoresis is refer to the charged particle or ion depends on the high voltage electric field drive, directional movement behavior at different speeds in the capillary. Due to its high separation efficiency, less sample consumption, rapid separation time, easy operation and other characteristics, it is applied in various kinds of separation and analysis fields, such as applied to bio-macromolecules separation such as amino acid, nucleic acid, peptide and protein, etc. Fused-silica is a kind of material which is used to manufacture the capillary owing to its good thermal conductivity and ultraviolet transparency. However, under the effect of buffer solution, the capillary inner wall would be negatively charged due to the dissociation of silanol groups. When the capillary was used to separate protein, the interaction between capillary inner wall and proteins would result in protein adsorption. It would lead to the decrease of the separation efficiency and reproducibility of migration time, peak trailing, deformation, and even unable to achieve effective separation and so on.
     Numerous approaches have been applied to minimize this adsorption, such as extreme pH, zwitterionic additives, high ionic strength, but by far the most common and effective way is using covalent bonding or physical adsorption to form polymer coating on the capillary wall. Silanol groups on the capillary inner wall can be masked by the polymer coating, the electroosmotic flow is suppressed, and the interaction of protein-wall would be decreased, etc. From the aspects of stability of the coating, coating which covalently bonded onto the inner wall of capillary is more stability than the physically adsorbed coating, however, process of the preparation of covalently linked coating is cumbersome and difficult to control, and coating reproducibility is poor. Compared to the covalently bonded coating, process of the preparation of physically adsorbed coating is simple, easy to control, strong regeneration, and therefore in recent years the physically adsorbed coating is more and more get the favour of scientists.
     Around the preparation of physically adsorbed polymer coatings, the main results are as follows:
     1. The graft copolymers of hydroxyethylcellulose-graft-poly(2-(dimethylamino)ethyl methacrylate) (HEC-g-PDMAEMA) with different graft ratio were synthesized by using ceric ammonium nitrate initiator in aqueous nitric acid solution. Electroosmotic flow measurement results showed that the synthesized HEC-g-PDMAEMA graft copolymer coated capillary could suppress EOF effectively compared to the bare fused-silica capillary, and efficient separations of basic proteins were also achieved. The electrical charge of the coated capillary wall could be modulated by varying not only the pH of the running buffer, but also the grafting ratio of poly(2-(dimethylamino)ethyl methacrylate) grafts, which makes it is possible to analyze the basic and acidic proteins in the same capillary. The effects of poly(2-(dimethylamino)ethyl methacrylate) grafting ratio in HEC-g-PDMAEMA and buffer pH on the separation of basic proteins for capillary electrophoresis were investigated in detail. Furthermore, egg white proteins and milk powder samples were separated by the HEC-g-PDMAEMA coated capillary, respectively.
     2. A novel noncovalent adsorbed coating for capillary electrophoresis has been prepared and explored. This coating was based on quaternized poly(2-(dimethylamino)ethyl methacrylate)-block-poly(ethylene oxide)-block-poly(2-(dimethylamino)ethyl methacrylate)(QDED) triblock copolymer which was synthesized by atomic transfer radical polymerization(ATRP) in our laboratory. The polycationic polymer and the negatively charged fused-silica surface attracted each other through electrostatic interactions and hydrogen bonds. It was demonstrated that the coated capillaries provided an electroosmotic flow with reverse direction, and the magnitude of the electroosmotic flow can be modulated by varying the molecular mass of poly(2-(dimethylamino)ethyl methacrylate)(PDMAEMA) block and pH value of the buffer, respectively. The effects of the molecular mass of PDMAEMA block in QDED triblock copolymer and pH value of the buffer on the separation of basic proteins were investigated in detail. The triblock copolymer coatings showed higher separation efficiency, better migration time repeatability and would apply to wider range of pH than bare fused-silica capillary when used in separating proteins. Proteins from egg white were also separated respectively through this QDED triblock copolymer coated capillary. These results demonstrated that the QDED triblock copolymer coatings are suitable for analyzing biosample.
     3. Firstly, the poly(DMA-co-SBMA)s with different feed ratio (SBMA/DMA) were synthesized via the reversible addition fragmentation chain transfer (RAFT) polymerization. And then, X-ray photoelectron spectroscopy (XPS) and water contact angel (CA) were used to investigate the composition and hydrophilicity of poly(DMA-co-SBMA) coating formed on the glass slide surfaces. CA measurements revealed that the poly(DMA-co-SBMA) coating became more hydrophilic with the increment of feed ratio (SBMA/DMA), and at the same time the XPS results showed that the coating ability was also increased with the increment of feed ratio. Followed, the copolymer was applied to coat the fused-silica capillary inner wall and the coated capillary was used to separate the mixture of proteins (lysozyme, cytochrome c, ribonuclease A and α-chymotrypsinogen A) in a pH range from3.0to5.0. Under the optimum conditions, an excellent separation of basic proteins with peak efficiencies ranging from551000to1509000N/m had been accomplished within10min. Furthermore, the compare of separation efficiency among the bare, PSBMA and poly(DMA-co-SBMA) coated capillary was also investigated.
引文
[1]Jorgenson JW, Lukacs KD.1981. High-Resolution Separations Based on Electrophoresis and Electroosmosis. J Chromatogr[J].218:209-216.
    [2]Lauer HH, Mcmanigill D.1986. Capillary Zone Electrophoresis of Proteins in Untreated Fused-Silica Tubing. Anal Chem[J].58:166-170.
    [3]陈义.2006.毛细管电泳技术及应用(第二版),北京,化学工业出版社.
    [4]McCormick RM.1988. Capillary Zone Electrophoretic Separation of Peptides and Proteins Using Low pH Buffers in Modified Silica Capillaries. Anal Chem[J].60:2322-2328.
    [5]Bushey MM, Jorgenson JW.1989. Capillary Electrophoresis of Proteins in Buffers Containing High-Concentrations of Zwitterionic Salts. J Chromatogr[J].480:301-310.
    [6]Green JS, Jorgenson JW.1989. Minimizing Adsorption of Proteins on Fused-Silica in Capillary Zone Electrophoresis by the Addition of Alkali-Metal Salts to the Buffers. J Chromatogr[J].478:63-70.
    [7]Lucy CA, MacDonald AM, Gulcev MD.2008. Non-Covalent Capillary Coatings for Protein Separations in Capillary Electrophoresis. J Chromatogr A[J].1184:81-105.
    [8]Stutz H.2009. Protein Attachment onto Silica Surfaces-a Survey of Molecular Fundamentals, Resulting Effects and Novel Preventive Strategies in CE. Electrophoresis[J].30:2032-2061.
    [9]Dolnik V, Gurske WA.2011. Size Separation of Proteins by Capillary Zone Electrophoresis with Cationic Hitchhiking. Electrophoresis[J].32:2884-2892.
    [10]Dolnik V.2008. Capillary Electrophoresis of Proteins 2005-2007. Electrophoresis[J].29:143-156.
    [11]Dolnik V.2006. Capillary Electrophoresis of Proteins 2003-2005. Electrophoresis[J].27:126-141.
    [12]Dolnik V, Liu SR.2005. Applications of Capillary Electrophoresis on Microchip. Journal of Separation Science[J].28:1994-2009.
    [13]Dolnik V.2004. Wall Coating for Capillary Electrophoresis on Microchips. Electrophoresis[J].25:3589-3601.
    [14]Hutterer K, Dolnik V.2003. Capillary Electrophoresis of Proteins 2001-2003. Electrophoresis[J].24:3998-4012.
    [15]Dolnik V, Hutterer KM.2001. Capillary Electrophoresis of Proteins 1999-2001. Electrophoresis[J].22:4163-4178.
    [16]Dolnik V, Gurske WA, Padua A.2001. Galactomannans as a Sieving Matrix in Capillary Electrophoresis. Electrophoresis[J].22:707-719.
    [17]Horvath J, Dolnik V.2001. Polymer Wall Coatings for Capillary Electrophoresis. Electrophoresis[J].22:644-655.
    [18]Dolnik V, Gurske WA, Padua A.2001. Sieving Matrices in Capillary Electrophoresis: Inflection Slope and Double Reciprocal Plot. Electrophoresis[J].22:692-698.
    [19]Dolnik V, Liu SR, Jovanovich S.2000. Capillary Electrophoresis on Microchip. Electrophoresis[J].21:41-54.
    [20]Kostal V, Katzenmeyer J, Arriaga EA.2008. Capillary Electrophoresis in Bioanalysis. Anal Chem[J].80:4533-4550.
    [21]Geiger M, Hogerton AL, Bowser MT.2012. Capillary Electrophoresis. Anal Chem[J].84:577-596.
    [22]Frost NW, Jing M, Bowser MT.2010. Capillary Electrophoresis. Anal Chem[J].82:4682-4698.
    [23]傅小芸,吕建德.1997.毛细管电泳.浙江大学出版社.
    [24]陈义.2000.毛细管电泳技术及应用.化学工业出版社.
    [25]Http://En.Wikipedia.OrgA/Wiki/File:Capillarywall.gif.
    [26]Feng A, McCoy BJ, Munir ZA, et al.1996. Water Adsorption and Desorption Kinetics on Silica Insulation. Journal of Colloid and Interface Science[J].180:276-284.
    [27]Atkin R, Craig VSJ, Wanless EJ, et al.2003. Mechanism of Cationic Surfactant Adsorption at the Solid-Aqueous Interface. Advances in Colloid and Interface Science[J].103:219-304.
    [28]Parida SK, Dash S, Patel S, et al.2006. Adsorption of Organic Molecules on Silica Surface. Advances in Colloid and Interface Science[J].121:77-110.
    [29]Watzig H, Kaupp S, Graf M.2003. Inner Surface Properties of Capillaries for Electrophoresis. Trac-Trend Anal Chem[J].22:588-604.
    [30]Kaupp S, Bubert H, Baur L, et al.2000. Unexpected Surface Chemistry in Capillaries for Electrophoresis. J Chromatogr A[J].894:73-77.
    [31]Leroy P, Revil A, Kemna A, et al.2008. Complex Conductivity of Water-Saturated Packs of Glass Beads. Journal of Colloid and Interface Science[J].321:103-117.
    [32]Gray JJ.2004. The Interaction of Proteins with Solid Surfaces. Curr Opin Struc Biol[J].14:110-115.
    [33]Boehm HP.1966. Functional Groups on the Surfaces of Solids. Angewandte Chemie International Edition in English[J].5:533-544.
    [34]Schwer C, Kenndler E.1991. Electrophoresis in Fused-Silica Capillaries-the Influence of Organic-Solvents on the Electroosmotic Velocity and the Zeta-Potential. Anal Chem[J].63:1801-1807.
    [35]Parks GA.1965. Isoelectric Points of Solid Oxides Solid Hydroxides and Aqueous Hydroxo Complex Systems. Chemical Reviews[J].65:177-198.
    [36]Masselter SM, Zemann AJ.1995. Influence of Organic-Solvents in Coelectroosmotic Capillary Electrophoresis of Phenols. Anal Chem[J].67:1047-1053.
    [37]Hair ML, Hert1 W.1970. Acidity of Surface Hydroxyl Groups. Journal of Physical Chemistry[J].74:91-94.
    [38]Huang TL, Tsai P, Wu CT, et al.1993. Mechanistic Studies of Electroosmotic Control at the Capillary Solution Interface. Anal Chem[J].65:2887-2893.
    [39]Berli CLA, Piaggio MV, Deiber JA.2003. Modeling the Zeta Potential of Silica Capillaries in Relation to the Background Electrolyte Composition. Electrophoresis[J].24:1587-1595.
    [40]Chaiyasut C, Takatsu Y, Kitagawa S, et al.2001. Estimation of the Dissociation Constants for Functional Groups on Modified and Unmodified Silica Gel Supports from the Relationship between Electroosmotic Flow Velocity and pH. Electrophoresis[J].22:1267-1272.
    [41]Turov VV, Barvinchenko VN.1997. Structurally Ordered Surface Layers of Water at the SiO2/ice Interface and Influence of Adsorbed Molecules of Protein Hydrolysate on Them. Colloids and Surfaces B-Biointerfaces[J].8:125-132.
    [42]Docoslis A, Rusinski LA, Giese RF, et al.2001. Kinetics and Interaction Constants of Protein Adsorption onto Mineral Microparticles-Measurement of the Constants at the Onset of Hysteresis. Colloids and Surfaces B-Biointerfaces[J].22:267-283.
    [43]Nakanishi K, Sakiyama T, Imamura K.2001. On the Adsorption of Proteins on Solid Surfaces, a Common but Very Complicated Phenomenon. Journal of Bioscience and Bioengineering[J].91:233-244.
    [44]Mutschler T, Kieser B, Frank R, et al.2002. Characterization of Thin Polymer and Biopolymer Layers by Ellipsometry and Evanescent Field Technology. Analytical and Bioanalytical Chemistry[J].374:658-664.
    [45]Wang X, Wang Y, Xu H, et al.2008. Dynamic Adsorption of Monoclonal Antibody Layers on Hydrophilic Silica Surface:A Combined Study by Spectroscopic Ellipsometry and AFM. Journal of Colloid and Interface Science[J].323:18-25.
    [46]Daly SM, Przybycien TM, Tilton RD.2003. Coverage-Dependent Orientation of Lysozyme Adsorbed on Silica. Langmuir[J].19:3848-3857.
    [47]Jackler G, Steitz R, Czeslik C.2002. Effect of Temperature on the Adsorption of Lysozyme at the Silica/Water Interface Studied by Optical and Neutron Reflectometry. Langmuir[J].18:6565-6570.
    [48]Welzel PB.2002. Investigation of Adsorption-Induced Structural Changes of Proteins at Solid/Liquid Interfaces by Differential Scanning Calorimetry. Thermochimica Acta[J].382:175-188.
    [49]Kamyshny A, Lagerge S, Partyka S, et al.2001. Adsorption of Native and Hydrophobized Human IgG onto Silica:Isotherms, Calorimetry, and Biological Activity. Langmuir[J].17:8242-8248.
    [50]Lundqvist M, Andresen C, Christensson S, et al.2005. Proteolytic Cleavage Reveals Interaction Patterns between Silica Nanoparticles and Two Variants of Human Carbonic Anhydrase. Langmuir[J].21:11903-11906.
    [51]Kurrat R, Prenosil JE, Ramsden JJ.1997. Kinetics of Human and Bovine Serum Albumin Adsorption at Silica-Titania Surfaces. Journal of Colloid and Interface Science[J].185:1-8.
    [52]van Oss CJ, Docoslis A, Giese RF.2001. Free Energies of Protein Adsorption onto Mineral Particles-from the Initial Encounter to the Onset of Hysteresis. Colloids and Surfaces B-Biointerfaces[J].22:285-300.
    [53]Santos JH, Matsuda N, Qi ZM, et al.2003. Experimental Evidence of the Reversibility of the First Stage of Protein Adsorption at a Hydrophobic Quartz Surface near the Isoelectric Point. Surface and Interface Analysis[J].35:432-436.
    [54]Wahlgren M, Elofsson U.1997. Simple Models for Adsorption Kinetics and Their Correlation to the Adsorption of Beta-Lactoglobulin A and B. Journal of Colloid and Interface Science[J].188:121-129.
    [55]Fang F, Szleifer I.2001. Kinetics and Thermodynamics of Protein Adsorption:A Generalized Molecular Theoretical Approach. Biophysical Journal[J].80:2568-2589.
    [56]Malmsten M.1998. Formation of Adsorbed Protein Layers. Journal of Colloid and Interface Science[J].207:186-199.
    [57]Barnthip N, Noh H, Leibner E, et al.2008. Volumetric Interpretation of Protein Adsorption: Kinetic Consequences of a Slowly-Concentrating Interphase. Biomaterials[J].29:3062-3074.
    [58]Giacomelli CE, Norde W.2001. The Adsorption-Desorption Cycle. Reversibility of the BSA-Silica System. Journal of Colloid and Interface Science[J].233:234-240.
    [59]Cordova E, Gao JM, Whitesides GM.1997. Noncovalent Polycationic Coatings for Capillaries in Capillary Electrophoresis of Proteins. Anal Chem[J].69:1370-1379.
    [60]Verzola B, Gelfi C, Righetti PG.2000. Protein Adsorption to the Bare Silica Wall in Capillary Electrophoresis Quantitative Study on the Chemical Composition of the Background Electrolyte for Minimising the Phenomenon. J Chromatogr A[J].868:85-99.
    [61]Shimura K, Zhi W, Matsumoto H, et al.2000. Accuracy in the Determination of Isoelectric Points of Some Proteins and a Peptide by Capillary Isoelectric Focusing:Utility of Synthetic Peptides as Isoelectric Point Markers. Anal Chem[J].72:4747-4757.
    [62]Hamrnikova I, Miksik I, Deyl Z, et al.1999. Binding of Proline-and Hydroxyproline-Containing Peptides and Proteins to the Capillary Wall. J Chromatogr A[J].838:167-177.
    [63]Towns JK, Regnier FE.1992. Impact of Polycation Adsorption on Efficiency and Electroosmotically Driven Transport in Capillary Electrophoresis. Analytical Chemistry[J].64:2473-2478.
    [64]Graf M, Watzig H.2004. Capillary Isoelectric Focusing-Reproducibility and Protein Adsorption. Electrophoresis[J].25:2959-2964.
    [65]Ghosal S.2002. Effect of Analyte Adsorption on the Electroosmotic Flow in Microfluidic Channels. Anal Chem[J].74:771-775.
    [66]Ghosal S.2004. Fluid Mechanics of Electroosmotic Flow and Its Effect on Band Broadening in Capillary Electrophoresis. Electrophoresis[J].25:214-228.
    [67]Jiang TF, Gu YL, Liang B, et al.2003. Dynamically Coating the Capillary with 1-Alkyl-3-Methylimidazolium-Based Ionic Liquids for Separation of Basic Proteins by Capillary Electrophoresis. Analytica Chimica Acta[J].479:249-254.
    [68]Ermakov SV, Zhukov MY, Capelli L, et al.1995. Wall Adsorption in Capillary Electrophoresis-Experimental Study and Computer-Simulation. J Chromatogr A[J].699:297-313.
    [69]Stutz H, Bordin G, Rodriguez AR.2003. Separation of Selected Metal-Binding Proteins with Capillary Zone Electrophoresis. Analytica ChimicaActa[J].477:l-19.
    [70]Graf M, Garcia RG, Watzig H.2005. Protein Adsorption in Fused-Silica and Polyacrylamide-Coated Capillaries. Electrophoresis[J].26:2409-2417.
    [71]Bonvent JJ, Barberi R, Bartolino R, et al.1996. Adsorption of Proteins to Fused-Silica Capillaries as Probed by Atomic Force Microscopy. J Chromatogr A[J].756:233-243.
    [72]Stutz H, Wallner M, Malissa H, et al.2005. Detection of Coexisting Protein Conformations in Capillary Zone Electrophoresis Subsequent to Transient Contact with Sodium Dodecyl Sulfate Solutions. Electrophoresis[J].26:1089-1105.
    [73]Santos SF, Zanette D, Fischer H, et al.2003. A Systematic Study of Bovine Serum Albumin (BSA) and Sodium Dodecyl Sulfate (SDS) Interactions by Surface Tension and Small Angle X-Ray Scattering. Journal of Colloid and Interface Science[J].262:400-408.
    [74]Kaupp S, Steffen R, Watzig H.1996. Characterisation of Inner Surface and Adsorption Phenomena in Fused-Silica Capillary Electrophoresis Capillaries. J Chromatogr A[J].744:93-101.
    [75]Lambert WJ, Middleton DL.1990. pH Hysteresis Effect with Silica Capillaries in Capillary Zone Electrophoresis. Anal Chem[J].62:1585-1587.
    [76]Suratman A, Waetzig H.2007. Reproducible Protein Analysis by CE Using Linear Polyacrylamide-Coated Capillaries and Hydrochloric Acid Rinsing. Electrophoresis[J].28:2324-2328.
    [77]Mohabbati S, Hjerten S, Westerlund D.2004. Influence of Ignored and Well-Known Zone Distortions on the Separation Performance of Proteins in Capillary Free Zone Electrophoresis with Special Reference to Analysis in Polyacrylamide-Coated Fused Silica Capillaries in Various Buffers-Ⅱ. Experimental Studies at Acidic pH with on-Line Enrichment. J Chromatogr A[J].1053:201-216.
    [78]Tran NT, Taverna M, Miccoli L, et al.2005. Poly(ethylene oxide) Facilitates the Characterization of an Affinity between Strongly Basic Proteins with DNA by Affinity Capillary Electrophoresis. Electrophoresis[J].26:3105-3112.
    [79]Rabiller-Baudry M, Chaufer B.2003. Small Molecular Ion Adsorption on Proteins and DNAs Revealed by Separation Techniques. Journal of Chromatography B-Analytical Technologies In the Biomedical and Life Sciences[J].797:331-345.
    [80]Mohabbati S, Westerlund D.2006. Improved Properties of the Non-Covalent Coating with N,N-didodecyl-N, N-dimethylammonium Bromide for the Separation of Basic Proteins by Capillary Electrophoresis with Acidic Buffers in 25μm Capillaries. J Chromatogr A[J].1121:32-39.
    [81]Olivieri E, Sebastiano R, Citterio A, et al.2000. Quantitation of Protein Binding to the Capillary Wall in Acidic, Isoelectric Buffers and Means for Minimizing the Phenomenon. J Chromatogr A[J].894:273-280.
    [82]Righetti PG, Olivieri E, Viotti A.1998. Identification of Maize Lines via Capillary Electrophoresis of Zeins in Isoelectric, Acidic Buffers. Electrophoresis[J].19:1738-1741.
    [83]Bean SR, Lookhart GL.1998. Faster Capillary Electrophoresis Separation of Wheat Proteins through Modifications to Buffer Composition and Sample Handling. Electrophoresis[J].19:3190-3198.
    [84]Bean SR, Lookhart GL.2000. Ultrafast Capillary Electrophoretic Analysis of Cereal Storage Proteins and Its Applications to Protein Characterization and Cultivar Differentiation. Journal of Agricultural and Food Chemistry[J].48:344-353.
    [85]Bossi A, Righetti PG.1997. Generation of Peptide Maps by Capillary Zone Electrophoresis in Isoelectric Iminodiacetic Acid. Electrophoresis[J].18:2012-2018.
    [86]Righetti PG, Saccomani A, Stoyanov AV, et al.1998. Human Globin Chain Separation by Capillary Electrophoresis in Acidic Isoelectric Buffers. Electrophoresis[J].19:1733-1737.
    [87]Righetti PG, Gelfi C, Bossi A, et al.2000. Capillary Electrophoresis of Peptides and Proteins in Isoelectric Buffers:An Update. Electrophoresis[J].21:4046-4053.
    [88]Verzola B, Chiti F, Manao G, et al.2000. Monitoring Equilibria and Kinetics of Protein Folding/Unfolding Reactions by Capillary Zone Electrophoresis. Analytical Biochemistry[J].282:239-244.
    [89]Bao Y, Lantz AW, Crank JA, et al.2008. The Use of Cationic Surfactants and Ionic Liquids in the Detection of Microbial Contamination by Capillary Electrophoresis. Electrophoresis[J].29:2587-2592.
    [90]Lopez-Pastor M, Simonet BM, Lendl B, et al.2008. Ionic Liquids and CE Combination. Electrophoresis[J].29:94-107.
    [91]Berthod A, Ruiz-Angel M, Carda-Broch S.2008. Ionic Liquids in Separation Techniques. J Chromatogr A[J].1184:6-18.
    [92]Wu X, Wei W, Su Q, et al.2008. Simultaneous Separation of Basic and Acidic Proteins Using 1-Butyl-3-Methylimidazolium-Based Ion Liquid as Dynamic Coating and Background Electrolyte in Capillary Electrophoresis. Electrophoresis[J].29:2356-2362.
    [93]Xu Y, Li J, Wang E.2008. Sensitive, Label-Free Protein Assay Using 1-Ethyl-3-Methylimidazolium Tetraflucroborate-Supported Microchip Electrophoresis with Laser-Induced Fluonescence Detection. Electrophoresis[J].29:1852-1858.
    [94]Cifuentes A, Defrutos M, Diezmasa JC.1993. Analysis of Whey Proteins by Capillary Electrophoresis Using Buffer-Containing Polymeric Additives. Journal of Dairy Science[J].76:1870-1875.
    [95]Tseng WL, Lin YW, Chang HT.2002. Improved Separation of Microheterogeneities and Isoforms of Proteins by Capillary Electrophoresis Using Segmental Filling with SDS and PEO in the Background Electrolyte. Anal Chem[J].74:4828-4834.
    [96]Gilges M, Kleemiss MH, Schomburg G.1994. Capillary Zone Electrophoresis Separations of Basic and Acidic Proteins Using Poly(vinyl alcohol) Coatings in Fused-Silica Capillaries. Anal Chem[J].66:2038-2046.
    [97]Cifuentes A, Rodriguez MA, GarciaMontelongo FJ.1996. Separation of Basic Proteins in Free Solution Capillary Electrophoresis:Effect of Additive, Temperature and Voltage. J Chromatogr A[J].742:257-266.
    [98]Blanco D, Herrero I, Laviana L, et al.2002. Capillary Zone Electrophoretic Separation of Proteins Using Coated Capillaries. Journal of Liquid Chromatography & Related Technologies[J].25:1171-1185.
    [99]Cifuentes A, Poppe H, Kraak JC, et al.1996. Selectivity Change in the Separation of Proteins and Peptides by Capillary Electrophoresis Using High-Molecular-Mass Polyethyleneimine. Journal of Chromatography B-Biomedical Applications[J].681:21-27.
    [100]Garza S, Chang S, Moini M.2007. Simplifying Capillary Electrophoresis-Mass Spectrometry Operation:Eliminating Capillary Derivatization by Using Self-Coating Background Electrolytes. J Chromatogr A[J].1159:14-21.
    [101]Yu CJ, Tseng WL.2006. Online Concentration and Separation of Basic Proteins Using a Cationic Polyelectrolyte in the Presence of Reversed Electroosmotic Flow. Electrophoresis[J].27:3569-3577.
    [102]Lin CY, Yu CJ, Chen YM, et al.2007. Simultaneous Separation of Anionic and Cationic Proteins by Capillary Electrophoresis Using High Concentration of Poly (diallyldimethylammonium chloride) as an Additive. J Chromatogr A [J].1165:219-225.
    [103]Yao YJ, Li SFY.1994. Capillary Zone Electrophoresis of Basic-Proteins with Chitosan as a Capillary Modifier. J Chromatogr A[J].663:97-104.
    [104]Sakai-Kato K, Kato M, Nakajima T, et al.2006. Cationic Starch Derivatives as Dynamic Coating Additives for Protein Analysis in Capillary Electrophoresis. J Chromatogr A [J].11]1:127-132.
    [105]Doherty EAS, Meagher RJ, Albarghouthi MN, et al.2003. MicroChannel Wall Coatings for Protein Separations by Capillary and Chip Electrophoresis. Electrophoresis[J].24:34-54.
    [106]Iki N, Yeung ES.1996. Non-Bonded Poly(ethylene oxide) Polymer-Coated Column for Protein Separation by Capillary Electrophoresis. J Chromatogr A[J].731:273-282.
    [107]Verzola B, Gelfi C, Righetti PG.2000. Quantitative Studies on the Adsorption of Proteins to the Bare Silica Wall in Capillary Electrophoresis II. Effects of Adsorbed, Neutral Polymers on Quenching the Interaction. J Chromatogr A[J].874:293-303.
    [108]Leckband D, Sheth S, Halperin A.1999. Grafted Poly(ethylene oxide) Brushes as Nonfouling Surface Coatings. Journal of Biomaterials Science-Polymer Edition[J].l 0:1125-1147.
    [109]Ostuni E, Chapman RG, Holmlin RE, et al.2001. A Survey of Structure-Property Relationships of Surfaces That Resist the Adsorption of Protein. Langmuir[J].17:5605-5620.
    [110]Zhou D, Tan L, Xiang LN, et al.2011. Brush-Like Copolymer as a Physically Adsorbed Coating for Protein Separation by Capillary Electrophoresis. Journal of Separation Science[J].34:1738-1745.
    [111]Xu J, Yang LY, Luo ZF, et al.2010. Synthesis of Poly(N, N-dimethylacrylamide)-block-Poly(ethylene oxide)-block-Poly(N, N-dimethylacrylamide) and Its Application for Separation of Proteins by Capillary Zone Electrophoresis. Electrophoresis[J].31:1713-1720.
    [112]Ng CL, Lee HK, Li SFY.1994. Prevention of Protein Adsorption on Surfaces by Polyethylene Oxide-Polypropylene Oxide-Polyethylene Oxide Triblock Copolymers in Capillary Electrophoresis. J Chromatogr A[J].659:427-434.
    [113]Albarghouthi MN, Stein TM, Barron AE.2003. Poly-N-Hydroxyethylacrylamide as a Novel, Adsorbed Coating for Protein Separation by Capillary Electrophoresis. Electrophoresis[J].24:1166-1175.
    [114]Cretich M, Stastna M, Chrambach A, et al.2002. Decreased Protein Peak Asymmetry and Width Due to Static Capillary Coating with Hydrophilic Derivatives of Polydimethylacrylamide. Electrophoresis[J].23:2274-2278.
    [115]Shou CQ, Zhou CL, Zhao CB, et al.2004. Preparation and Evaluation of Non-Bonded Hyperbranched Polymer-Coated Columns for Capillary Electrophoresis. Talanta[J].63:887-891.
    [116]Towns JK, Regnier FE.1990. Polyethyleneimine-Bonded Phases in the Separation of Proteins by Capillary Electrophoresis. J Chromatogr[J].516:69-78.
    [117]Erim FB, Cifuentes A, Poppe H, et al.1995. Performance of a Physically Adsorbed High-Molecular-Mass Polyethyleneimine Layer as Coating for the Separation of Basic-Proteins and Peptides by Capillary Electrophoresis. J Chromatogr A[J].708:356-361.
    [118]Spanila M, Pazourek J, Havel J.2006. Electroosmotic Flow Changes Due to Interactions of Background Electrolyte Counter-Ions with Polyethyleneimine Coating in Capillary Zone Electrophoresis of Proteins. Journal of Separation Science[J].29:2234-2240.
    [119]Chiu RW, Jimenez JC, Monnig CA.1995. High-Molecular-Weight Polyarginine as a Capillary Coating for Separation of Cationic Proteins by Capillary Electrophoresis. Analytica Chimica Acta[J].307:193-201.
    [120]Li MX, Liu L, Wu JT, et al.1997. Use of a Polybrene Capillary Coating in Capillary Electrophoresis for Rapid Analysis of Hemoglobin Variants with on-Line Detection Via an Ion Trap Storage Reflectron Time-of-Flight Mass Spectrometer. Anal Chem[J].69:2451-2456.
    [121]Liu T, Li JD, Zeng R, et al.2001. Capillary Electrophoresis-Electrospray Mass Spectrometry for the Characterization of High-Mannose-Type N-Glycosylation and Differential Oxidation in Glycoproteins by Charge Reversal and Protease/Glycosidase Digestion. Anal Chem[J].73:5875-5885.
    [122]Zhu K, Kim J, Yoo C, et al.2003. High Sequence Coverage of Proteins Isolated from Liquid Separations of Breast Cancer Cells Using Capillary Electrophoresis-Time-of-Flight Ms and Maldi-Tof Ms Mapping. Anal Chem[J].75:6209-6217.
    [123]Sanz-Nebot V, Benavente F, Vallverdu A, et al.2003. Separation of Recombinant Human Erythropoietin Glycoforms by Capillary Electrophoresis Using Volatile Electrolytes. Assessment of Mass Spectrometry for the Characterization of Erythropoietin Glycoforms. Anal Chem[J].75:5220-5229.
    [124]Dong MQ, Oda RP, Strausbauch MA, et al.1997. Hydrophobic Peptide Mapping of Clinically Relevant Heptahelical Membrane Proteins by Capillary Electrophoresis. Electrophoresis[J].18:1767-1774.
    [125]Yao YJ, Khoo KS, Chung MCM, et al.1994. Determination of Isoelectric Points of Acidic and Basic-Proteins by Capillary Electrophoresis. J Chromatogr A[J].680:431-435.
    [126]Graul TW, Schlenoff JB.1999. Capillaries Modified by Polyelectrolyte Multilayers for Electrophoretic Separations. Anal Chem[J].71:4007-4013.
    [127]Stathakis C, Arriaga EA, Lewis DF, et al.1998. Cationic and Anionic Polymeric Additives for Wall Deactivation and Selectivity Control in the Capillary Electrophoretic Separation of Proteins in Food Samples. J Chromatogr A[J].817:227-232.
    [128]Liu QC, Lin FM, Hartwick RA.1997. Poly(diallyldimethylammonium chloride) as a Cationic Coating for Capillary Electrophoresis. Journal of Chromatographic Science[J].35:126-130.
    [129]Hardenborg E, Zuberovic A, Ullsten S, et al.2003. Novel Polyamine Coating Providing Non-Covalent Deactivation and Reversed Electroosmotic Flow of Fused-Silica Capillaries for Capillary Electrophoresis. J Chromatogr A[J].1003:217-221.
    [130]Ullsten S, Zuberovic A, Wetterhall M, et al.2004. A Polyamine Coating for Enhanced Capillary Electrophoresis-Electrospray Ionization-Mass Spectrometry of Proteins and Peptides. Electrophoresis[J].25:2090-2099.
    [131]Zuberovic. A, Ullsten S, Hellman U, et al.2004. Capillary Electrophoresis Ofif-Line Matrix-Assisted Laser Desorption/Ionisation Mass Spectrometry of Intact and Digested Proteins Using Cationic-Coated Capillaries. Rapid Communications in Mass SpectrometryfJ].18:2946-2952.
    [132]Puerta A, Axen J, Soderberg L, et al.2006. Novel Adsorptive Polyamine Coating for Enhanced Capillary Electrophoresis of Basic Proteins and Peptides. Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences[J].838:113-121.
    [133]Huang XJ, Wang QQ, Huang BL.2006. Preparation and Evaluation of Stable Coating for Capillary Electrophoresis Using Coupled Chitosan as Coated Modifier. Talanta[J].69:463-468.
    [134]Sun P, Landman A, Hartwick RA.1994. Chitosan Coated Capillary with Reversed Electroosmotic Flow in Capillary Electrophoresis for the Separation of Basic Drugs and Proteins. Journal of Microcolumn Separations[J].6:403-407.
    [135]Ullsten S, Soderberg L, Folestad S, et al.2004. Quaternary Ammonium Substituted Agarose as Surface Coating for Capillary Electrophoresis. Analyst[J].129:410-415.
    [136]Katayama H, Ishihama Y, Asakawa N.1998. Stable Cationic Capillary Coating with Successive Multiple Ionic Polymer Layers for Capillary Electrophoresis. Anal Chem[J].70:5272-5277.
    [137]Catai JR, Torano JS, de Jong GJ, et al.2007. Capillary Electrophoresis-Mass Spectrometry of Proteins at Medium Ph Using Bilayer-Coated Capillaries. Analyst[J].132:75-81.
    [138]Katayama H, Ishihama Y, Asakawa N.1998. Stable Capillary Coating with Successive Multiple Ionic Polymer Layers. Anal Chem[J].70:2254-2260.
    [139]Yang RM, Wang YM, Zhou D.2007. Novel Hydroxyethylcellulose-graft-Poly Acrylamide Copolymer for Separation of Double-Stranded DNA Fragments by CE. Electrophoresis[J].28:3223-3231.
    [140]Cao YM, Qing XS, Sun J, et al.2002. Graft Copolymerization of Acrylamide onto Carboxymethyl Starch. Eur Polym J[J].38:1921-1924.
    [141]Rodriguez R, Alvarez-Lorenzo C, Concheiro A.2003. Cationic Cellulose Hydrogels: Kinetics of the Cross-Linking Process and Characterization as pH-/Ion-Sensitive Drug Delivery Systems. J Control Release[J].86:253-265.
    [142]Phan HTT, Zhu KZ, Kjoniksen AL, et al.2011. Temperature-Responsive Self-Assembly of Charged and Uncharged Hydroxyethylcellulose-graft-Poly(N-isopropylacrylamide) Copolymer in Aqueous Solution. Colloid and Polymer Science[J].289:993-1003.
    [143]Jiang C, Wang XL, Sun PD, et al.2011. Synthesis and Solution Behavior of Poly(epsilon-caprolactone) Grafted Hydroxyethyl Cellulose Copolymers. Int J Biol Macromol[J].48:210-214.
    [144]Peng SH, Shi RH, Yang RM, et al.2008. Hydroxyethylcellulose-graft-Poly (N,N-dimethylacrylamide) Copolymer as a Multifunctional Separation Medium for CE. Electrophoresis[J].29:4351-4354.
    [145]Yang RM, Shi RH, Peng SH, et al.2008. Cationized Hydroxyethylcellulose as a Novel, Adsorbed Coating for Basic Protein Separation by Capillary Electrophoresis. Electrophoresis[J].29:1460-1466.
    [146]Yang RM, Uu YH, Wang YM.2009. Hydroxyethylcellulose-graft-Poly (4-vinylpyridine) as a Novel, Adsorbed Coating for Protein Separation by CE. Electrophoresis[J].30:2321-2327.
    [147]Liu H, Shi R, Wan W, et al.2008. A Well-Defined Diblock Copolymer of Poly(ethylene oxide)-block-Poly(4-vinylpyridine) for Separation of Basic Proteins by Capillary Zone Electrophoresis. Electrophoresis[J].29:2812-2819.
    [148]朱小玺,王延梅.2011.聚(4-乙烯基毗啶)-b-聚环氧乙烷-b-聚(4-乙烯基吡啶)的合成及其用于毛细管电泳分离碱性蛋白质.功能高分子学报[J].24.
    [149]Jiang W, Awasum JN, Irgum K.2003. Control of Electroosmotic Flow and Wall Interactions in Capillary Electrophosesis Capillaries by Photografted Zwitterionic Polymer Surface Layers. Anal Chem[J].75:2768-2774.
    [1]Iki N, Yeung ES.1996. Non-Bonded Poly(ethylene oxide) Polymer-Coated Column for Protein Separation by Capillary Electrophoresis. J Chromatogr A[J].731:273-282.
    [2]Verzola B, Gelfi C, Righetti PG.2000. Quantitative Studies on the Adsorption of Proteins to the Bare Silica Wall in Capillary Electrophoresis Ⅱ. Effects of Adsorbed, Neutral Polymers on Quenching the Interaction. J Chromatogr A[J].874:293-303.
    [3]Peng S, Shi R, Yang R, et al.2008. Hydroxyethylcellulose-graft-Poly (N,N-dimethylacrylamide) Copolymer as a Multifunctional Separation Medium for CE. Electrophoresis[J].29:4351-4354.
    [4]Yang R, Liu Y, Wang Y.2009. Hydroxyethylcellulose-graft-Poly (4-vinylpyridine) as a Novel, Adsorbed Coating for Protein Separation by CE. Electrophoresis[J].30:2321-2327.
    [5]Gutierrez JEN, Jakobovits L.2003. Capillary Electrophoresis of Alpha-Lactalbumin in Milk Powders. Journal of Agricultural and Food Chemistry[J].51:3280-3286.
    [6]Hsieh Y, Chen T, Liu C.2006. Capillary Electrochromatographic Separation of Proteins on a Column Coated with Titanium Dioxide Nanoparticles. Electrophoresis [J].27:4288-4294.
    [7]Cunliffe JM, Baryla NE, Lucy CA.2002. Phospholipid Bilayer Coatings for the Separation of Proteins in Capillary Electrophoresis. Analytical Chemistry[J],74:776-783.
    [8]Gupta KC, Khandekar K.2003. Temperature-Responsive Cellulose by Ceric(Iv) Ion-Initiated Graft Copolymerization of N-isopropylacrylamide. Biomacromolecules[J].4:758-765.
    [9]Gupta KC, Sahoo S.2001. Graft Copolymerization of Acrylonitrile and Ethyl Methacrylate Comonomers on Cellulose Using Ceric Ions. Biomacromolecules[J].2:239-247.
    [10]Gupta KC, Sahoo S, Khandekar K.2002. Graft Copolymerization of Ethyl Acrylate onto Cellulose Using Ceric Ammonium Nitrate as Initiator in Aqueous Medium. Biomacromolecules[J].3:1087-1094.
    [11]Williams BA, Vigh C.1996. Fast, Accurate Mobility Determination Method for Capillary Electrophoresis. Analytical Chemistry[J].68:1174-1180.
    [12]Giddings JC.1969. Generation of Variance, Theoretical Plates, Resolution, and Peak Capacity in Electrophoresis and Sedimentation. Separ Sci[J].4:181-189.
    [13]Wang A, Witos J, D'Ulivo L, et al.2009. Noncovalent Poly(1-vinylpyrrolidone)-Based Copolymer Coating for the Separation of Basic Proteins and Lipoproteins by CE. Electrophoresis[J].30:3939-3946.
    [14]Bernal J, Sanchez-Hernandez L, Elvira C, et al.2009. Poly(N,N-dimethylacrylamide-co-4-(ethyl)-morpholine methacrylamide) Copolymer as Coating for CE. Journal of Separation Science[J].32:605-612.
    [15]Linhardt RJ, Pervin A.1996. Separation of Negatively Charged Carbohydrates by Capillary Electrophoresis. J Chromatogr A[J].720:323-335.
    [16]Lalljie SPD, Vindevogel J, Sandra P.1993. Quantitation of Organic-Acids in Sugar Refinery Juices with Capillary Zone Electrophoresis and Indirect Uv Detection. J Chromatogr A[J].652:563-569.
    [17]Kajiwara H, Sato A, Kaneko S.1993. Analysis of Calcium and Magnesium-Ions in Wheat-Flour by Capillary Zone Electrophoresis. Biosci Biotech Bioch[J].57:1010-1011.
    [18]Thompson CO, Trenerry VC.1995. A Rapid Method for the Determination of Total L-Ascorbic-Acid in Fruits and Vegetables by Micellar Electrokinetic Capillary Chromatography. Food Chem[J].53:43-50.
    [19]Gao LY, Chu QC, Ye JN.2002. Determination of Trans-Resveratrol in Wines, Herbs and Health Food by Capillary Electrophoresis with Electrochemical Detection. Food Chem[J].78:255-260.
    [20]Horie H, Mukai T, Kohata K.1997. Simultaneous Determination of Qualitatively Important Components in Green Tea Infusions Using Capillary Electrophoresis. J Chromatogr A[J].758:332-335.
    [21]Dejong N, Visser S, Olieman C.1993. Determination of Milk-Proteins by Capillary Electrophoresis. J Chromatogr A[J].652:207-213.
    [22]Strickland M, Johnson ME, Broadbent JR.2001. Qualitative and Quantitative Analysis of Proteins and Peptides in Milk Products by Capillary Electrophoresis. Electrophoresis[J].22:1510-1517.
    [23]Gutierrez JEN, Jakobovits L.2003. Capillary Electrophoresis of a-Lactalbumin in Milk Powders. Journal of Agricultural and Food Chemistry[J].51:3280-3286.
    [1]Huang NP, Csucs G, Emoto K, et al.2002. Covalent Attachment of Novel Poly(ethylene glycol)-Poly(DL-lactic acid) Copolymeric Micelles to TiO2 Surfaces. Langmuir[J].18:252-258.
    [2]Ostuni E, Chapman RG, Holmlin RE, et al.2001. A Survey of Structure-Property Relationships of Surfaces That Resist the Adsorption of Protein. Langmuir[J].17:5605-5620.
    [3]Iki N, Yeung ES.1996. Non-Bonded Poly(ethylene oxide) Polymer-Coated Column for Protein Separation by Capillary Electrophoresis. J Chromatogr A[J].731:273-282.
    [4]Nashabeh W, Elrassi Z.1991. Capillary Zone Electrophoresis of Proteins with Hydrophilic Fused-Silica Capillaries. Journal of Chromatography[J].559:367-383.
    [5]Tran NT, Taverna M, Miccoli L, et al.2005. Poly(ethylene oxide) Facilitates the Characterization of an Affinity between Strongly Basic Proteins with DNA by Affinity Capillary Electrophoresis. Electrophoresis[J].26:3105-3112.
    [6]Liu SY, Weaver JVM, Tang YQ, et al.2002. Synthesis of Shell Cross-Linked Micelles with pH-Responsive Cores Using ABC Triblock Copolymers. Macromolecules[J].35:6121-6131.
    [7]Butun V, Armes SP, Billingham NC, et al.2001. The Remarkable "Flip-Flop" Self-Assembly of a Diblock Copolymer in Aqueous Solution. Macromolecules[J].34:1503-1511.
    [8]Peng ZP, Li GZ, Liu XX, et al.2008. Synthesis, pH-and Temperature-Induced Micellization and Gelation of Doubly Hydrophilic Triblock Copolymer of Poly(N,N-dimethylamino-2-ethylmethacrylate)-b-Poly(ethyleneglycol)-b-Poly(N,N-dimethylamino-2-ethylmethacrylate) in Aqueous Solutions. Journal of Polymer Science Part A-Polymer Chernistry[J].46:5869-5878.
    [9]Xu FJ, Li HZ, Li J, et al.2008. Pentablock Copolymers of Poly(ethylene glycol), Poly((2-dimethyl amino) ethyl methacrylate) and Poly(2-hydroxyethyl methacrylate) from Consecutive Atom Transfer Radical Polymerizations for Non-Viral Gene Delivery. Biomaterials[J].29:3023-3033.
    [10]Wang AJ, Witos J, D'Ulivo L, et al.2009. Noncovalent Poly(1-vinylpyrrolidone)-Based Copolymer Coating for the Separation of Basic Proteins and Lipoproteins by CE. Electrophoresis[J].30:3939-3946.
    [11]Zhou D, Xiang LN, Zeng RJ, et al.2011. Graft Copolymer Composed of Cationic Backbone and Bottle Brush-Like Side Chains as a Physically Adsorbed Coating for Protein Separation by Capillary Electrophoresis. Journal of Separation Science[J].34:3441-3450.
    [12]Lucy CA, MacDonald AM, Gulcev MD.2008. Non-Covalent Capillary Coatings for Protein Separations in Capillary Electrophoresis. J Chromatogr A[J].1184:81-105.
    [13]Bonoli M, Varjo SJ, Wiedmer SK, et al.2006. Cationic Lipid Vesicles as Coating Precursors in Capillary Electrochromatography:Separation of Basic Proteins and Neutral Steroids. J Chromatogr A[J].1119:163-169.
    [14]Wang AJ, Feng JJ, Dong WJ, et al.2010. Spermine-graft-Dextran Non-Covalent Copolymer as Coating Material in Separation of Basic Proteins and Neurotransmitters by Capillary Electrophoresis. Journal of ChromatographyA[J].1217:5130-5136.
    [15]Liu H, Shi R, Wan W, et al.2008. A Well-Defined Diblock Copolymer of Polyethylene oxide)-block-Poly(4-vinylpyridine) for Separation of Basic Proteins by Capillary Zone Electrophoresis. Electrophoresis[J].29:2812-2819.
    [16]Haselberg R, de Jong GJ, Somsen GW.2009. Capillary Electrophoresis of Intact Basic Proteins Using Noncovalently Triple-Layer Coated Capillaries. Journal of Separation Science[J].32:2408-2415.
    [1]Chang Y, Chen S, Zhang Z, et al.2006. Highly Protein-Resistant Coatings from Well-Defined Diblock Copolymers Containing Sulfobetaines. Langmuir[J].22:2222-2226.
    [2]Zhang Z, Chen SF, Chang Y, et al.2006. Surface Grafted Sulfobetaine Polymers Via Atom Transfer Radical Polymerization as Superlow Fouling Coatings. J Phys Chem B[J].110:10799-10804.
    [3]Zhang Z, Chao T, Chen SF, et al.2006. Superlow Fouling Sulfobetaine and Carboxybetaine Polymers on Glass Slides. Langmuir [J].22:10072-10077.
    [4]Cheng G, Zhang Z, Chen SF, et al.2007. Inhibition of Bacterial Adhesion and Biofilm Formation on Zwitterionic Surfaces. Biomaterials[J].28:4192-4199.
    [5]Li GZ, Cheng G, Xue H, et al.2008. Ultra Low Fouling Zwitterionic Polymers with a Biomimetic Adhesive Group. Biomaterials[J].29:4592-4597.
    [6]Ladd J, Zhang Z, Chen S, et al.2008. Zwitterionic Polymers Exhibiting High Resistance to Nonspecific Protein Adsorption from Human Serum and Plasma. Biomacromolecules[J].9:1357-1361.
    [7]Vaisocherova H, Yang W, Zhang Z, et al.2008. Ultralow Fouling and Functionalizable Surface Chemistry Based on a Zwitterionic Polymer Enabling Sensitive and Specific Protein Detection in Undiluted Blood Plasma. Analytical chemistry[J].80:7894-7901.
    [8]Iki N, Yeung ES.1996. Non-Bonded Polyethylene oxide) Polymer-Coated Column for Protein Separation by Capillary Electrophoresis. J Chromatogr A[J].731:273-282.
    [9]Tran NT, Taverna M, Miccoli L, et al.2005. Polyethylene oxide) Facilitates the Characterization of an Affinity between Strongly Basic Proteins with DNA by Affinity Capillary Electrophoresis. Electrophoresis[J].26:3105-3112.
    [10]Gilges M, Kleemiss MH, Schomburg G.1994. Capillary Zone Electrophoresis Separations of Basic and Acidic Proteins Using Poly(vinyl alcohol) Coatings in Fused-Silica Capillaries. Anal Chem[J].66:2038-2046.
    [11]Verzola B, Gelfi C, Righetti PG.2000. Quantitative Studies on the Adsorption of Proteins to the Bare Silica Wall in Capillary Electrophoresis II. Effects of Adsorbed, Neutral Polymers on Quenching the Interaction. J Chromatogr A[J].874:293-303.
    [12]Albarghouthi MN, Stein TM, Barron AE.2003. Poly-N-hydroxyethylacrylamide as a Novel, Adsorbed Coating for Protein Separation by Capillary Electrophoresis. Electrophoresis[J].24:1166-1175.
    [13]Cretich M, Stastna M, Chrambach A, et al.2002. Decreased Protein Peak Asymmetry and Width Due to Static Capillary Coating with Hydrophilic Derivatives of Polydimethylacrylamide. Electrophoresis[J].23:2274-2278.
    [14]Towns JK, Regnier FE.1990. Polyethyleneimine-Bonded Phases in the Separation of Proteins by Capillary Electrophoresis. J Chromatogr[J].516:69-78.
    [15]Cordova E, Gao JM, Whitesides GM.1997. Noncovalent Polycationic Coatings for Capillaries in Capillary Electrophoresis of Proteins. Analytical chemistry[J].69:1370-1379.
    [16]Xu J, Yang LY, Luo ZF, et al.2010. Synthesis of Poly(N, N-dimethylacrylamide)-block-Poly(ethylene oxide)-block-Poly(N, N-dimethylacrylamide) and Its Application for Separation of Proteins by Capillary Zone Electrophoresis. Electrophoresis[J].31:1713-1720.
    [17]Peng SH, Shi RH, Yang RM, et al.2008. Hydroxyethylcellulose-graft-Poly (N,N-dimethylacrylamide) Copolymer as a Multifunctional Separation Medium for CE. Electrophoresis[J].29:4351-4354.
    [18]Chiari M, Cretich M, Damin F, et al.2000. New Adsorbed Coatings for Capillary Electrophoresis. Electrophoresis[J].21:909-916.
    [19]Gonzalez N, Elvira C, San Roman J, et al.2003. New Physically Adsorbed Polymer Coating for Reproducible Separations of Basic and Acidic Proteins by Capillary Electrophoresis. J Chromatogr A[J].1012:95-101.
    [20]Erny GL, Elvira C, San Roman J, et al.2006. Capillary Electrophoresis Using Copolymers of Different Composition as Physical Coatings:A Comparative Study. Electrophoresis[J].27:1041-1049.
    [21]Simo C, Elvira C, Gonzalez N, et al.2004. Capillary Electrophoresis-Mass Spectrometry of Basic Proteins Using a New Physically Adsorbed Polymer Coating. Some Applications in Food Analysis. Electrophoresis[J].25:2056-2064.
    [22]Zhou D, Tan L, Xiang LN, et al.2011. Brush-Like Copolymer as a Physically Adsorbed Coating for Protein Separation by Capillary Electrophoresis. Journal of Separation Science[J].34:1738-1745.
    [23]Bernal J, Sanchez-Hernandez L, Elvira C, et al.2009. Poly(N,N-dimethylacrylamide-co-4-(ethyl)-morpholine methacrylamide) Copolymer as Coating for CE. J Sep Sci[J].32:605-612.
    [24]Lai JT, Filla D, Shea R.2002. Functional Polymers from Novel Carboxyl-Terminated Trithiocarbonates as Highly Efficient Raft Agents. Macromolecules[J].35:6754-6756.
    [25]Kuo WH, Wang MJ, Chien HW, et al.2011. Surface Modification with Poly(sulfobetaine methacrylate-co-acrylic acid) to Reduce Fibrinogen Adsorption, Platelet Adhesion, and Plasma Coagulation. Biomacromolecules[J].12:4348-4356.
    [26]Weaver JVM, Armes SP, Butun V.2002. Synthesis and Aqueous Solution Properties of a Well-Defined Thermo-Responsive Schizophrenic Diblock Copolymer. Chem Commun[J]:2122-2123.
    [27]Sedlak M, Colfen H.2001. Synthesis of Double-Hydrophilic Block Copolymers with Hydrophobic Moieties for the Controlled Crystallization of Minerals. Macromol Chem Physic[J].202:587-597.
    [28]Inoue Y, Ishihara K.2010. Reduction of Protein Adsorption on Well-Characterized Polymer Brush Layers with Varying Chemical Structures. Colloid Surface B[J].81:350-357.
    [29]Wang AJ, Witos J, D'Ulivo L, et al.2009. Noncovalent Poly(1-vinylpyrrolidone)-Based Copolymer Coating for the Separation of Basic Proteins and Lipoproteins by CE. Electrophoresis[J].30:3939-3946.
    [30]Wang AJ, Feng JJ, Dong WJ, et al.2010. Spermine-graft-dextran Non-Covalent Copolymer as Coating Material in Separation of Basic Proteins and Neurotransmitters by Capillary Electrophoresis. J Chromatogr A[J].1217:5130-5136.
    [31]Li J, Han HF, Wang Q, et al.2010. Polymeric Ionic Liquid as a Dynamic Coating Additive for Separation of Basic Proteins by Capillary Electrophoresis. Anal Chim Acta[J].674:243-248.
    [32]Catai JR, Tervahauta HA, de Jong GJ, et al.2005. Noncovalently Bilayer-Coated Capillaries for Efficient and Reproducible Analysis of Proteins by Capillary Electrophoresis. J Chromatogr A[J].1083:185-192.
    [33]Verzola B, Gelfi C, Righetti PG.2000. Protein Adsorption to the Bare Silica Wall in Capillary Electrophoresis Quantitative Study on the Chemical Composition of the Background Electrolyte for Minimising the Phenomenon. J Chromatogr A[J].868:85-99.
    [34]Kaupp S, Steffen R, Watzig H.1996. Characterisation of Inner Surface and Adsorption Phenomena in Fused-Silica Capillary Electrophoresis Capillaries. J Chromatogr A[J].744:93-101.
    [35]Jiang W, Awasum JN, Irgum K.2003. Control of Electroosmotic Flow and Wall Interactions in Capillary Electrophosesis Capillaries by Photografted Zwitterionic Polymer Surface Layers. Anal Chem[J].75:2768-2774.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700