用户名: 密码: 验证码:
纳米粒子的制备与摩擦学性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在摩擦学领域中,传统的油性剂和极压抗磨添加剂由于自身的缺陷其应用受到很大限制。油性剂的承载能力低,极压抗磨剂多为含硫、磷、氯的有机物,污染环境,在国外已被限制使用。发展具有良好抗磨性能、高承载能力、对磨损表面具有一定修复功能的润滑油添加剂是摩擦学领域的前沿课题之一。
     纳米材料由于独特的物理化学性质,在摩擦学领域显示了广阔的应用前景,成为具有巨大潜力的润滑油添加剂。尽管目前的研究还处在初期阶段,许多问题有待解决,但大量的实验结果已表明纳米材料可以作为润滑油添加剂而起到减摩、抗磨和抗极压作用。
     本文的目的旨在深入研究纳米粒子的制备方法及其摩擦学特性。在参阅了大量文献的基础上,分别采用了球磨法、微乳液法、溶胶—凝胶法制备了超细二硫化钼、纳米铜粒子、表面修饰纳米二氧化钛,经原子力显微镜测试,获得的超细二硫化钼的粒度平均在800nm以内,纳米铜粒子平均粒度约为30nm,表面修饰纳米二氧化钛平均粒度约为40nm,在万能摩擦磨损试验机上测试了三种粒子的摩擦学特性,结果表明:在合理的添加浓度范围内,超细二硫化钼在低载时具有优良的减摩抗磨性能,纳米铜在高载时具有比较好的减摩抗磨性能,表面修饰二氧化钛粒子因具有有机与无机复合物的特性,从低载到高载都保持稳定的减摩抗磨性能。每种粒子因具有不同的减摩特性而都有其适用的范围,但研究表明采用有机与无机复合方法制备的有机—无机复合纳米粒子将是最有前景的润滑油添加剂。
     论文还对纳米添加剂的减摩抗磨机理,用“原位摩擦化学原理”等摩擦自修复理论进行了分析,纳米粒子的减摩抗磨机理符合高性能化、自适应化、环境友好化,具有广阔的发展前景。
In the field of tribolgy,the application of traditional oil -soluble additives of antiwear and reducing friction has been confined due to itself defect. An oil agent has a low load bearing capacity,extreme pressure andantiwear additives often contain the element of sulph,phosphorus,chlorine,which pollute surrouding enviorement,which have been restricted to use overseas.Deweloping lubricating oil additive with good antiwear,high load-bearing capacity and self-repair of wear surface is one of the important questions in tribology.
    Nano-materials show broad application due to its unique physical and chemical characteristics in the field of tribology,and become potential lubricating oil additives.Despite the present research still in the initial stage,many problems requir to be solved,however,lots of experimental results indicate that nano-materials possess the charateristics of reduing wear,antiwear and extreme pressure resistance.
    The preparation methods and its tribological characteristics of nanometer particles have been studied in this paper. With the reference of many relevant materials,the author prepared a fined molybdenum disulfide powder with a average size of 800nm by ball milling,and a nano-copper with average size of 30nm in micromulsion solution method,and synthesized surface-modified titanium dioxide nanoparticles with average size of 40nm in organic media via sol-gel method.The tribological performances of three particles were studied by universal test as well,with the result of fined molybdenum disulfide powder with good reducing wear and antiwear performance at low load,nano-copper with good reducing wear and antiwear performance at high load,surface-modified titanium dioxide nanoparticles maintaining stable reducing wear and antiwear performance from low load to high load due to its characteristics of organic and inorganic nanocomposite.The results indicate that the nanocomposite is the most perspective oil additive.
    The reducing wear and antiwear mechanism of nano oil additive was studied with in-situ tribochemical principle.Nano additives possess broadly developing prospect with its above-mentioned performance.
引文
[1]Ying J Y, Tschope A,Levin D, Synergistic effects and catalytic properties tailored by nanostructure processung, Nanostructured Materials, 1995, (6)237~246
    [2]SunY, Zhang X, Sun C, et al,Macromol Chem. Phsy, 1996,197,147~149
    [3]Zhang X, Gao M ,kong X, et al Build—up of a new type of ultrathin film of porphyrin and phthalosyanine based on cationic and anionic electrostatic attracion, J.Chem. Soc.,Chem. Commun, 1994,1055~1056
    [4]杜芳林等,物理法制备纳米CO助燃剂及其工业应用试验,第九届全国催化学术会议论文集,北京,海潮出版社,1998,420~421
    [5]金宗泽,环境调和材料,94年全国结构陶瓷、功能陶瓷、金属/陶瓷对接学术会议论文集,北京:中国硅酸盐学会,1994,20~25
    [6]Pan Z W, Xie S S, et al, Very long carbon nanotubes, Nature, 1998,394
    [7]张立德,纳米材料,2000,化学工业出版社
    [8]徐滨士等,实用纳米表面技术,中国表面工程,2001,(3):14~15
    [9]严立等,摩擦学原理,1998,大连海事大学出版社
    [10]周强 陈玲 徐瑞清 摩擦作用下润滑剂的结构重组及对磨损表面的修复功能,第六届全国摩擦学学术论文集,351~353
    [11]张志琨,崔作林,纳米技术与纳米材料,2000,国防工业出版社
    [12]王鹤寿,陶德华等,超细氟化石墨的润滑性能研究,润滑与密封,1999,(1),16~17
    [13]王立光等,纳米氢氧化锰减摩抗磨添加剂的研究,润滑与密封,1999,(5):30~32
    [14]胡泽善,王立光,纳米氧化锌抗磨减摩添加剂的研究,99摩擦学表面工程学术会议,兰州
    [15]徐滨士,纳米表面工程基本问题及其进展,中国表面工程,200l,(3):8
    
    
    [17]欧忠文,徐滨士,磨损部件自修复原理与纳米润滑材料的自修复设计构思,表面技术,2001(12):47~53
    [18]张泽抚,刘维民,含氮有机物修饰的纳米三氟化镧的摩擦学性能研究,99 摩擦学表面工程学术会议,兰州
    [19]张家玺等,纳米金刚石对内燃机缸套—活塞环摩擦学改性研究,润滑与密封,1999,(4):27~28
    [20]乌学东等,表面修饰纳米粒子的摩擦学性能,上海交通大学学报,1999,33(2):225~227
    [21]Johnson R L,A review of the early use of molybdenum disulfide as a lubricant, NLGI Spokesman, 1988,52(8):298~305
    [22]Holinski R,The influence of boundary layers on friction, Wear, 1979, (56):147~154
    [23]Risdon JJ, Evaluation of MoS_2 in newer grease thicker systems. NLGI Spokesman, 1986,50(6):211~214
    [24]Risdon JJ, Sargene D J, Comparison of commercially available grease withand without molybdenum disulfide. NLGI Spokesman,1971,24(10):18~14
    [25]Black A L, Reduce Friction or reduce wear-the choice is yours with MoS_2 lubricant National Conference Publication No 80/12 The Institntion of Engineers.Melbonrne,Australia, 1980,165~170
    [26]Ridson JJ, Gresty D A.Abrasive contaminants-the effect of MoS_2 on wear with greases containing an abrasive contaminant. NLGI Spokesman, 1978,46(6):182~186[16]涂政文,赵源,磨损自补偿润滑添加剂的摩擦学效应,材料保护,1998,(8):12~14
    
    
    [27]松永久著,固体润滑手册,范煜等译,1986,机械工业出版社
    [28]张治军,表面修饰纳米微粒的化学制备及摩擦学行为的研究(博士论文),兰州:中国科学院兰州化学物理研究所
    [29]张泽抚等,钼化合物润滑材料的摩擦学应用与研究发展现状,摩擦学学报,1998,18(4)377~380
    [30]张文征,纳米级二硫化钼的研发现状,中国钼业,2000,24(5):23~26
    [31]李凤尘等,超细粉体技术,2000,北京国防工业出版社
    [32]胡献国,球磨细化二硫化钼粉末的试验研究,润滑与密封,1999,(2):47~49
    [33]张忐梅等,纳米级铜粉的制备,精细化工,2000,(2):69-71
    [34]王汝霖,润滑剂摩擦化学,1994,中国石化出版社
    [35]陈耕等,润滑剂与添加剂,高等教育出版社,1993
    [36]夏延秋,余寿日等,纳米级金属粉对润滑油摩擦磨损性能的影响,润滑与密封,1999,(3):33~35
    [37]裴有福,龚桂义,刷镀渗入Sn镀层和Cu+In复合镀层耐磨性的研究,固体润滑,1991,11(1)9~20
    [38]张燕红等,超细颗粒材料的制备(一),稀有金属,1997,21(6):451
    [39]张燕红等,超细颗粒材料的制备(二),稀有金属,1998,22(1):60
    [40]Din J,et al J of Alloys and Compounds,1996,234:11
    [41]陈祖耀等,γ射线辐照-水热结晶联合法制备金属超细粒子,金属学报,1992,28(4):B169
    [42]黄钧声,任山,纳米铜粉进展,材料科学与工程,2001,19(2):76~79
    [43]庆洲等,纳米材料研究进展-纳米材料结构与化学性质,化学研究与应用,1998,10(3):226
    
    
    [44]邵庆辉等,微乳化技术在纳米材料制备中的应用研究,化工新型材料,2001,29(7):9~12
    [45]严红革等,金属超微粉末制备技术中的几个问题,材料导报,1997,11(1):16
    [46]邱孙青,董浚修,分散介质对纳米铜粒子润滑油添加剂摩擦学性能的影响,润滑与密封,1999,(3):14~16
    [47]Chen Long Wu et al, Acta physico-chimica Sinica,Wuli Huaxue Xuebao,1994,10(2):750
    [48]Gan Li-Hua, et al, Acta physico-chimica Sinica, Wuli Huaxue Xuebao,1998,14(2):97
    [49]Prince L M, Microemulasions, Theory and Practice, Chapter 5, Academic press, New York, 1977
    [50]高保娇等,超微镍粉的微乳液法制备研究,无机化学学报,2001,(7):491~495
    [51]陈宗淇,胶体化学,高等教育出版社,1984
    [52]张志梅等,纳米级金属粉改善润滑油摩擦性能的研究,润滑与密封,2000(2):37~40
    [53]姜秉新,陈波水,铜型添加剂摩擦修复作用的可行性研究,润滑与密封,1999(2):50~57
    [54]王九,陈波水,润滑油中CuS纳米粒子的摩擦学性能研究,润滑与密封,2001,(2):42~43
    [55]Melendres C A, Narayansamy A, Study of nanophase titania grain boundaries by Raman spectroscopy, journal-of Material Research 1989, (4):1246~1250
    [56]刘维民等,纳米颗粒的抗磨作用及作为磨损修复添加剂的应用研究,中国表面工程,2001(3):21~23
    
    
    
    [57]Melendres C A, Narayansamy A, Study of nanophasetitania grain boundaries by Raman spectroscopy, Journal of Material Research, 1989(4):1246~1250
    [58]张庆敏,李彦,聚氧乙烯类表面活性剂体系中银纳米颗粒的合成,物理化学学报,2001,17(6):537~541
    [59]吴志申,赵彦保,油酸/Pst/TiO_2复合纳米微球的制备,应用化学,2001,18(3):236~237
    [60]Nakamoto K, Infrared and Raman Spectra of Inorganic and Coordination Compounds,New York, Wiley, 1978
    [61]Xue Qi, Auths spectral Method in polymer Structural Research,Beijing, Advance education press, 1995
    [62]Deacon G B, Philips R J,J. coord, chem .Rev, 1980(33)327
    [63]邹玲等,表面修饰二氧化钛纳米粒子的结构表征及形成机理,物理化学学报,2001,17(4):305~309
    [64]Hahn H, Logas JL, Averback R S, Sintering characteristics of nano-crystalline materials ,Journal of Material Research, 1990, (5):609 614
    [65]Dong J X et al,A new concept-formation of permeating layer from nonactive antiwear additives ,Lubrication Engineering, 1994, (22):124~128
    [66]Lausmaa J,Surface spectroscopic Characterization of titunium implant materials, Tournal of Electron Spectroscopy and Relatde phenomina, 1996, (81):343~361

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700