用户名: 密码: 验证码:
仿生抗生物黏附表面的设计、制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
“不良”生物黏附的危害是生物医用材料、生物化工、海洋船舶防污等研究和应用领域中涉及的一个共性的、具有基础性和普遍性的问题。自然界中存在着具有优异抗生物黏附特性的生物表面,如可保持表面清洁的海洋生物鲨鱼的皮肤、“出淤泥而不染”的荷叶表面以及具有生物黏附呈惰性的细胞外层膜等,它们所特有的表面化学组成和特异化学结构,以及表面的微/纳结构为我们构建抗生物黏附表面提供非常完美的仿生模板和仿生途径。从目前国内外学者就抗生物黏附表面而进行的研究思路、方法和研究结果来看,表面仿生无疑是最有效的策略。然而,生物表面在抗生物黏附过程中是以一个完整的生命体系发挥作用,因而单一的形貌结构仿生或者表面化学仿生往往难以构建稳定的抗生物黏附表面,更不可能构建出多功能的仿生表面。正是基于这一分析和认识,受到抗黏附的自然界各种生物表面的非光滑结构以及细胞外层膜的化学组成与化学结构的启迪,我们提出将仿生物非光滑表面的微米级结构与可呈现特殊浸润性的纳米结构相结合,以及将表面的形貌结构仿生与表面化学仿生相结合,构建新型复合仿生的抗生物黏附表面的研究思路。本工作的主要研究内容与研究结果如下所述:
     1.以鲨鱼皮和植物(狗尾巴草)叶片为表面仿生的模板,将生物表面微复制法与表面热处理方法相结合,在仿生微结构表面构筑具有“荷叶效应”的纳米结构,制备出具有多尺度微/纳复合结构的仿生表面。研究表明:采用生物微复制法能够较精确地复制出天然模板表面的微米级精细结构,但难以有效地复制出纳米级的精细结构;火焰处理能够在通过微复制法得到的微米级结构表面构筑出纳米结构,由此制备出的微/纳复合结构仿生表面具有超疏水特性,水滴接触角大于150°,滚动角小于1°。
     2.受细胞外层膜的性质及其化学结构的启发,设计与合成了几种含甜菜碱型两性离子基团的化合物,如硅烷基化两性离子单体SINNS-2和N,N-二甲基-N-甲基丙烯酰胺基丙基-N-丙烷磺酸内盐DMAPMAPS等,采用分子自组装技术和UV固化有机/无机杂化过渡层黏接技术的方法,在基材表面构筑具有亲水性仿细胞外层膜化学特性的自组装表面和聚合物凝胶层。此外,利用光引发表面接枝聚合法在仿鲨鱼皮微结构表面接枝甜菜碱型两性离子聚合物,借助两性离子与水之间的静电作用形成类似于鲨鱼表皮黏液的水化层,使所制备的表面具有复合仿生的特点。在此基础上,通过现代测试技术表征和分析了所制备的各种仿生表面的化学性质、微观形貌及其润湿性;利用流变仪初步探讨了仿生材料表面流变减阻特性,发现具有粘液特性的两性离子亲水表面存在滑移现象。
     3.采用有机/无机杂化技术,用羧酸两性离子硅烷共聚物与纳米SiO2制备了有机/无机纳米复合物。用这一复合物为界面材料,采用雾化喷涂和热处理方法在玻璃基材上构建了一系列表面物化性质不同的SiO2杂化超亲水涂层表面。探讨了表面浸润性与表面微观结构和化学性质之间关系,并测量其防雾效果。实验结果表明,通过对表面化学性质和微观形貌的调控,可获得具有空气中超亲水、水下超疏油的润湿特性的表面,且涂层具有很好的防雾性能。
     4.以经典Young氏方程、Wenzel及Cassie方程为理论基础,分析和解释了各种仿生表面的化学成分和粗糙度对表面亲/疏水润湿性能的影响,并探讨了超疏水、超亲水/水下超疏油表面的形成条件。针对两性离子亲水表面呈现出的水下超疏油特性,提出了新的见解,即表面亲水基团的水化作用是含两性离子表面亲水性表面具有水下疏油特性的关键。
     5.采用蛋白质吸附、细菌黏附和藻类黏附等生物黏附试验,研究了各种仿生表面的物理/化学特性表面微观结构抗生物黏附性能之间的构效关系。实验发现:
     (a)仿鲨鱼皮微结构表面并没有显示出抗生物粘附效果,反而会增加生物黏附量,且黏附更加牢固;
     (b)复合仿生结构表面的微/纳结构所吸附的空气薄层作为一种物理屏障,能阻碍各种生物体的粘附,在抗生物黏附中起到关键作用。蛋白质等在微/纳结构表面的吸附,会导致表面空气层逐渐消失,影响材料的抗生物黏附性能的持久性或稳定性;
     (c)本身具有低表面能性质的有机硅PDMS材料表面比具有微相分离结构的聚氨酯PU材料表面有着更加优异的抗粘附效果;仿生细胞外层膜的两性离子表面,如自组装分子层、聚合物凝胶层、表面接枝聚合物以及杂化涂层表面由于水化层的作用,均具有较好的抗生物黏附性能;
     (d)通过调控SiO2杂化超亲水涂层表面的化学基团,可获得具有抗细菌黏附性能的材料表面。含有季铵盐基团的SiO2-PCM表面具有杀菌和抑制细菌繁殖的作用;而经过碱水解之后得到的SiO2-PCMZ表面,在不具有杀菌灭菌作用基础上,也表现出优异的细菌黏附性能。
The harm of adverse bioadhesion has been a fundamental problem that has commonfeatures and popularly exists in the research and application areas of biomedical materials,biochemical analysis, bological chemical engineering and antifouling of marine vessels. Innature, many biological surfaces can exhibit an excellent anti-bioadhesive performance. Forinstance, a shark skin can keep marine organisms away from it, a lotus leaf unstained by dirtshows an outstanding self-cleaning effect, phosphorylcholine (PC) or headgroups of a cellouter membrane is inert to bioadhesion, and so forth. The chemical compositions, specificchemical structure and micro-nano structures of these biological surfaces provide perfectbiomimetic templates and ways for constructing anti-bioadhesive surfaces. Judging from thecurrent research ideas, methods and findings involving the anti-bioadhesive surfacesconducted by domestic and foreign scholars, constructing biomimetic surfaces is undoubtedlythe most effective strategy. However, most biological surfaces play a role in the course ofanti-bioadhesion as a part of a complete life system, and thus it is often difficult to build astable anti-bioadhesive surface just by a single means of imitating morphology or chemicalcharacteristics of a biological surface, not to mention a multi-functional biomimetic surface.Based on the above analysis and understanding, and inspired by the anti-adhesive non-smoothsurfaces of plants and animals in nature and the chemical composition and molecularstructures of the cell outer membrane, herein we first put forward a research thought ofconstructing compound biomimetic surfaces with resistance to bioadhesion via a novelmethod involving (a) the combination of the micron-scale structures of biological non-smoothsurfaces and their nanoscale structures producing special wettability, and (b) the combinationof the biomimetic strategies of both the surface morphology and the surface chemistry. Themain research work and results are described below.
     (1) Using shark skin and grass leaves (Green Bristle grass Herb) as a template,respectively, the biomimetic surfaces with micro-nano hierarchical structures were fabricatedby constructing nanoscale structure producing “lotus effect” on the biomimetic micron-scalestructured surfaces, which was conducted by combining the micro-replication method withthe flame treatment of a surface. The studies indicated that the microstructures on the natural templates can be exactly replicated by means of surface micro-replication, while thenanostructures are difficult to be faithfully replicated. Flame-treatment is an effective methodto construct nanostructures on the biomimetic surfaces prepared via the micro-replication. Theas-prepared hierarchical (micro-nano) surfaces can exhibit super-hydrophobic performance,whose measured water contact angle is greater than150°. And the slip angle for water dropletmerely reaches a limiting value of1°.
     (2) Inspired by the chemical composition and molecular structures of a cell outermembrane, a few of betaine zwitterionic compounds, zwitterionic silane (SINNS-2),3-dimethyl(3-(N-methacrylamido) propyl) ammonium propane sulfonate (DMAPMAPS), andso on, were designed and synthesized. Then these functional molecules were used to preparechemically biomimetic self-assembled layer and polymer hydrogel layer by means ofmolecular self-assembly and UV curing of organic-inorganic hybrid transition layer bondingtechnology, respectively. Besides, zwitterionic polymer was grafted onto the surface ofbiomimetic shark skin via photo-induced polymerization. So as to form the mucus-likehydration layer with the aid of the electrostatic action between zwitterions and watermolecules. In this way, the prepared surfaces can possess unique compound biomimeticstructures. On this basis, the chemical parameters, morphology and wettability of the preparedbiomimetic surfaces were characterized and analyzed by modern testing techniques. The dragreduction effect of the biomimetic surfaces was preliminarily investigated based on rheometry,the results show that the slip phenomenon of slip phenomenon can occur on the zwitterionichydrophilic surface.
     (3) The organic-inorganic nanocomposites comprising zwitterionic carboxybetaine silanecopolymer and silica nanoparticles was prepared via an organic-inorganic hybrid technology.Using these nanocomposites as interfacial materials and a glass slide as a substrate, a series ofpolymer-SiO2hybrid coatings with different physical and chemical properties were obtainedby spray-deposition and heat treatment. The influence of the chemical and morphologicalfactors of a surface on its wettability was investigated. Furthermore, the fogging behavior ofthe hybrid coating was measured. The results indicate that the biomimetic surface uniquewettability, or superhydrophilicity in air and underwater super-oleophobicity, can beconstructed by regulating the chemical features and morphology of surface. And such a biomimetic surface can possess good antifogging performance.
     (4) According to the theories of classical Young's equation, Wenzel's equation andCassie's equations, the effects of the chemical composition and roughness of variousbiomimetic surfaces on their wettability were analyzed and explained, and the conditionsunder which a super-hydrophobic, super-hydrophilic and/or underwater super-oleophobicsurface can be formed were explored and discussed. Owing to the fact that thezwitterion-containing hydrophilic surface can exhibit underwater super-oleophobicity, a newinsight is proposed that the hydration of the hydrophilic groups on the zwitterion-containinghydrophilic surface plays a key role in making it possess underwater oleophobiccharacteristic.
     (5) The structure-property relationships between the anti-bioadhesive properites ofbiomimetic surface and their physical, chemical properties and microstructures were studiedby a few of bioadhesion experiments including protein adhesion test, bacteria attachmenttest using S. aerues and E. coli as a test strain and algae adsorption tests in the static anddynamic aqueous environment. The following conclusions can be drawn from theexperimental results.
     (a) The surface with biomiemtic shark skin microstructure cannot exhibit resistance tobioadhesion. On the contrary, a large number of organisms will adhere firmly to thesurface.
     (b) As a physical barrier, the thin air layer adsorbed on the micro-nano hierarchical structureof the compound biomimetic surface can hinder the attachment of organisms, therebyplaying an important role in resisting bioadhesion. The adsorption of proteins and theother substances on the micro-nano structured surface will drive air away and make the airlayer disappear gradually, thus degrading the durability and stability of itsanti-bioadhesive performance.
     (c) The PDMS-based surface with low surface energy can exhibit better anti-bioadhesiveperformance than do the PU-based surface with microphase separation structure. Due tothe existence of hydration shell, the zwitterion-containing surfaces imitating the chemicalfeatures of a cell outer membrane, including self-assembly molecular layer, polymeric gel,polymer surface obtained by surface graft polymerization, and hybrid coating, were a novel mimic of the cell outer membrane, and such surfaces often possessed excellentanti-bioadhesion performance.
     (d) The biomimetic surface with anti-bacterial adhesion property using polymer-SiO2hybridnanocomposites as an interfacial material can be achieved through tailoring the chemicalfunctional groups of the hybrid nanocomposites. The surface SiO2-PCM bearingquaternary ammonium salt group can sterilize bacterial cells and inhibit bacterialreproduction; and the surface SiO2-PCMZ obtained by the alkaline hydrolysis can possessgood anti-bacterial adhesion property, but SiO2-PCMZ will lost its function of sterilizingbacterial cells.
引文
[1] John DS. Bioadhesion. Encyclopedia of Biomaterials and Biomedical Engineering[M]: Taylor&Francis;2013. p.62-71.
    [2]刘荷英,何淑漫,陈楚敏,周健.阻抗蛋白质吸附材料研究进展[J].化工进展2009;28:429-36.
    [3] Edyvean R. The effects of microbiologically generated hydrogen sulfide in marine corrosion[J]. MarineTechnology Society Journal1990;24:5-9.
    [4] Schultz MP. Effects of coating roughness and biofouling on ship resistance and powering[J]. Biofouling2007;23:331-41.
    [5] Schultz M, Bendick J, Holm E, Hertel W. Economic impact of biofouling on a naval surface ship[J].Biofouling2011;27:87-98.
    [6] Callow ME, Callow JA. Marine biofouling: a sticky problem[J]. Biologist2002;49:1-5.
    [7] Callow ME, Fletcher RL. The influence of low surface energy materials on bioadhesion—a review[J].International biodeterioration&biodegradation1994;34:333-48.
    [8] Abarzua S, Jakubowski S. Biotechnological investigation for the prevention of biofouling.1. Biological andbiochemical principles for the prevention of biofouling[J]. Marine ecology progress series Oldendorf1995;123:301-12.
    [9] Wahl M. Marine epibiosis. I. Fouling and antifouling: some basic aspects. Marine ecology progress seriesOldendorf1989;58:175-89.
    [10] Molino PJ, Childs S, Hubbard MRE, Carey JM, Burgman MA, Wetherbee R. Development of the primarybacterial microfouling layer on antifouling and fouling release coatings in temperate and tropicalenvironments in Eastern Australia[J]. Biofouling2009;25:149-62.
    [11] Kirschner CM, Brennan AB. Bio-Inspired Antifouling Strategies[J]. Annual Review of Materials Research2012;42:211-29.
    [12] Santerre J, Woodhouse K, Laroche G, Labow R. Understanding the biodegradation of polyurethanes: fromclassical implants to tissue engineering materials[J]. Biomaterials2005;26:7457-70.
    [13]何淑漫,周健.抗凝血生物材料[J].化学进展2010;22:760-72.
    [14] Costerton J, Stewart PS, Greenberg E. Bacterial biofilms: a common cause of persistent infections[J].Science1999;284:1318-22.
    [15] Roosjen A, Norde W, van der Mei HC, Busscher HJ. The use of positively charged or low surface freeenergy coatings versus polymer brushes in controlling biofilm formation. Characterization of PolymerSurfaces and Thin Films: Springer;2006. p.138-44.
    [16] Tunney M, Gorman S, Patrick S. Infection associated with medical devices[J]. Reviews in MedicalMicrobiology1996;7:195-206.
    [17] Yebra DM, Kiil S, Dam-Johansen K. Antifouling technology—past, present and future steps towardsefficient and environmentally friendly antifouling coatings[J]. Progress in organic coatings2004;50:75-104.
    [18] Rosenhahna A, Ederth T, Pettitt ME. Advanced nanostructures for the control of biofouling: The fp6euintegrated project ambio[J]. Biointerphases2008;3:IR1-IR5.
    [19] Magin CM, Cooper SP, Brennan AB. Non-toxic antifouling strategies[J]. Materials Today2010;13:36-44.
    [20] Marmur A. Super-hydrophobicity fundamentals: implications to biofouling prevention[J]. Biofouling2006;22:107-15.
    [21] Verran J, Boyd RD. The relationship between substratum surface roughness and microbiological andorganic soiling: a review[J]. Biofouling2001;17:59-71.
    [22] Genzer J, Efimenko K. Recent developments in superhydrophobic surfaces and their relevance to marinefouling: a review[J]. Biofouling2006;22:339-60.
    [23] Chambers LD, Stokes KR, Walsh FC, Wood RJ. Modern approaches to marine antifouling coatings[J].Surface and Coatings Technology2006;201:3642-52.
    [24] Champ MA. A review of organotin regulatory strategies, pending actions, related costs and benefits[J].Science of the total Environment2000;258:21-71.
    [25] Abbott A, Abel P, Arnold D, Milne A. Cost–benefit analysis of the use of TBT: the case for a treatmentapproach[J]. Science of the total Environment2000;258:5-19.
    [26] Sonak S, Pangam P, Giriyan A, Hawaldar K. Implications of the ban on organotins for protection of globalcoastal and marine ecology[J]. Journal of environmental management2009;90:S96-S108.
    [27] Omae I. General aspects of tin-free antifouling paints[J]. Chemical reviews2003;103:3431-48.
    [28] Almeida E, Diamantino TC, de Sousa O. Marine paints: The particular case of antifouling paints[J].Progress in organic coatings2007;59:2-20.
    [29] Okamura H, Watanabe T, Aoyama I, Hasobe M. Toxicity evaluation of new antifouling compounds usingsuspension-cultured fish cells[J]. Chemosphere2002;46:945-51.
    [30] Persson F, Svensson R, Nylund GM, Fredriksson NJ, Pavia H, Hermansson M. Ecological role of aseaweed secondary metabolite for a colonizing bacterial community[J]. Biofouling2011;27:579-88.
    [31] Chen JD, Feng DQ, Yang ZW, Wang ZC, Qiu Y, Lin YM. Antifouling metabolites from the mangroveplant Ceriops tagal[J]. Molecules2008;13:212-9.
    [32] Raveendran T, Limna Mol V, Parameswaran P. Natural Product Antifoulants from the octocorals of Indianwaters. International biodeterioration&biodegradation2011;65:265-8.
    [33] Dobretsov S, Teplitski M, Paul V. Mini-review: quorum sensing in the marine environment and itsrelationship to biofouling[J]. Biofouling2009;25:413-27.
    [34] Dworjanyn S, De Nys R, Steinberg P. Chemically mediated antifouling in the red alga Delisea pulchra[J].Marine Ecology Progress Series2006;318:153-63.
    [35] Lowery CA, Abe T, Park J, Eubanks LM, Sawada D, Kaufmann GF, et al. Revisiting AI-2quorum sensinginhibitors: direct comparison of alkyl-DPD analogues and a natural product fimbrolide[J]. Journal of theAmerican Chemical Society2009;131:15584-5.
    [36] Nogata Y, Kitano Y, Yoshimura E, Shinshima K, Sakaguchi I. Antifouling activity of simple syntheticisocyanides against larvae of the barnacle Balanus amphitrite[J]. Biofouling2004;20:87-91.
    [37] Richards JJ, Ballard TE, Huigens III RW, Melander C. Synthesis and screening of an oroidin library againstPseudomonas aeruginosa biofilms[J]. ChemBioChem2008;9:1267-79.
    [38] Melander C, Moeller PD, Ballard TE, Richards JJ, Huigens III RW, Cavanagh J. Evaluation ofdihydrooroidin as an antifouling additive in marine paint[J]. International biodeterioration&biodegradation2009;63:529-32.
    [39]李昕.天然生物防污涂料技术及应用[J].天津化工2009;6:004.
    [40] Kristensen JB, Meyer RL, Laursen BS, Shipovskov S, Besenbacher F, Poulsen CH. Antifouling enzymesand the biochemistry of marine settlement[J]. Biotechnology advances2008;26:471-81.
    [41] ImLay JA. Pathways of oxidative damage[J]. Annual Reviews in Microbiology2003;57:395-418.
    [42] Waters CM, Bassler BL. Quorum sensing: cell-to-cell communication in bacteria[J]. Annu Rev Cell DevBiol2005;21:319-46.
    [43]解来勇,洪飞,刘剑洪,张广照,吴奇.海洋防污高分子材料的综合设计和研究[J].高分子学报2012;1:1-13.
    [44] Olsen SM, Pedersen LT, Laursen M, Kiil S, Dam-Johansen K. Enzyme-based antifouling coatings: areview[J]. Biofouling2007;23:369-83.
    [45] Brady Jr RF, Singer IL. Mechanical factors favoring release from fouling release coatings[J]. Biofouling2000;15:73-81.
    [46] Finnie AA, Williams DN. Paint and coatings technology for the control of marine fouling[J]. Biofouling2010:185-206.
    [47] Brady RF. A fracture mechanical analysis of fouling release from nontoxic antifouling coatings[J]. Progressin organic coatings2001;43:188-92.
    [48] Lupton EM, Achenbach F, Weis J, Br uchle C, Frank I. Molecular origins of adhesive failure: Siloxaneelastomers pulled from a silica surface[J]. Physical Review B2007;76:125420.
    [49] Lu T-l, Liang G-z, Kou K-c, Guo Z-a. Review Synthesis and characterization of cage octa(cyclohexylsilsesquioxane)[J]. Journal of materials science2005;40:4721-6.
    [50] Baier RE. Surface behaviour of biomaterials: the theta surface for biocompatibility[J]. Journal of MaterialsScience: Materials in Medicine2006;17:1057-62.
    [51] Swain G. Redefining antifouling coatings[J]. Journal of Protective Coatings and Linings1999;16:26-35.
    [52] Webster DC, Chisholm BJ, Dürr S, Thomason J. New directions in antifouling technology[J]. Biofouling2010:366-87.
    [53] Kendall K. The adhesion and surface energy of elastic solids[J]. Journal of Physics D: Applied Physics1971;4:1186.
    [54] Lejars Mn, Margaillan A, Bressy C. Fouling Release Coatings: A Nontoxic Alternative to BiocidalAntifouling Coatings[J]. Chemical reviews2012;112:4347-90.
    [55] Perrino C, Lee S, Choi SW, Maruyama A, Spencer ND. A biomimetic alternative to poly (ethylene glycol)as an antifouling coating: Resistance to nonspecific protein adsorption of poly (L-lysine)-graft-dextran[J].Langmuir2008;24:8850-6.
    [56] McLean KM, Johnson G, Chatelier RC, Beumer GJ, Steele JG, Griesser HJ. Method of immobilization ofcarboxymethyl-dextran affects resistance to tissue and cell colonization[J]. Colloids and Surfaces B:Biointerfaces2000;18:221-34.
    [57] Zhu L-P, Yu J-Z, Xu Y-Y, Xi Z-Y, Zhu B-K. Surface modification of PVDF porous membranes via poly(DOPA) coating and heparin immobilization[J]. Colloids and Surfaces B: Biointerfaces2009;69:152-5.
    [58] Sun M, Su Y, Mu C, Jiang Z. Improved Antifouling Property of PES Ultrafiltration Membranes UsingAdditive of Silica PVP Nanocomposite[J]. Industrial&Engineering Chemistry Research2009;49:790-6.
    [59] Liu Z, Wang W, Gao Y, Xie X. Synthesis of Water-Soluble, Comb-Like Poly (acrylic acid)-g-Poly
    [(ethylene glycol) methyl ether] Copolymers and the Crystallization Behavior of PEG Side Chains[J].Acta Polymerica Sinica2006;1:26.
    [60] Zhang M, Desai T, Ferrari M. Proteins and cells on PEG immobilized silicon surfaces[J]. Biomaterials1998;19:953-60.
    [61] Deible CR, Petrosko P, Johnson PC, Beckman EJ, Russell AJ, Wagner WR. Molecular barriers tobiomaterial thrombosis by modification of surface proteins with polyethylene glycol[J]. Biomaterials1999;20:101-9.
    [62] Gudipati CS, Finlay JA, Callow JA, Callow ME, Wooley KL. The antifouling and fouling-releaseperfomance of hyperbranched fluoropolymer (HBFP)-poly (ethylene glycol)(PEG) composite coatingsevaluated by adsorption of biomacromolecules and the green fouling alga Ulva[J]. Langmuir2005;21:3044-53.
    [63] Alconcel SN, Baas AS, Maynard HD. FDA-approved poly (ethylene glycol)–protein conjugate drugs[J].Polymer Chemistry2011;2:1442-8.
    [64] Jeon S, Lee J, Andrade J, De Gennes P. Protein-surface interactions in the presence of polyethylene oxide: I.Simplified theory[J]. Journal of colloid and interface science1991;142:149-58.
    [65] McPherson T, Kidane A, Szleifer I, Park K. Prevention of protein adsorption by tethered poly (ethyleneoxide) layers: experiments and single-chain mean-field analysis[J]. Langmuir1998;14:176-86.
    [66] Zolk M, Eisert F, Pipper J, Herrwerth S, Eck W, Buck M, et al. Solvation of oligo (ethyleneglycol)-terminated self-assembled monolayers studied by vibrational sum frequency spectroscopy[J].Langmuir2000;16:5849-52.
    [67] Prime KL, Whitesides GM. Self-assembled organic monolayers: model systems for studying adsorption ofproteins at surfaces[J]. Science (New York, NY)1991;252:1164.
    [68]马春风.抗蛋白吸附聚合物的合成与性质[D]:中国科学技术大学;2011.
    [69] Hamburger R, Azaz E, Donbrow M. Autoxidation of polyoxyethylenic non-ionic surfactants and ofpolyethylene glycols[J]. Pharmaceutica acta Helvetiae1975;50:10.
    [70] Herold DA, Keil K, Bruns DE. Oxidation of polyethylene glycols by alcohol dehydrogenase[J].Biochemical pharmacology1989;38:73-6.
    [71] Sheth S, Leckband D. Measurements of attractive forces between proteins and end-grafted poly (ethyleneglycol) chains[J]. Proceedings of the National Academy of Sciences1997;94:8399-404.
    [72] Gong M, Yang S, Ma J-n, Zhang S-p, Winnik FM, Gong Y-k. Tunable cell membrane mimetic surfacesprepared with a novel phospholipid polymer[J]. Applied Surface Science2008;255:555-8.
    [73] Ishihara K, Nomura H, Mihara T, Kurita K, Iwasaki Y, Nakabayashi N. Why do phospholipid polymersreduce protein adsorption? Journal of biomedical materials research1998;39:323-30.
    [74] Lewis AL. Phosphorylcholine-based polymers and their use in the prevention of biofouling[J]. Colloids andSurfaces B: Biointerfaces2000;18:261-75.
    [75] Jiang S, Cao Z. Ultralow‐Fouling, Functionalizable, and Hydrolyzable Zwitterionic Materials and TheirDerivatives for Biological Applications[J]. Advanced Materials2010;22:920-32.
    [76] Zhang Z, Finlay JA, Wang L, Gao Y, Callow JA, Callow ME, et al. Polysulfobetaine-grafted surfaces asenvironmentally benign ultralow fouling marine coatings[J]. Langmuir2009;25:13516-21.
    [77] Yuan J, Zhang J, Zang X, Shen J, Lin S. Improvement of blood compatibility on cellulose membranesurface by grafting betaines[J]. Colloids and Surfaces B: Biointerfaces2003;30:147-55.
    [78] Zhu H, Li B, Li L, Shen J. Molecular dynamics simulation study on zwitterionic structure to maintain thenatural behavior of polyalanine13in aqueous environment[J]. Science in China Series B: Chemistry2008;51:78-85.
    [79] Chen S, Li L, Zhao C, Zheng J. Surface hydration: Principles and applications towardlow-fouling/nonfouling biomaterials[J]. Polymer2010;51:5283-93.
    [80] Chen S, Jiang S. An new avenue to nonfouling materials[J]. Advanced Materials2008;20:335-8.
    [81] Shao Q, He Y, White AD, Jiang S. Difference in hydration between carboxybetaine and sulfobetaine[J].The Journal of Physical Chemistry B2010;114:16625-31.
    [82] Aldred N, Li G, Gao Y, Clare AS, Jiang S. Modulation of barnacle (Balanus amphitrite Darwin) cypridsettlement behavior by sulfobetaine and carboxybetaine methacrylate polymer coatings[J]. Biofouling2010;26:673-83.
    [83] Zhang Z, Zhang M, Chen S, Horbett TA, Ratner BD, Jiang S. Blood compatibility of surfaces withsuperlow protein adsorption[J]. Biomaterials2008;29:4285-91.
    [84] Zhang Z, Chen S, Chang Y, Jiang S. Surface grafted sulfobetaine polymers via atom transfer radicalpolymerization as superlow fouling coatings[J]. The Journal of Physical Chemistry B2006;110:10799-804.
    [85] Yuan J, Chen L, Jiang X, Shen J, Lin S. Chemical graft polymerization of sulfobetaine monomer onpolyurethane surface for reduction in platelet adhesion[J]. Colloids and Surfaces B: Biointerfaces2004;39:87-94.
    [86] Ma C, Zhou H, Wu B, Zhang G. Preparation of Polyurethane with Zwitterionic Side Chains and TheirProtein Resistance[J]. ACS Applied Materials&Interfaces2011;3:455-61.
    [87] Sun Q, Su Y, Ma X, Wang Y, Jiang Z. Improved antifouling property of zwitterionic ultrafiltrationmembrane composed of acrylonitrile and sulfobetaine copolymer[J]. Journal of membrane science2006;285:299-305.
    [88] Luo Y-L, Nan Y-F, Xu F, Chen Y-S, Zhao P. Degradation Behavior and Biocompatibility ofPEG/PANI-Derived Polyurethane Co-polymers[J]. Journal of Biomaterials Science, Polymer Edition2010;21:1143-72.
    [89] Hsu Sh, Kao YC, Lin ZC. Enhanced biocompatibility in biostable poly (carbonate) urethane[J].Macromolecular bioscience2004;4:464-70.
    [90] Childs M, Matlock D, Dorgan J, Ohno T. Surface morphology of poly (caprolactone)-b-poly(dimethylsiloxane)-b-poly (caprolactone) copolymers: effects on protein adsorption[J].Biomacromolecules2001;2:526-37.
    [91] Shimada M, Miyahara M, Tahara H, Shinohara I, Okano T, Kataoka K, et al. Synthesis of2-hydroxyethylmethacrylate-dimethylsiloxane block copolymers and their ability to supress blood platelet aggregation[J].Polymer journal1983;15:649-56.
    [92] Huang S-L, Chao M-S, Ruaan R-C, Lai J-Y. Microphase separated structure and protein adsorption ofpolyurethanes with butadiene soft segment[J]. European Polymer Journal2000;36:285-94.
    [93] Lau KA, Bang J, Hawker CJ, Kim DH, Knoll W. Modulation of protein-surface interactions onnanopatterned polymer films[J]. Biomacromolecules2009;10:1061.
    [94] Lin F-Y, Chen W-Y, Hearn MTW. Thermodynamic analysis of the interaction between proteins and solidsurfaces: application to liquid chromatography[J]. Journal of Molecular Recognition2002;15:55-93.
    [95] Krishnan S, Ayothi R, Hexemer A, Finlay JA, Sohn KE, Perry R, et al. Anti-biofouling properties ofcomblike block copolymers with amphiphilic side chains[J]. Langmuir2006;22:5075-86.
    [96] Callow JA, Callow ME. Trends in the development of environmentally friendly fouling-resistant marinecoatings[J]. Nature communications2011;2:244.
    [97] Gudipati CS, Finlay JA, Callow JA, Callow ME, Wooley KL. The antifouling and fouling-releaseperfomance of hyperbranched fluoropolymer (HBFP)-poly(ethylene glycol)(PEG) composite coatingsevaluated by adsorption of biomacromolecules and the green fouling alga Ulva[J]. Langmuir2005;21:3044-53.
    [98] Gudipati CS, Greenlief CM, Johnson JA, Prayongpan P, Wooley KL. Hyperbranched fluoropolymer andlinear poly (ethylene glycol) based amphiphilic crosslinked networks as efficient antifouling coatings: aninsight into the surface compositions, topographies, and morphologies[J]. Journal of Polymer SciencePart A: Polymer Chemistry2004;42:6193-208.
    [99] Krishnan S, Wang N, Ober CK, Finlay JA, Callow ME, Callow JA, et al. Comparison of the fouling releaseproperties of hydrophobic fluorinated and hydrophilic PEGylated block copolymer surfaces: attachmentstrength of the diatom Navicula and the green alga Ulva[J]. Biomacromolecules2006;7:1449-62.
    [100] Feng S, Wang Q, Gao Y, Huang Y, Qing FL. Synthesis and characterization of a novel amphiphiliccopolymer capable as anti‐biofouling coating material[J]. Journal of Applied Polymer Science2009;114:2071-8.
    [101] Joshi RG, Goel A, Mannari VM, Finlay JA, Callow ME, Callow JA. Evaluating fouling‐resistance andfouling‐release performance of smart polyurethane surfaces: An outlook for efficient andenvironmentally benign marine coatings[J]. Journal of Applied Polymer Science2009;114:3693-703.
    [102] Colak S, Tew GN. Amphiphilic Polybetaines: The Effect of Side-Chain Hydrophobicity on ProteinAdsorption[J]. Environment2012;15:16.
    [103] Weinman CJ, Finlay JA, Park D, Paik MY, Krishnan S, Sundaram HS, et al. ABC triblock surface activeblock copolymer with grafted ethoxylated fluoroalkyl amphiphilic side chains for marineantifouling/fouling-release applications[J]. Langmuir2009;25:12266-74.
    [104] Scardino AJ, de Nys R. Mini review: Biomimetic models and bioinspired surfaces for fouling control[J].Biofouling2011;27:73-86.
    [105] Bhushan B. Biomimetics: lessons from nature–an overview[J]. Philosophical Transactions of the RoyalSociety A: Mathematical, Physical and Engineering Sciences2009;367:1445-86.
    [106] Zhou H, Sun N, Shan H, Ma D, Tong X, Ren L. Bio-inspired wearable characteristic surface: Wearbehavior of cast iron with biomimetic units processed by laser[J]. Applied Surface Science2007;253:9513-20.
    [107] Carman ML, Estes TG, Feinberg AW, Schumacher JF, Wilkerson W, Wilson LH, et al. Engineeredantifouling microtopographies–correlating wettability with cell attachment[J]. Biofouling2006;22:11-21.
    [108] Meyer W, Seegers U. A preliminary approach to epidermal antimicrobial defense in the Delphinidae[J].Marine Biology2004;144:841-4.
    [109] Fish FE, Hui CA. Dolphin swimming–a review[J]. Mammal Review1991;21:181-95.
    [110] Baum C, Meyer W, Stelzer R, Fleischer L-G, Siebers D. Average nanorough skin surface of the pilotwhale (Globicephala melas, Delphinidae): considerations on the self-cleaning abilities based onnanoroughness[J]. Marine Biology2002;140:653-7.
    [111] Bers AV, Wahl M. The influence of natural surface microtopographies on fouling[J]. Biofouling2004;20:43-51.
    [112] Scardino A, De Nys R. Fouling deterrence on the bivalve shell Mytilus galloprovincialis: a physicalphenomenon?[J]. Biofouling2004;20:249-57.
    [113] Scardino A, De Nys R, Ison O, O'Connor W, Steinberg P. Microtopography and antifouling properties ofthe shell surface of the bivalve molluscs Mytilus galloprovincialis and Pinctada imbricata[J]. Biofouling2003;19:221-30.
    [114] Bers A, Diaz E, da Gama B, Vieira-Silva F, Dobretsov S, Valdivia N, et al. Relevance of mytilid shellmicrotopographies for fouling defence–a global comparison[J]. Biofouling2010;26:367-77.
    [115] Ralston E, Swain G. Bioinspiration—the solution for biofouling control?[J]. Bioinspiration&biomimetics2009;4:015007.
    [116] Scardino A, Guenther J, De Nys R. Attachment point theory revisited: the fouling response to amicrotextured matrix[J]. Biofouling2008;24:45-53.
    [117] Wooley K. New nanoparticle coating mimics dolphin skin prevents' biofouling'of ship hulls. InnovationsReport-Forum for Science, Industry and Business2002.
    [118] Cao X, Pettitt ME, Wode F, Arpa Sancet MP, Fu J, Ji J, et al. Interaction of Zoospores of the Green AlgaUlva with Bioinspired Micro‐and Nanostructured Surfaces Prepared by PolyelectrolyteLayer‐by‐Layer Self‐Assembly[J]. Advanced Functional Materials2010;20:1984-93.
    [119] Lang A, Motta P, Hidalgo P, Westcott M. Bristled shark skin: a microgeometry for boundary layer control?[J].Bioinspiration&biomimetics2008;3:046005.
    [120] Bechert D, Bruse M, Hage W. Experiments with three-dimensional riblets as an idealized model of sharkskin[J]. Experiments in fluids2000;28:403-12.
    [121] Raschi W, Tabit C. Functional aspects of placoid scales: a review and update[J]. Marine and FreshwaterResearch1992;43:123-47.
    [122] Kesel A, Liedert R. Learning from nature: non-toxic biofouling control by shark skin effect[J].Comparative Biochemistry and Physiology Part A: Molecular&Integrative Physiology2007;146:S130.
    [123] Schumacher JF, Christopher J, Callow ME, Finlay JA, Callow JA, Brennan AB. Engineered nanoforcegradients for inhibition of settlement (attachment) of swimming algal spores. Langmuir2008;24:4931-7.
    [124] Magin CM, Long CJ, Cooper SP, Ista LK, López GP, Brennan AB. Engineered antifoulingmicrotopographies: the role of Reynolds number in a model that predicts attachment of zoospores of Ulvaand cells of Cobetia marina[J]. Biofouling2010;26:719-27.
    [125] Long CJ. Analytic methods for predicting biosettlement on patterned surfaces [D]. University of Florida,2009.
    [126]Magin C M. Engineered microtopographies and surface chemistries direct cell attachment and function[M].2010.
    [127] Schumacher JF, Aldred N, Callow ME, Finlay JA, Callow JA, Clare AS, et al. Species-specific engineeredantifouling topographies: correlations between the settlement of algal zoospores and barnacle cyprids[J].Biofouling2007;23:307-17.
    [128] Barthlott W, Neinhuis C. Purity of the sacred lotus, or escape from contamination in biological surfaces[J].Planta1997;202:1-8.
    [129] Guo Z, Liu W. Biomimic from the superhydrophobic plant leaves in nature: Binary structure and unitarystructure[J]. Plant Science2007;172:1103-12.
    [130] Wenzel RN. Resistance of solid surfaces to wetting by water[J]. Ind Eng Chem1936;28:988-94.
    [131] Cassie A. Contact angles[J]. Discuss Faraday Soc1948;3:11-6.
    [132] Cassie A, Baxter S. Wettability of porous surfaces[J]. Transactions of the Faraday Society1944;40:546-51.
    [133] Mao C, Liang C, Luo W, Bao J, Shen J, Hou X, et al. Preparation of lotus-leaf-like polystyrene micro-andnanostructure films and its blood compatibility[J]. Journal of Materials Chemistry2009;19:9025-9.
    [134] Koc Y, De Mello A, McHale G, Newton MI, Roach P, Shirtcliffe NJ. Nano-scale superhydrophobicity:suppression of protein adsorption and promotion of flow-induced detachment[J]. Lab on a Chip2008;8:582-6.
    [135] Salta M, Wharton JA, Stoodley P, Dennington SP, Goodes LR, Werwinski S, et al. Designing biomimeticantifouling surfaces[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical andEngineering Sciences2010;368:4729-54.
    [136] Chapman J, Regan F. Nanofunctionalized Superhydrophobic Antifouling Coatings for EnvironmentalSensor Applications—Advancing Deployment with Answers from Nature[J]. Advanced EngineeringMaterials2012;14:B175-B84.
    [137] Ma C-f, Yang H-j. Anti-biofouling by degradation of polymers[J]. Chinese Journal of Polymer Science2012;30:337-42.
    [138] Dalsin JL, Messersmith PB. Bioinspired antifouling polymers[J]. Materials Today2005;8:38-46.
    [139] Gooding JJ, Ciampi S. The molecular level modification of surfaces: from self-assembled monolayers tocomplex molecular assemblies[J]. Chemical Society Reviews2011;40:2704-18.
    [140] Bluemmel J, Perschmann N, Aydin D, Drinjakovic J, Surrey T, Lopez-Garcia M, et al. Protein repellentproperties of covalently attached PEG coatings on nanostructured SiO2-based interfaces[J]. Biomaterials2007;28:4739-47.
    [141] Ulman A. Formation and structure of self-assembled monolayers[J]. Chemical reviews1996;96:1533.
    [142] HolmLin RE, Chen X, Chapman RG, Takayama S, Whitesides GM. Zwitterionic SAMs that resistnonspecific adsorption of protein from aqueous buffer[J]. Langmuir2001;17:2841-50.
    [143] Ladd J, Zhang Z, Chen S, Hower JC, Jiang S. Zwitterionic polymers exhibiting high resistance tononspecific protein adsorption from human serum and plasma[J]. Biomacromolecules2008;9:1357-61.
    [144] Ma Y, Liu L, Yang W. Photo-induced living/controlled surface radical grafting polymerization and itsapplication in fabricating3-D micro-architectures on the surface of flat/particulate organic substrates[J].Polymer2011;52:4159-73.
    [145] Yang W, R nby B. Radical living graft polymerization on the surface of polymeric materials[J].Macromolecules1996;29:3308-10.
    [146] Ma H, Davis RH, Bowman CN. A novel sequential photoinduced living graft polymerization[J].Macromolecules2000;33:331-5.
    [147] Janorkar AV, Proulx SE, Metters AT, Hirt DE. Surface‐confined photopolymerization of single‐andmixed‐monomer systems to tailor the wettability of poly (L‐lactide) film[J]. Journal of PolymerScience Part A: Polymer Chemistry2006;44:6534-43.
    [148] Yamada K, Takeda S, Hirata M. Improvement of autohesive and adhesive properties of polyethyleneplates by photografting with glycidyl methacrylate[J]. Journal of Applied Polymer Science2007;103:493-500.
    [149] Taniguchi M, Belfort G. Low protein fouling synthetic membranes by UV-assisted surface graftingmodification: varying monomer type[J]. Journal of membrane science2004;231:147-57.
    [150] Goddard JM, Hotchkiss J. Polymer surface modification for the attachment of bioactive compounds[J].Progress in polymer science2007;32:698-725.
    [151] Deng J, Wang L, Liu L, Yang W. Developments and new applications of UV-induced surface graftpolymerizations[J]. Progress in polymer science2009;34:156-93.
    [152] Reddy SK, Sebra RP, Anseth KS, Bowman CN. Living radical photopolymerization induced grafting onthiol–ene based substrates[J]. Journal of Polymer Science Part A: Polymer Chemistry2005;43:2134-44.
    [153] Luo N, Metters AT, Hutchison JB, Bowman CN, Anseth KS. A methacrylated photoiniferter as achemical basis for microlithography: micropatterning based on photografting polymerization[J].Macromolecules2003;36:6739-45.
    [154] Sebra RP, Anseth KS, Bowman CN. Integrated surface modification of fully polymeric microfluidicdevices using living radical photopolymerization chemistry[J]. Journal of Polymer Science Part A:Polymer Chemistry2006;44:1404-13.
    [155] Simms HM, Bowman CM, Anseth KS. Using living radical polymerization to enable facile incorporationof materials in microfluidic cell culture devices[J]. Biomaterials2008;29:2228-36.
    [156]周其凤,胡汉杰,高分子化学[M].化学工业出版社;2001.
    [157] Zhao Y-H, Wee K-H, Bai R. Highly hydrophilic and low-protein-fouling polypropylene membraneprepared by surface modification with sulfobetaine-based zwitterionic polymer through a combinedsurface polymerization method[J]. Journal of membrane science2010;362:326-33.
    [158] Rodriguez‐Emmenegger C, Hasan E, Pop‐Georgievski O, Houska M, Brynda E, Alles AB.Controlled/Living Surface‐Initiated ATRP of Antifouling Polymer Brushes from Gold in PBS andBlood Sera as a Model Study for Polymer Modifications in Complex Biological Media[J].Macromolecular bioscience2012;12:525-32.
    [159] Roy D, Knapp JS, Guthrie JT, Perrier S. Antibacterial cellulose fiber via RAFT surface graftpolymerization[J]. Biomacromolecules2007;9:91-9.
    [160] Ying L, Yu W, Kang E, Neoh K. Functional and surface-active membranes from poly (vinylidenefluoride)-graft-poly (acrylic acid) prepared via RAFT-mediated graft copolymerization[J]. Langmuir2004;20:6032-40.
    [161] Chelmowski R, K fer D, K ster SD, Klasen T, Winkler T, Terfort A, et al. Postformation modification ofSAMs: Using click chemistry to functionalize organic surfaces[J]. Langmuir2009;25:11480-5.
    [162] Parrish B, Breitenkamp RB, Emrick T. PEG-and peptide-grafted aliphatic polyesters by click chemistry[J].Journal of the American Chemical Society2005;127:7404-10.
    [163] Lee BS, Lee JK, Kim W-J, Jung YH, Sim SJ, Lee J, et al. Surface-initiated, atom transfer radicalpolymerization of oligo (ethylene glycol) methyl ether methacrylate and subsequent click chemistry forbioconjugation[J]. Biomacromolecules2007;8:744-9.
    [164] Cai T, Neoh K, Kang E, Teo S. Surface-Functionalized and Surface-Functionalizable Poly (vinylidenefluoride) Graft Copolymer Membranes via Click Chemistry and Atom Transfer RadicalPolymerization[J]. Langmuir2011;27:2936-45.
    [165] Lee H, Dellatore SM, Miller WM, Messersmith PB. Mussel-inspired surface chemistry for multifunctionalcoatings[J]. Science2007;318:426-30.
    [166] Dalsin JL, Hu B-H, Lee BP, Messersmith PB. Mussel adhesive protein mimetic polymers for thepreparation of nonfouling surfaces[J]. Journal of the American Chemical Society2003;125:4253-8.
    [167] Gao C, Li G, Xue H, Yang W, Zhang F, Jiang S. Functionalizable and ultra-low fouling zwitterionicsurfaces via adhesive mussel mimetic linkages[J]. Biomaterials2010;31:1486-92.
    [168] Super DE. The psychology of careers: Harper&Row New York;1957.
    [169] Bressy C, Margaillan A. Erosion study of poly (trialkylsilyl methacrylate)-based antifouling coatings[J].Progress in organic coatings2009;66:400-5.
    [170] Wang SJ, Fan XD, Si QF, Kong J, Liu YY, Qiao WQ, et al. Preparation and characterization of ahyperbranched polyethoxysiloxane based anti‐fouling coating[J]. Journal of Applied Polymer Science2006;102:5818-24.
    [171] Dimitriou MD, Zhou Z, Yoo H-S, Killops KL, Finlay JA, Cone G, et al. A general approach to controllingthe surface composition of poly (ethylene oxide)-based block copolymers for antifouling coatings[J].Langmuir2011;27:13762-72.
    [172] Wu JT, Huang CH, Liang WC, Wu YL, Yu J, Chen HY. Reactive Polymer Coatings: A General Route toThiol‐ene and Thiol‐yne Click Reactions[J]. Macromolecular rapid communications2012;33:922-7.
    [173] Wang D, Bierwagen GP. Sol–gel coatings on metals for corrosion protection[J]. Progress in organiccoatings2009;64:327-38.
    [174] Uhlmann D, Teowee G. Sol-gel science and technology: current state and future prospects[J]. Journal ofSol-Gel Science and Technology1998;13:153-62.
    [175] Wen J, Wilkes GL. Organic/inorganic hybrid network materials by the sol-gel approach[J]. Chemistry ofMaterials1996;8:1667-81.
    [176] Ogoshi T, Chujo Y. Organic–inorganic polymer hybrids prepared by the sol-gel method[J]. CompositeInterfaces2005;11:539-66.
    [177] Tang Y, Finlay JA, Kowalke GL, Meyer AE, Bright FV, Callow ME, et al. Hybrid xerogel films as novelcoatings for antifouling and fouling release[J]. Biofouling2005;21:59-71.
    [178]韩鑫,张德远.鲨鱼皮复制工艺研究[J].中国科学: E辑2008;38:9-15.
    [179] Koch K, Dommisse A, Barthlott W, Gorb SN. The use of plant waxes as templates for micro-andnanopatterning of surfaces[J]. Acta Biomaterialia2007;3:905-9.
    [180] Mele E, Girardo S, Pisignano D. Strelitzia reginae Leaf as a Natural Template for Anisotropic Wetting andSuperhydrophobicity[J]. Langmuir2012;28:5312-7.
    [181] Losic D, Mitchell JG, Lal R, Voelcker NH. Rapid Fabrication of Micro‐and Nanoscale Patterns byReplica Molding from Diatom Biosilica[J]. Advanced Functional Materials2007;17:2439-46.
    [182] Sun M, Luo C, Xu L, Ji H, Ouyang Q, Yu D, et al. Artificial lotus leaf by nanocasting[J]. Langmuir2005;21:8978-81.
    [183] Zhang T, Li M, Su B, Ye C, Li K, Shen W, et al. Bio-inspired anisotropic micro/nano-surface from anatural stamp: grasshopper wings[J]. Soft Matter2011;7:7973-5.
    [184] Jin M, Feng X, Xi J, Zhai J, Cho K, Feng L, et al. Super‐Hydrophobic PDMS Surface with Ultra‐LowAdhesive Force[J]. Macromolecular rapid communications2005;26:1805-9.
    [185] Baldacchini T, Carey JE, Zhou M, Mazur E. Superhydrophobic surfaces prepared by microstructuring ofsilicon using a femtosecond laser[J]. Langmuir2006;22:4917-9.
    [186] Petronis, Berntsson K, Gold J, Gatenholm P. Design and microstructuring of PDMS surfaces forimproved marine biofouling resistance[J]. Journal of Biomaterials Science, Polymer Edition2000;11:1051-72.
    [187] Feinberg AW, Seegert CA, Gibson AL, Brennan AB. Engineering micrometer and nanometer scalefeatures in polydimethylsiloxane elastomers for controlled cell function. MATERIALS RESEARCHSOCIETY SYMPOSIUM PROCEEDINGS: Cambridge Univ Press;2002. p.181-8.
    [188] Jung YC, Bhushan B. Mechanically Durable Carbon Nanotube Composite Hierarchical Structures withSuperhydrophobicity, Self-Cleaning, and Low-Drag[J]. ACS nano2009;3:4155-63.
    [189] Bhushan B, Jung YC. Natural and biomimetic artificial surfaces for superhydrophobicity, self-cleaning,low adhesion, and drag reduction[J]. Progress in Materials Science2011;56:1-108.
    [190] Ahn SH, Guo LJ. High‐Speed Roll‐to‐Roll Nanoimprint Lithography on Flexible PlasticSubstrates[J]. Advanced Materials2008;20:2044-9.
    [191] Fagan MD, Kim BH, Yao D. A novel process for continuous thermal embossing of large‐areananopatterns onto polymer films[J]. Advances in Polymer Technology2009;28:246-56.
    [192] Yan Y, Gao N, Barthlott W. Mimicking natural superhydrophobic surfaces and grasping the wettingprocess: A review on recent progress in preparing superhydrophobic surfaces[J]. Advances in colloid andinterface science2011;169:80-105.
    [193] Tadanaga K, Kitamuro K, Matsuda A, Minami T. Formation of superhydrophobic alumina coating filmswith high transparency on polymer substrates by the sol-gel method[J]. Journal of Sol-Gel Science andTechnology2003;26:705-8.
    [194] Xiu Y, Hess DW, Wong C. UV and thermally stable superhydrophobic coatings from sol–gelprocessing[J]. Journal of colloid and interface science2008;326:465-70.
    [195] Han JT, Lee DH, Ryu CY, Cho K. Fabrication of superhydrophobic surface from a supramolecularorganosilane with quadruple hydrogen bonding[J]. Journal of the American Chemical Society2004;126:4796-7.
    [196] Xie Q, Xu J, Feng L, Jiang L, Tang W, Luo X, et al. Facile Creation of a Super‐Amphiphobic CoatingSurface with Bionic Microstructure[J]. Advanced Materials2004;16:302-5.
    [197] Han JT, Zheng Y, Cho JH, Xu X, Cho K. Stable superhydrophobic organic-inorganic hybrid films byelectrostatic self-assembly[J]. The Journal of Physical Chemistry B2005;109:20773-8.
    [198] Ogihara H, Xie J, Okagaki J, Saji T. Simple method for preparing superhydrophobic paper:spray-deposited hydrophobic silica nanoparticle coatings exhibit high water-repellency andtransparency[J]. Langmuir2012;28:4605-8.
    [199] ner D, McCarthy TJ. Ultrahydrophobic surfaces. Effects of topography length scales on wettability[J].Langmuir2000;16:7777-82.
    [200] Verplanck N, Galopin E, Camart J-C, Thomy V, Coffinier Y, Boukherroub R. Reversible electrowettingon superhydrophobic silicon nanowires[J]. Nano letters2007;7:813-7.
    [201]蒲侠,李光吉,刘云鸿.基于鲨鱼皮表面和基体结构的仿生减阻膜材及其制备方法[P].中国:201010532238.0,2011.08.10
    [202] Chung S, Im Y, Kim H, Jeong H, Dornfeld DA. Evaluation of micro-replication technology using siliconerubber molds and its applications[J]. International Journal of Machine Tools and Manufacture2003;43:1337-45.
    [203]刘岁林,田云飞,陈红,吉晓江.原子力显微镜原理与应用技术[J].现代仪器2006;6:9-12.
    [204] Mahesh G, Philip T, Radhakrishnan G. Polyurethane telechelic cationomers containing end functional4-vinylpyridinium moieties[J]. Polymer Bulletin1996;37:737-42.
    [205] Wilhelm C, Rivaton A, Gardette J-L. Infrared analysis of the photochemical behaviour of segmentedpolyurethanes:3. Aromatic diisocyanate based polymers[J]. Polymer1998;39:1223-32.
    [206] Yilgor I, Yilgor E, Guler IG, Ward TC, Wilkes GL. FTIR investigation of the influence of diisocyanatesymmetry on the morphology development in model segmented polyurethanes[J]. Polymer2006;47:4105-14.
    [207] Zhang S, Ren Z, He S, Zhu Y, Zhu C. FTIR spectroscopic characterization of polyurethane-urea modelhard segments (PUUMHS) based on three diamine chain extenders[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy2007;66:188-93.
    [208] Paik Sung C, Smith T, Sung N. Properties of segmented polyether poly (urethaneureas) based of2,4-toluene diisocyanate.2. Infrared and mechanical studies[J]. Macromolecules1980;13:117-21.
    [209] Franville A, Zambon D, Mahiou R, Chou S, Troin Y, Cousseins J. Synthesis and optical features of aneuropium organic–inorganic silicate hybrid[J]. Journal of alloys and compounds1998;275:831-4.
    [210] Raballand V, Benedikt J, Von Keudell A. Deposition of carbon-free silicon dioxide from purehexamethyldisiloxane using an atmospheric microplasma jet[J]. Applied Physics Letters2008;92:091502--3.
    [211] Cordelair J, Greil P. Electrical conductivity measurements as a microprobe for structure transitions inpolysiloxane derived Si–O–C ceramics[J]. Journal of the European Ceramic Society2000;20:1947-57.
    [212]苏炳煌,李光吉,蒲侠,雷朝媛.鲨鱼皮表面微结构在高分子表面的复制方法初探[J].材料研究与应用2008;2:460-4.
    [213] Choi S-J, Yoo PJ, Baek SJ, Kim TW, Lee HH. An ultraviolet-curable mold for sub-100-nm lithography[J].Journal of the American Chemical Society2004;126:7744-5.
    [214] Ma C, Hou Y, Liu S, Zhang G. Effect of microphase separation on the protein resistance of a polymericsurface[J]. Langmuir2009;25:9467-72.
    [215] Leung LM, Koberstein JT. DSC annealing study of microphase separation and multiple endothermicbehavior in polyether-based polyurethane block copolymers[J]. Macromolecules1986;19:706-13.
    [216] Eceiza A, Martin M, De La Caba K, Kortaberria G, Gabilondo N, Corcuera M, et al. Thermoplasticpolyurethane elastomers based on polycarbonate diols with different soft segment molecular weight andchemical structure: mechanical and thermal properties[J]. Polymer Engineering&Science2008;48:297-306.
    [217]杜晨光,夏帆,王树涛,王京霞,宋延林,江雷.仿生智能浸润性表面研究的新进展[J].高等学校化学学报2010:421-31.
    [218] Quéré D. Non-sticking drops[J]. Reports on Progress in Physics2005;68:2495.
    [219] Patankar NA. On the modeling of hydrophobic contact angles on rough surfaces[J]. Langmuir2003;19:1249-53.
    [220] Marmur A. The lotus effect: superhydrophobicity and metastability[J]. Langmuir2004;20:3517-9.
    [221] Ishino C, Okumura K, Quéré D. Wetting transitions on rough surfaces[J]. EPL (Europhysics Letters)2004;68:419.
    [222] Brunet P, Lapierre F, Thomy V, Coffinier Y, Boukherroub R. Extreme resistance of superhydrophobicsurfaces to impalement: reversible electrowetting related to the impacting/bouncing drop test[J].Langmuir2008;24:11203-8.
    [223] Tsai P, Pacheco S, Pirat C, Lefferts L, Lohse D. Drop impact upon micro-and nanostructuredsuperhydrophobic surfaces[J]. Langmuir2009;25:12293-8.
    [224] Yarin A. Drop impact dynamics: splashing, spreading, receding, bouncing…[J]. Annu Rev Fluid Mech2006;38:159-92.
    [225] Levkin PA, Svec F, Fréchet JM. Porous polymer coatings: a versatile approach to superhydrophobicsurfaces[J]. Advanced Functional Materials2009;19:1993-8.
    [226] Dubois J, Gazard M, Zann A. Liquid‐crystal orientation induced by polymeric surfaces[J]. Journal ofApplied Physics1976;47:1270-4.
    [227]李艺,程镕时.蛋白质在固体表面吸附的研究进展[J].高分子通报2007;3:41-9.
    [228] Rozière J, Jones DJ, Marrony M, Glipa X, Mula B. On the doping of sulfonated polybenzimidazole withstrong bases[J]. Solid State Ionics2001;145:61-8.
    [229] Innocenzi P. Infrared spectroscopy of sol–gel derived silica-based films: a spectra-microstructureoverview[J]. Journal of Non-Crystalline Solids2003;316:309-19.
    [230] Kamiya K, Yoko T, Tanaka K, Takeuchi M. Thermal evolution of gels derived from CH3Si (OC2H5)3by the sol-gel method[J]. Journal of Non-Crystalline Solids1990;121:182-7.
    [231] Kitano H, Imai M, Sudo K, Ide M. Hydrogen-bonded network structure of water in aqueous solution ofsulfobetaine polymers[J]. The Journal of Physical Chemistry B2002;106:11391-6.
    [232] Viswanathan K, Ozhalici H, Elkins CL, Heisey C, Ward TC, Long TE. Multiple hydrogen bonding forreversible polymer surface adhesion. Langmuir2006;22:1099-105.
    [233] Yin Y, Zhang Y, Chi Z, Xu J. Self-catalytic cross-linking reaction and reactive mechanism studies ofα-aminomethyl triethoxysilanes for α, ω-dihydroxy poly (dimethylsiloxane)[J]. European PolymerJournal2008;44:2284-94.
    [234]沈少雄,刘继翔,陈银兰,毛豫兰,张国寅,路建乡.无银光致变色玻璃的结构与性能研究[J].玻璃1993;4:000.
    [235] Kessel CR, Granick S. Formation and characterization of a highly ordered and well-anchored alkylsilanemonolayer on mica by self-assembly[J]. Langmuir1991;7:532-8.
    [236] Dave BC, Soyez H, Miller JM, Dunn B, Valentine JS, Zink JI. Synthesis of protein-doped sol-gel SiO2thin films: evidence for rotational mobility of encapsulated cytochrome c[J]. Chemistry of Materials1995;7:1431-4.
    [237] Kohjiya S, Ochiai K, Yamashita S. Preparation of inorganic/organic hybrid gels by the sol-gel process[J].Journal of Non-Crystalline Solids1990;119:132-5.
    [238]林金娜,侯有军,曾幸荣. UV固化有机硅/SiO2杂化涂料的制备及性能水[J].华南理工大学学报(自然科学版)2007;35.
    [239] Herrera NN, Letoffe J-M, Reymond J-P, Bourgeat-Lami E. Silylation of laponite clay particles withmonofunctional and trifunctional vinyl alkoxysilanes[J]. Journal of Materials Chemistry2005;15:863-71.
    [240] Negrete-Herrera N, Putaux J-L, Bourgeat-Lami E. Synthesis of polymer/Laponite nanocomposite latexparticles via emulsion polymerization using silylated and cation-exchanged Laponite clay platelets[J].Progress in solid state chemistry2006;34:121-37.
    [241] Durig J, Hawley C. Vibrational assignments and torsional barrier heights of the dimethylhalosilanes[J].The Journal of Chemical Physics1973;58:237.
    [242] Shukla N, Liu C, Jones PM, Weller D. FTIR study of surfactant bonding to FePt nanoparticles[J]. Journalof Magnetism and Magnetic materials2003;266:178-84.
    [243] Du P, Mu B, Wang Y, Shi H, Xue D, Liu P. Facile approach for temperature-responsive polymericnanocapsules with movable magnetic cores[J]. Materials Letters2011;65:1579-81.
    [244] Liaw D-J, Huang C-C. Dilute solution properties of poly (3-dimethyl acryloyloxyethyl ammoniumpropiolactone)[J]. Polymer1997;38:6355-62.
    [245] Wu CS, Liu YL, Chiu YS. Epoxy resins possessing flame retardant elements from silicon incorporatedepoxy compounds cured with phosphorus or nitrogen containing curing agents[J]. Polymer2002;43:4277-84.
    [246] Chen S, Zheng J, Li L, Jiang S. Strong resistance of phosphorylcholine self-assembled monolayers toprotein adsorption: insights into nonfouling properties of zwitterionic materials[J]. Journal of theAmerican Chemical Society2005;127:14473-8.
    [247] Kallies B, Mitzner R. Models of water-assisted hydrolyses of methyl formate, formamide, and urea fromcombined DFT-SCRF calculations[J]. Molecular modeling annual1998;4:183-96.
    [248] Bai H, Huang Z, Yang W. Visible light‐induced living surface grafting polymerization for the potentialbiological applications[J]. Journal of Polymer Science Part A: Polymer Chemistry2009;47:6852-62.
    [249] Ming Z, Jian L, Chunxia W, Xiaokang Z, Lan C. Fluid drag reduction on superhydrophobic surfacescoated with carbon nanotube forests (CNTs)[J]. Soft Matter2011;7:4391-6.
    [250] Ignjatovi N, Savi V, Najman S, Plav i M, Uskokovi D. A study of HAp/PLLA composite as asubstitute for bone powder, using FT-IR spectroscopy[J]. Biomaterials2001;22:571-5.
    [251] Le Moel A, Duraud J, Lecomte C, Valin M, Henriot M, Le Gressus C, et al. Modifications induced inpolyvinylidene fluoride by energetic ions. Nuclear Instruments and Methods in Physics Research SectionB: Beam Interactions with Materials and Atoms1988;32:115-9.
    [252] Mendelovici E, Villalba R, Sagarzazu A, Carias O. THE1640r-1INFRARED BAND, MONITOR FORTHE GAIN AND THERMAL STABILITY OF WATER PRODUCED IN GROUND KAOLINITES[J].Clay Minerals1995;30:307-13.
    [253] Hejazi V, Nosonovsky M. Wetting Transitions in Two-, Three-, and Four-Phase Systems[J]. Langmuir2011;28:2173-80.
    [254] Kobayashi M, Terayama Y, Yamaguchi H, Terada M, Murakami D, Ishihara K, et al. Wettability andantifouling behavior on the surfaces of superhydrophilic polymer brushes[J]. Langmuir2012;28:7212-22.
    [255] Choi C-H, Kim C-J. Large slip of aqueous liquid flow over a nanoengineered superhydrophobic surface[J].Physical review letters2006;96:066001.
    [256] Voronov RS, Papavassiliou DV, Lee LL. Slip length and contact angle over hydrophobic surfaces[J].Chemical physics letters2007;441:273-6.
    [257] Neto C, Evans DR, Bonaccurso E, Butt H-J, Craig VS. Boundary slip in Newtonian liquids: a review ofexperimental studies[J]. Reports on Progress in Physics2005;68:2859.
    [258] Maali A, Wang Y, Bhushan B. Evidence of the no-slip boundary condition of water flow betweenhydrophilic surfaces using atomic force microscopy[J]. Langmuir2009;25:12002-5.
    [259] Bonaccurso E, Kappl M, Butt H-J. Hydrodynamic force measurements: boundary slip of water onhydrophilic surfaces and electrokinetic effects[J]. Physical review letters2002;88:076103.
    [260] Nishimoto S, Bhushan B. Bioinspired self-cleaning surfaces with superhydrophobicity,superoleophobicity, and superhydrophilicity[J]. RSC Advances2013;3:671-90.
    [261]斯芳芳,张靓,赵宁,陈莉,徐坚.超亲水表面制备方法及其应用[J].化学进展2011;23:1831-40.
    [262] El‐Aasser M, Makgawinata T, Vanderhoff JW, Pichot C. Batch and semicontinuous emulsioncopolymerization of vinyl acetat–butyl acrylate. I. Bulk, surface, and colloidal properties of copolymerlatexes[J]. Journal of Polymer Science: Polymer Chemistry Edition1983;21:2363-82.
    [263] St ber W, Fink A, Bohn E. Controlled growth of monodisperse silica spheres in the micron size range[J].Journal of colloid and interface science1968;26:62-9.
    [264] Brown D, Evans JR, Fletton RA. Structures of three novel β-lactams isolated from Streptomycesclavuligerus[J]. Journal of the Chemical Society, Chemical Communications1979:282-3.
    [265] Pradier CM, Salmain M, Liu Z, Methivier C. Comparison of different procedures of biotin immobilizationon gold for the molecular recognition of avidin: an FT‐IRRAS study[J]. Surface and interface analysis2002;34:67-71.
    [266] Zhang Z, Cheng G, Carr LR, Vaisocherová H, Chen S, Jiang S. The hydrolysis of cationicpolycarboxybetaine esters to zwitterionic polycarboxybetaines with controlled properties[J]. Biomaterials2008;29:4719-25.
    [267] Pe a-Alonso R, Rubio Alonso J, Rubio Alonso F, Oteo Mazo JL. Estudio por espectroscopía infrarroja dela reacción de obtención de geles de borosilicato con diferentes relaciones Si/B.2005.
    [268] Gupta P, Dillon A, Bracker A, George S. FTIR studies of H2O and D2O decomposition on porous siliconsurfaces[J]. Surface science1991;245:360-72.
    [269] Liu N, Assink RA, Smarsly B, Brinker CJ. Synthesis and characterization of highly ordered functionalmesoporous silica thin films with positively chargeable–NH2groups[J]. Chemical Communications2003:1146-7.
    [270] Rankin SE, Tan B, LehmLer H-J, Hindman KP, Knutson BL. Well-ordered mesoporous silica prepared bycationic fluorinated surfactant templating[J]. Microporous and mesoporous materials2004;73:197-202.
    [271] Aguiar H, Serra J, González P, León B. Structural study of sol–gel silicate glasses by IR and Ramanspectroscopies[J]. Journal of Non-Crystalline Solids2009;355:475-80.
    [272] Berendjchi A, Khajavi R, Yazdanshenas ME. Fabrication of superhydrophobic and antibacterial surfaceon cotton fabric by doped silica-based sols with nanoparticles of copper[J]. Nanoscale research letters2011;6:594.
    [273] Beganskien A, Sirutkaitis V, Kurtinaitien M, Ju k nas R, Kareiva A. FTIR, TEM and NMRinvestigations of St ber silica nanoparticles[J]. Mater Sci (Med iagotyra)2004;10:287-90.
    [274] Dong H, Ye P, Zhong M, Pietrasik J, Drumright R, Matyjaszewski K. Superhydrophilic Surfaces viaPolymer SiO2Nanocomposites[J]. Langmuir2010;26:15567-73.
    [275] Lin W, Zhang J, Wang Z, Chen S. Development of robust biocompatible silicone with high resistance toprotein adsorption and bacterial adhesion[J]. Acta Biomaterialia2011;7:2053-9.
    [276] Cebeci F, Wu Z, Zhai L, Cohen RE, Rubner MF. Nanoporosity-driven superhydrophilicity: a means tocreate multifunctional antifogging coatings[J]. Langmuir2006;22:2856-62.
    [277] Pasquier N, Keul H, Heine E, Moeller M. From multifunctionalized poly (ethylene imine) s towardantimicrobial coatings[J]. Biomacromolecules2007;8:2874-82.
    [278] Ahlstr m B, Thompson R, Edebo L. The effect of hydrocarbon chain length, pH, and temperature on thebinding and bactericidal effect of amphiphilic betaine esters on Salmonella tvphimurium[J]. Apmis1999;107:318-24.
    [279] Lu G, Wu D, Fu R. Studies on the synthesis and antibacterial activities of polymeric quaternaryammonium salts from dimethylaminoethyl methacrylate[J]. Reactive and Functional Polymers2007;67:355-66.
    [280] Kenawy E-R, Worley S, Broughton R. The chemistry and applications of antimicrobial polymers: astate-of-the-art review[J]. Biomacromolecules2007;8:1359-84.
    [281]孙军德,杨幼慧,赵春燕.微生物学[M].东南大学出版社;2009.
    [282] Zhang Z, O'shaughnessey WS, Hencke M, Squier T, Loose CR. SYNTHETIC NON-FOULING AMINOACIDS[P]. Google Patents;2008.
    [283] Ignjatovi N, Savi V, Najman S, Plav i M, Uskokovi D. A study of HAp/PLLA composite as asubstitute for bone powder, using FT-IR spectroscopy[J]. Biomaterials2001;22:571-5.
    [284] Rozière J, Jones DJ, Marrony M, Glipa X, Mula B. On the doping of sulfonated polybenzimidazole withstrong bases[J]. Solid State Ionics2001;145:61-8.
    [285] Yoshida H, Miura Y. Behavior of water in perfluorinated ionomer membranes containing variousmonovalent cations[J]. Journal of membrane science1992;68:1-10.
    [286] Hatakeyama T, Nakamura K, Hatakeyama H. Differential thermal analysis of styrene derivatives relatedto lignin[J]. Polymer1978;19:593-4.
    [287] Quinn FX, Kampff E, Smyth G, McBrierty VJ. Water in hydrogels.1. A study of water in poly(N-vinyl-2-pyrrolidone/methyl methacrylate) copolymer[J]. Macromolecules1988;21:3191-8.
    [288] Hatakeyama T, Quinn F. Fundamentals and Applications to Polymer Science: Thermal Analysis;1994.
    [289] Lue SJ, Shieh S-J. Modeling water states in polyvinyl alcohol-fumed silica nano-composites[J]. Polymer2009;50:654-61.
    [290] Fushimi H, Ando I, Iijima T. States of water in cationically charged poly (vinyl alcohol) membranes[J].Polymer1991;32:241-8.
    [291] Hu DS-G, Lin MT. Water-polymer interactions and critical phenomena of swelling in inhomogeneouspoly (acrylonitrile-acrylamide-acrylic acid) gels[J]. Polymer1994;35:4416-22.
    [292] Liu Y, Huglin MB. Observations by DSC on bound water structure in some physically crosslinkedhydrogels[J]. Polymer international1995;37:63-7.
    [293] Apostolov A, Fakirov S, Vassileva E, Patil R, Mark J. DSC and TGA studies of the behavior of water innative and crosslinked gelatin[J]. Journal of Applied Polymer Science1999;71:465-70.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700