用户名: 密码: 验证码:
纳米碳酸钙用作润滑油添加剂的摩擦学性能和机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米粒子是介于宏观物质与微观原子或分子之间的过渡亚稳态物质,具有小尺寸效应、量子尺寸效应、表面效应与宏观量子隧道效应等,从而表现出一些特殊的性质。将纳米粒子加入到润滑油中,可以提高其极压性能和抗磨性能,减少摩擦阻力,延长机器零部件的使用寿命。本文采用X射线衍射仪和透射电镜检验了纳米碳酸钙粒子的粒径和内部结构,根据亲水亲油平衡值(HLB),选择合适的表面活性剂将其加入到含有纳米碳酸钙粒子的润滑油中进行表面改性。通过测试最大无卡咬负荷、观察磨斑表面形貌和测定磨斑直径以及测试摩擦系数,对纳米碳酸钙粒子的极压性能和抗磨减摩性能进行了分析和研究;通过XPS测试对纳米碳酸钙润滑油添加剂进行了摩擦化学的分析和研究,对于纳米碳酸钙粒子的抗磨减摩机理做了系统的分析。本论文所做的具体工作及结论如下:
     1、介绍了纳米粒子的奇特性能并探讨了纳米材料在润滑技术领域的研究和应用进展。
     2、采用先进的仪器对所选择的纳米碳酸钙粒子进行了测定:
     (1)使用旋转阳极靶多晶X射线衍射仪测定其晶体结构和平均粒径大小。
     (2)用透射电子显微镜观察其形貌和测定粒径大小。
     3、根据表面活性剂亲水亲油平衡值选择了聚醚、吐温-60、司本-20和司本-80作为纳米碳酸钙粒子的表面活性剂,它们以胶囊的形式存在。结果表明这几种活化剂同时使用产生了很好的协同效应,使得纳米碳酸钙粒子在润滑油中得到了很好的分散性和稳定性。
     4、通过测试和分析纳米碳酸钙粒子的摩擦学性能,证明了纳米碳酸钙粒子加到基础油中可以提高基础油的极压性能和抗磨减摩性能。纳米碳酸钙粒子在含量为0.7%左右时摩擦学性能最佳;成品油中加入0.5%的纳米碳酸钙粒子时,抗磨减摩性能效果显著。
     5、通过XPS测试,对纳米碳酸钙粒子的摩擦化学性能进行了研究,在摩擦过程中碳酸钙、氧化钙和金属钙共同起到了提高极压性能、抗磨减摩的作用。
     6、探讨了纳米碳酸钙粒子的抗磨减摩机理,对于纳米粒子在润滑油中的存在方式和作用提出了个人见解:
     (1)纳米碳酸钙粒子近似为球形,它们起了类似微型“球轴承”的作用,从而提高了摩擦副表面的润滑性能。
     (2)在重载和高温条件下,两摩擦表面间的纳米氧化钙颗粒被压平,形成一滑动系,降低了摩擦和磨损。
    
     (3)摩擦过程中纳米碳酸钙、纳米氧化钙粒子能填平摩擦表面低凹处甚至
    陷入基体中,并可及时填补损伤部位,具有自修复功能,使摩擦表面始终处于
    较为平整的状态。
     (4)纳米碳酸钙和纳米氧化钙粒子通过摩擦过程中的摩擦化学作用在磨斑
    表面上形成了沉积膜,少量金属钙通过扩散作用渗透到钢基体表面,形成表面
    强化层,提高了表面的耐磨性。
     本文所做工作是对纳米粒子作为润滑油添加剂性能研究领域的探索性工
    作,是上海市科委项目“纳米材料用于润滑油剂添加剂的摩擦机理研究”和上
    海市教委重点基金项目“纳米材料在润滑技术中的应用”中的一部分,大量的
    工作还需要在今后继续深入研究。
The nanometer particles are metastable materials that lie between macroscopical materials and atoms or molecules with the characteristics of little size effect, quantum measurement effect, surface effect and macroscopical quantum tunnel effect, etc., thus demonstrating some special properties. When mixed with the lubricating oil, the nanometer particles can improve lubricating oil's abilities of extreme pressure, anti-wear and reduce frictional resistance. So the nanometer particles can lengthen the service life of the machine and its parts. By adopting X-ray diffraction and Transmission Electron Microscope (TEM), this thesis has insepectd the size and the structure of the calcium carbonate (CaCO3) particles. According to Hydrophile and Lipophile Balance (HLB), the suitable surface-active agents have been selected and put into lubricating oil with nanometer CaCO3 particles. By testing some parameters, such as the maximum non-seizure load, the shape and diameter of wear scar, the friction factor, the nanometer CaCO3 particles' properties of extreme pressure, anti-wear and friction reduction have been tested and analyzed. The properties of the nanometer CaCO3 particles' tribology chemistry have been analyzed through X-ray Photoelectron Spectrum test. Also the nanometer CaCO3 particles' mechanism of anti-wear and friction reduction has been studied systematically. Specific work and conclusions are as follows:
    1. This thesis introduces the nanometer particles' queer characters and discusses the application of the nanometer particles as lubricating oil additive.
    2. The chosen nanometer CaCOj particles have been tested and analyzed through advanced instruments.
    1) The crystal structure and average size of the nanometer CaCOs particles have been tested by rotatory anode harrow X-ray diffractometer.
    2) The shape and average size of the nanometer CaCO3 particles have been tested through TEM.
    3. On the basis of HLB suitable surface-active agents such as Polyether, Tween-60, Span-20 and Span-80, which exist as capsules, are selected. The results show that they have good concertedness, making the nanometer CaCO3 particles receive very good dispersiveness and stability in the oil.
    4. The results of the test of the nanometer CaCO3 particles' tribology property show that it can improve base oil's properties of extreme pressure and anti-wear and friction reduction. Base oil's tribology property is the best when the nanometer CaCO3 particles' content is about 0.7%. The result also shows that the properties of anti-wear and friction reduction are remarkable
    HI
    
    
    
    when 0.5% content of the nanometer CaCO3 particles are added to the finished oil.
    5. The results of the test of the nanometer CaCO3 particles' tribology chemistry through X-ray Photoelectron Spectrum show that the nanometer CaCOs, calcium oxide (CaO) and metal calcium improve the oil's properties of extreme pressure, anti-wear and friction reduction together.
    6. The mechanism of anti-wear and friction reduction of nanometer CaCOa has been discussed and individual opinions of the nanometer particles' existing way and effects have been proposed.
    1) The shape of the nanometer CaCOs particle is approximate to that of sphericity. Its function is similar to that of the miniature "ball bearing". Thus it improves the lubricating performance of friction pairs.
    2) Under heavy load and high-temperature conditions, the nanometer CaO particles between two friction surfaces are flattened and form a sliding system. Thus wear and friction are reduced.
    3) In the course of friction the nanometer CaCOs particles and CaO particles can fill up the concave of the surface and even sink into substrate and fill in the worn position promptly. It shows the nanometer particles have automation to make the friction surface in a comparatively even state.
    4) Through tribology chemistry function, the nanometer CaCOj and CaO particles form a deposited film on the wear scar's surface or strengthen the surface through a small amount of metal Ca's diffusion to improve the fr
引文
[1]张立德,牟季美著,纳米材料与纳米结构,北京:科学出版社,2001.
    [2]Mcilwain C.Nature.2000, (5): 272.
    [3]陈爽,刘维民,表面修饰PbS纳米微粒的合成及其抗磨性,摩擦学学报,1997,3:260~262.
    [4]Gleiter H.Nanostructured materials:basic concepts and microstructure. Acta Materialia, 2000, 48:1~29.
    [5]张立德,超微粉体制备与应用技术[M],北京:中国石化出版社,2001。
    [6]曹茂盛等,纳米材料导论[M],哈尔滨:哈尔滨工业大学出版社,2001:5~14.张平余等,WS_2纳米微粒LB膜的摩擦学性能研究,摩擦学学报,1996,3:272~276.
    [7]陈和生,孙振亚,纳米科学技术与精细化工,湖北化工,1999,1:8~10.
    [8]王文中,李良荣,纳米材料的性能、制备和开发应用,材料导报,1994,6:8~10.
    [9]李文融,屠德容,无机磁粉性能与制备,化工新型材料,1994,8:1~5.
    [10]陈达谦,日本精细陶瓷的近期概况,陶瓷,1994,2:19~25.
    [11]Fox M A, Dulay M T. Heterogeneous Photocatyalysis .Chem Rev, 1993, 95, 2: 341~357.
    [12]张中太,林元华,纳米材料及其技术的应用前景,材料工程,2000,3:42~48.
    [13]张招柱,薛群基,刘维民等,几种金属氧化物填充聚四氟乙烯复合材料在干摩擦条件下的摩擦磨损性能,摩擦学学报,1997,1:45~52.
    [14]陈爽,刘维民,亲油性ZnS纳米微粒的合成,高等学校化学学报,2001,3:472~474.
    [15]王齐华,薛群基,纳米ZnO_2填充PEEK的摩擦表面和转移膜,材料研究学报,1999,1:107~109.
    [16]阎逢元,金芝珊,C_(60)/C_(70)作为润滑油添加剂的摩擦学性能研究,1993,1:59~63.
    [17]张平余,杜祖亮,WS_2纳米微粒LB膜的摩擦学性能研究,摩擦学学报,3:272~276.
    [18]曲建俊,罗云霞,含超细金刚石石墨润滑油摩擦磨损特性研究,润滑与密封,1995,2:29~32.
    
    
    [19]曲建俊,宋宝玉,吴国良等,含细PTFE润滑油摩擦磨损特性研究,润滑油,1995,2:38~40.
    [20]夏延秋,金寿日,孙维明等,纳米级金属粉改善润滑油的摩擦磨损性能试验研究,1995,6:37~40.
    [21]夏延秋,杨文通,马先贵等,纳米级铜粉改善润滑油抗磨性能的研究,润滑与密封,1998,5:43~44.
    [22]夏延秋,冯欣,冷曦等,纳米级镍粉改善润滑油磨损性能的研究,沈阳工业大学学报,1999,2:101~103.
    [23]夏延秋,金寿日,孙维明等,纳米级金属粉对润滑油摩擦磨损性能的研究,润滑与密封,1999,3:33~34.
    [24]李长华,俄罗斯的纳米级超微细粉末材料,材料导报,1995,2:75~76.
    [25]何峰,张正义,肖耀福等,新一代润滑剂——超细金属粉固体润滑剂,润滑与密封,1997,5:65~66.
    [26]贾世军,陈柳生,金熹高,微乳液聚合和寡链高分子凝聚研究进展,功能高分子学报,1997,3:408~417.
    [27]姚彬,杜达昌,陈理公,含硼、铜润滑油添加剂的摩擦学性能,润滑与密封,2000,1:22~24.
    [28]张志梅等,纳米级金属粉改善润滑油摩擦性能的研究,润滑与密封,2000,2:40,37.
    [31]张传安,乔玉林,池俊成等,含纳米金刚石润滑油减磨抗磨添加剂的摩擦学性能,中国表面过程,2:29~32.
    [32]张家玺,再探纳米金刚石对缸套表面摩擦学改性机理,润滑与密封,2001,3:38~40.
    [33]胡泽善,纳米粒子及烷氧基硼酸盐润滑油抗磨减磨添加剂的研究[D],重庆:后勤工程学院,1998.
    [34]胡泽善,王立光,黄令等,纳米硼酸铜的制备及其用做润滑油添加剂的摩擦学性能,摩擦学学报,2000,4:292~295.
    [35]叶毅,董浚修,陈国需等,纳米硼酸盐的摩擦学特性初探,润滑与密封,2000,4:20~21.
    [36]叶毅等,纳米硼酸镧对润滑油抗磨性能影响的研究,润滑与密封,2000,2:23~24,22.
    [37]胡泽善,欧忠文,陈国需等,油溶性烷氧基硼酸钠的制备及其抗磨减摩性能研究,摩擦学学报,2001,4:279~282.
    [38]张立德编著,纳米材料,北京:化学工业出版社,2000.
    [39]曹茂盛等编著,纳米材料导论,哈尔滨:哈尔滨工业大学出版社,2001.
    
    
    [40]张志琨,崔作林著,纳米技术与纳米材料,北京:国防工业出版社,2000.
    [41]黄德欢著,纳米技术与应用,上海:中国纺织大学出版社,2001.
    [42]Lee B.I., Rives L.P. Colloids and Surfaces, 1991, 56: 25.
    [43]M F Morizur et al.lubr. Sci, 1992, 4: 277.
    [44]S Glassonet al.lubr. Sci, 1993, 5: 91.
    [45]T Palermo et lubr. Sci, 1996, 8: 119.
    [46]J M Georges et al.NATO ASL Ser. E, 1992, 220.
    [47]J L Mansot et al. Colliods. Surf., 1993, 75: 25.
    [48]S Glasson et al. Thin Solid Films, 1994, 2:111.
    [49]Shimazaki, Toshiro et al. Toraiborojisuto, 1994, 4: 345.
    [50]张建荣等,高碱石油磺酸钙的极压性能研究(一)[D],第六届全国摩擦学学术会议文集,323~326.
    [51]张建荣等,高碱石油磺酸钙的极压性能研究(二)[D],第六届全国摩擦学学术会议文集,326~328.
    [52]范雄,X射线金属学,北京:机械工业出版社,1981.
    [53]Run pf H. Particiles Technology [M] . New York:Chapman and Hall 1990: 116-120.
    [54]管义夫.静电手册[M].北京:北京理工大学出版社,1993:120-129.
    [55]王瑞刚,吴厚政,陈玉如等,陶瓷料浆稳定分散进展.陶瓷学报,1999,1:35-36.
    [56]天津大学物理化学教研室.物理化学[M].上册.北京教育出版社,1992.
    [57]郑忠,胡纪华编著,表面活性剂的物理化学原理,广州:华南理工大学出版社,1995.
    [58]赵国玺,表面活性剂物理化学,北京:北京大学出版社,1984.
    [59]张天胜主编,表面活性剂应用技术,北京:化学工业出版社,2001.
    [60]周雍鑫,龚九峰等,润滑材料使用手册.
    [61]陈旭俊主编,工业清洗剂及清洗技术,北京:化学工业出版社,2002.
    [62]侯万国等,应用胶体化学,北京:科学技术出版社1998.
    [63]梁治齐等,功能性乳化剂与乳化液,中国:中国轻工业出版社,2000.
    [64]欧风编著,合理润滑技术手册,北京:石油工业出版社,1993.
    [65]Bowden F P, Tador D. 固体的摩擦与润滑,北京:机械工业出版社,1982.
    [66]温诗铸,纳米摩擦学,北京:清华大学出版社,1998.
    [67]Gupta B.K., Bhushan., Lubr. eng., 1994[J], 6: 524.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700