用户名: 密码: 验证码:
浸没式平板膜—生物反应器长期运行特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
膜-生物反应器作为一种新型、高效的污水处理技术,具有诸多传统生物处理工艺所无法比拟的优点:出水水质好、污泥浓度高、可承受的有机负荷高、占地少等特点;因而在近年来,膜-生物反应器的应用越来越广泛。平板膜由于其通量高、抗污染能力强和水力学条件易于控制的优点,在国际膜-生物反应器领域中得到了较好的研究和应用。但是,我国的平板膜-生物反应器的研究明显滞后,且平板膜-生物反应器的应用比例远远小于中空纤维膜-生物反应器,而在国际的膜-生物反应器市场上,平板膜-生物反应器的应用比例达到了68%(截止至2006年)。因此,国内对平板膜-生物反应器的研究必须迎头赶上,以平衡膜-生物反应器的发展与应用的需求。
     本论文主要借助于一套长期运行的中试规模的平板膜-生物反应器和几套小试膜-生物反应器,跟踪研究平板膜-生物反应器在处理典型城市生活污水的特性。主要研究了平板膜-生物反应器长期运行过程中膜过滤性能的变化、膜清洗效率及清洗方式的结合,研究了长期运行过程中的污染物去除效果、SND效果、化学除磷以及污泥产率系数,同时重点研究分析了污泥浓度、污泥性质以及污泥组分与膜污染以及对膜-生物反应器长期运行的特性影响,并分析总结了浸没式膜-生物反应器的膜污染机制和理论,旨在为平板膜-生物反应器的应用提供一定的技术支撑。
     本论文引入了膜过滤性能这一综合评价参数,系统跟踪研究了浸没式膜-生物反应器在长期运行过程中膜过滤性能的变化,全面综合评价了平板膜在长期运行过程的过滤分离性能的变化。
     本研究中的中试平板膜-生物反应器在膜投入运行的第一年时间内,膜的净通量基本在20.0~25.0L/(m~2h)之间变化(冬季运行的部分数据除外),最高运行通量达到30.6L/(m~2h)。在膜运行的第二年,虽然运行通量有些下降,但膜净通量的平均值能够维持在17.0L/(m~2h)左右。从清洗周期来看,新膜在投入使用后的前期,清洗周期在3~4个月,但是随着运行时间的延长,清洗周期降低为1~2个月。在线维护清洗在一定程度上能够恢复膜的过滤性能,但随着膜运行时间的延长,需要结合加强在线清洗手段来提高膜过滤性能的恢复率,在必要时需采用离线清洗手段。从平板膜-生物反应器长期运行污染物去除效果来看,膜-生物反应器具有较强的抗冲击负荷的能力,无论进水COD如何波动,出水COD绝大部分在30mg/L以下,COD去除率维持在95%左右。出水氨氮的浓度与反应器中的DO浓度密切相关,反应器的DO浓度(降流区表面的DO浓度)只要大于0.3mg/L,出水的氨氮浓度一般都小于8mg/L。在高污泥浓度运行条件下,系统具有良好的SND效果。在DO浓度为0.2~0.3mg/L之间,当进水的TN为39~70mg/L时,出水TN在13~19mg/L之间波动,TN的去除率在60~70%之间。通过对膜-生物反应器的化学除磷研究表明,适宜的聚合硫酸铁(PFS)投加量为14mg全铁/(L-进水),在此投加剂量条件下,膜-生物反应器出水总磷在1.0mg/L之下,平均出水总磷小于0.5mg/L。污泥的动力学系数研究表明,该中试规模的膜-生物反应器在SRT 10d、20d、30d和40 d的表观污泥产率系数Y_(obs)分别为0.247、0.151、0.128、0.113 kgMLVSS/kgCOD,中试膜-生物反应器污泥的净产率系数Y为0.402 kgMLVSS/kgCOD,内源代谢系数Kd为0.068d~(-1)。
     污泥浓度影响到混合液的流变学性质,当污泥浓度在10g/L以下时,混合液属于牛顿流体;当污泥浓度大于10g/L时,混合液属于触变形流体;污泥浓度同时影响到反应器中曝气传质特性,污泥浓度升高,曝气传氧速率下降,当污泥浓度从4.5g/L升高至21.5g/L时,传氧速率系数从0.565降低至0.155;污泥浓度同时影响到反应器循环流速,在相同的曝气条件下,污泥浓度越高,反应器的循环流速越小。
     对污泥性质的研究表明,CST、SCOD、EPS、混合液中的多糖物质、混合液中的蛋白质、粘度和MLSS与膜污染具有正相关关系,温度与膜污染之间具有显著的负相关关系。EPS中的LB部分对膜污染的影响更大,EPS物质主要成分是糖类和蛋白质等物质。污泥性质同时影响到临界通量,CST或SCOD升高,则临界通量呈现下降的趋势。对运行通量的研究结果表明,较为适宜的运行通量值仅为临界通量值的56%。
     在不同SRT工况常稳定运行情况下对污泥三组分与膜污染之间的关系分析表明,不同泥龄下的微生物悬浮固体随着泥龄的增大所形成的膜污染阻力所占的百分比越大。在异常情况下污泥三组分对膜污染的影响研究表明,在冬季极端气温条件、泡沫污泥以及在线化学清洗后的污泥三组分所形成的膜污染阻力大于或远大于正常稳定运行情况下污泥三组分所形成的膜阻力。在冬季极端气温运行条件下,胶体物质、溶解性物质各自所形成的膜阻力已经超过了SS所形成的膜阻力。
     通过对膜-生物反应器长期运行特性的考察以及膜污染特性的研究,可知膜污染的过程中首先是粒径较小的物质优先进行堵塞膜孔或者在膜面进行累积,而大颗粒物质相比之下比较不易在膜面累积。在浸没式膜-生物反应器恒流操作中,膜污染的过程主要分为两个阶段,第一阶段是膜污染缓慢发展的过程,主要是EPS、SMP以及其他大分子有机物质在膜面吸附、沉积或堵塞膜孔的过程,膜表面并无泥饼层出现,这与传统的膜污染理论(认为浸没式膜-生物反应器会不可避免地形成泥饼层)不同,同时这一阶段是膜-生物反应器运行周期的主导部分;第二阶段,膜污染发生剧烈,膜阻力迅速上升,在短时间内达到运行压力的终点,预示着清洗时机的到来。泥饼层的污染与凝胶层是不同的,应该区别看待。泥饼层的污染是主要由污泥絮体在膜面大量沉积造成的,其主要原因在于膜-生物反应器设计不当或者操作运行条件不适宜等造成的,通过合适的设计和操作参数优化是可以控制或避免泥饼层的形成;凝胶层的污染主要是由于活性污泥体系中小颗粒物质包括胞外聚合物(EPS)、微生物溶解性产物(SMP)、糖类和蛋白质等一些有机物质的污染,这些污染即使在次临界通量的操作模式下仍然不可避免。
     论文最后对浸没式平板膜-生物反应器处理工艺进行了技术经济分析,并与传统的中水回用处理工艺进行了对比评价,分析表明平板膜-生物反应器在中水回用处理中与传统工艺相比具有很大的竞争力。
embrane bioreactor(MBR)process has emerged as a new and efficient technology for wastewater treatment.Compared with conventional activated sludge (CAS)system,MBR process has many advantages including superior effluent quality, higher sludge concentration,higher volumetric organic load(VOL)and a smaller footprint.Therefore,MBR has been increasingly popular for the treatment of municipal and industrial wastewater in recent years.In international MBR market, flat-sheet membrane has been intensively studied and widely used due to its high flux, anti-fouling capability and easily-controlled hydraulic conditions.According to related statistics,flat-sheet MBRs accounted for 68%of the total full-scale MBRs throughout the world by the end of 2006;however,the research on flat-sheet MBR in China obviously lagged behind.Thus,intensive efforts must be dedicated to the research of flat-sheet MBR in our country in order to better promote the development of MBR technology in China.
     The objective of this thesis is to study the characteristics of submerged flat-sheet membrane bioreactor(SMBR)for the treatment of classic municipal wastewater by employing a pilot-scale MBR under long-term operation and several lab-scale MBRs. The filtration properties,membrane cleaning,sludge yield coefficients together with organic material removal such as COD,phosphorous,etc.under long-term operation were studied.Furthermore,the relationship between sludge characteristics including sludge concentration,sludge physiology properties,sludge composition and membrane fouling was critically investigated in order to determine the effects of sludge characteristics on MBR long-term performance.Based on the research mentioned above,the membrane fouling mechanisms of flat-sheet MBR under long-term operation were proposed and the results were expected to provide a sound understanding of the design and operation of full-scale flat-sheet MBRs.
     The variable in terms of membrane permeability was adopted in this study,and the variations of.the membrane permeability in the pilot-scale submerged MBR during the operation were critically investigated.The variable could be used to comprehensively demonstrate the separation and filtration characteristics of flat-sheet membrane during long-term operation.
     Test results showed that the net membrane flux could be maintained at 20.0~25.0 L/(m~2 h)except that of operation in winter and the highest net flux could reach 30.6 L/(m~2 h)during the first year operation of the pilot-scale MBR.It was observed that the net membrane flux decreased in the second year and averaged at 17.0 L/(m~2 h).During the early stage(the first year),membrane cleaning procedure would be carried out per 3~4 months;however,the cleaning procedure was needed per 1~2 months as the operation time increased.Maintenance cleaning-in-place (CIP_M),to some extent,could recover membrane permeability and intensified cleaning-in-place(CIP_1)was needed if CEP_M could not effectively recover membrane permeability.Sometimes,it was also necessary to use offline cleaning method to efficiently recover membrane permeability after a long-term operation.It was also found that the MBR could bear the shocking load and effluent COD 30 mg/L and 95%removal efficiency on average could be achieved though the influent COD fluctuated greatly.In this study,it was observed that DO concentration in the MBR affected the removal of ammonia,and effluent ammonium concentration was less than 8 mg/L if the DO concentration of the top areas of the two down-comers could be maintained at above 0.3 mg/L.Good simultaneous nitrification and denitrification (SND)could be achieved under high sludge concentration in the reactor.13-19 mg/L of the effluent TN(i.e.removal efficiency 60-70%)could be reached under DO concentration 0.2-0.3 mg/L and influent TN concentration 39-70 mg/L.The effluent phosphor was less than 1.0 mg/L and average concentration less than 0.5 mg/L by addition of polymeric ferric sulfate(PFS)under the proper agent 14 mg ferric ions/(L-influent water).The study on sludge yield coefficient of the MBR showed that the observed yield coefficient(Y_(obs))under SRT 10d,20d,30d and 40d was about 0.247,0.151,0.128 and 0.113 kgMLVSS/kgCOD,respectively.The net yield coefficient(Y)and endogeneous decay coefficient(K_d)of the pilot-scale MBR for municipal wastewater treatment was about 0.402 kgMLVSS/kgCOD and 0.068 d~(-1), respectively
     In this study,it was observed that sludge concentration had effects on sludge rheology.The mixed liquor belonged to Newtonian fluid with MLSS less than 10 g/L while it demonstrated non-Newtonian fluid behavior(Thixotropic fluid)as MLSS increased to above 10 g/L.Sludge concentration was also found to have negative effects on oxygen transfer coefficient(a),and a value decreased from 0.565 to 0.155 with the increase of sludge concentration from 4.5 g/L to 21.5 g/L.Cross flow velocity(CFV)was also affected by sludge concentration,and CFV tended to decrease as sludge concentration went up under the same aeration intensity.
     The study on sludge properties indicated that capillary suction time(CST), soluble chemical oxygen demand(SCOD),extracellular polymeric substances(EPS), carbohydrates in the supernatant of mixed liquor,proteins in the supernatant of mixed liquor,viscosity and MLSS had positive influences on membrane fouling.It was also found that temperature of the mixed liquor had negative effects on membrane fouling. Compared with tight bound part of EPS,Loose bound(LB)was observed to have more significant influences on membrane fouling.Critical flux was also affected by sludge properties,and test results showed that critical flux declined as the CST or SCOD of the mixed liquor increased.Proper operational flux of the MBR was found to be 56%of the critical flux.
     The contribution of three sludge compositions to membrane fouling under various SRT was also studied,and test results showed that the effects of suspended solids(SS)tended to increase as the SRT prolonged.The resistance caused by the three sludge compositions under abnormal conditions including low-temperature operation,foaming sludge and sludge after membrane chemical cleaning was much larger than that of sludge during stable-operation.The resistance caused by colloids or soluble products was much higher than that of SS under low-temperature operation in the winter.
     Based on the long-term study of the operational characteristics of the MBR together with the research on membrane fouling properties,it could be drawn that fine particles are prone to block membrane pores or to deposit onto membrane surfaces while large particles are not easy to form membrane fouling.In submerged MBR under constant flux operation,the membrane fouling can be classified into two stages. In the first stage,the membrane fouling is mainly caused by EPS,SMP and other large molecular organic materials and the fouling velocity is rather slow.Sludge cake layer is not deposited on the membrane surfaces during this stage,which is totally different from the conventional fouling understandings.Besides,the first stage is also the main part of the operational period(one cleaning period).In the second stage, dramatic membrane fouling was observed and membrane resistance increased rapidly to the terminal pressure point,which indicated that membrane cleaning procedure should be carried out.It is also necessary to realize that sludge cake layer and gel layer are different from each other in the submerged MBR operation.Sludge cake layer can be formed onto the membrane surfaces by sludge flocs deposition,which is mainly attributed to improper design or unreasonable operation.The formation of sludge cake layer can be controlled by scientific design and optimized operation.Gel layer is mainly caused by EPS,SMP,carbohydrates and proteins which have large molecular weight but fine particles compared with sludge flocs.The gel layer fouling can not be prevented even under sub-critical flux operation mode in submerged MBRs.
     Economical analysis of submerged flat-sheet membrane technology for wastewater treatment and reuse was carried out in the last section of the thesis,and the comparison of economy variables between MBR and conventional wastewater reclaiming technology was also conducted.It indicated that MBR technology was fairly competitive when used for wastewater treatment and reuse.
引文
[1]广东省环境保护局.我国水资源状况及存在问题.http://www.gdepb.gov.cn/ztzl/stkx/stwt/t20051013_8769.htm,2005.
    [2]杭州水处理技术开发中心.膜与膜过程技术-纳滤技术.http://www.chinawatertech.com/jsl_3.asp,2006.
    [3]Choi J H,Fukushi K,Yamamoto K.A submerged nonofiltration membrane bioreactor for domestic wastewater treatment:the performance of cellulose acetate nanofiltration membranes for long-term operation.Separation and Purification Technology,2007,52(3):470-477.
    [4]Smith C V Jr,Gergorio P P,Talcott R M.The use of ultrafiltration membrane for activated sludge separation.Presented paper at 39~(th)Annual Purdue Industrial Waste Conference,Indiana,1969.
    [5]Budd W E.Patent 3,472,765 to Dorr-Oliver incorporated(October 14,1969).
    [6]Grethlein H E.Anaerobic digestion and membrane separation of domestic wastewater.Journal WPCE,1978,50:754-763.
    [7]Yamamoto K,Hiasa M,Mahamood T,et al.Direct solid-liquid separation using hollow fiber membrane in an activated sludge aeration tank.Water Science and Technology',1989,21:43-54.
    [8]Fan X J,Urbain V,Qian Y,et al.Nitrification and mass balance with a membrane bioreactor for municipal wastewater treatment.Water Science and Technology,1996,34(1-2):129-136.
    [9]Cote P,Buisson H,Pound C,et al.Immersed membrane activated sludge for the reuse of municipal wastewater.Desalination,1997,113(2-3):189-196.
    [10]Xing C H,Qian Y,Wen X H,et al.Physical and biological characteristics of a tangential- flow MBR for municipal wastewater treatment.Journal of Membrane Science,2001,191(1-2):31-42.
    [11]Chang I S,Judd S J.Air sparging of a submerged MBR for municipal wastewater treatment.Process Biochemistry,2002,37(8):915-920.
    [12]Pollice A,Laera G,Blonda M.Biomass growth and activity in a membrane bioreactor with complete sludge retention.Water Research,2004,38(7):1799-1808.
    [13]Cao J H,Zhu B K,Lu H,et al.Study on polypropylene hollow fiber based recirculated membrane bioreactor for treatment of municipal wastewater.Desalination,2005,183(1-3):431-438.
    [14]Trussell R S,Merlo R P,Hermanowicz S W.The effect of organic loading on process performance and membrane fouling in a submerged membrane bioreactor treating municipal wastewater.Water Research,2006,40(14):2675-2683.
    [15]Holakoo L,Nakhla G,Bassi A S,et al.Long term performance of MBR for biological nitrogen removal from synthetic municipal wastewater.Chemosphere,2007,66(5):849-857.
    [16]Miura Y,Hiraiwa M N,Ito Tsukasa,et al.Bacterial community structures in MBRs treating municipal wastewater:Relationship between community stability and reactor performance.Water Research,2007,41(3):627-637.
    [17]Tazi-Pain A,Schrotter J C,Bord G,et al.Recent improvement of the BIOSEP process for industrial and municipal wastewater treatment.Desalination,2002,146(1-3):439-443.
    [18]Hai F I,Yamamoto K,Fukushi K.Different fouling modes of submerged hollow-fiber and flat-sheet membranes induced by high strength wastewater with concurrent biofouling.Desalination,2005,180(1-3):89-97.
    [19]Artiga P,Ficara F,Malpei J M,et al.Treatment of two industrial wastewaters in a submerged membrane bioreactor.Desalination,2005,179(1-3):161-169.
    [20]Chang J S,Chang C Y,Chen A C,et al.Long-term operation of submerged membrane bioreactor for the treatment of high strength acrylonitrile-butadiene-styrene(ABS)wastewater:effect of hydraulic retention time.Desalination,2006,191(1-3):45-51.
    [21]Galil N I,Levinsky Y.Sustainable reclamation and reuse of industrial wastewater including membrane bioreactor technologies:case studies.Desalination,2007,202(1-3):411-417.
    [22]Adham S,Gagllardo P,Boulos L,et al.Feasibility of the membrane bioreactor process for water reclamation.Water Science and Technology,2001,43(10):203-209.
    [23]张颖,顾平,邓晓钦.膜生物反应器在污水处理中的应用进展.中国给水排水,2002,18(4):90-92.
    [24]岑运华.膜生物反应器在污水处理中的应用.水处理技术,1991,17(5):319-323.
    [25]李娜,王光辉,张志凡,等.IMBR-A/O工艺对生活污水脱氮除磷的研究.化学与生物工程,2006,23(9):54-56.
    [26]杨琦,尚海涛,杨春,等.A/O-MBR工艺处理城市污水的研究.中国给水排水,2006,22(7):101-104.
    [27]林红军,陆晓峰,陈洁.缺氧/好氧膜生物反应器处理尿液污水的研究.环境污染与防治,2006,28(1):72-75.
    [28]张捍民,肖景霓,成英俊,等.强化膜生物反应器脱氮除磷性能对比试验研究.环境科学学报,2005,25(2):242-248.
    [29]郑祥,刘俊新.厌氧反应器与好氧MBR组合工艺处理毛纺印染废水试验研究.环境科学,2004,25(5):102-105.
    [30]刘琳,宋碧玉.两段式生物膜-膜生物反应器的试验研究.环境污染与防治,2005,27(3):183-187.
    [31]王国平,邹联沛.UASB-膜生物反应器处理抗生素废水的研究.环境科学与技术,2006,29(9):96-98.
    [32]王志伟,吴志超,顾国维,俞国平.一体式厌氧平板膜生物反应器处理酒厂废水研究.给水排水,2006,26(2):51-53.
    [33]隋鹏哲,文湘华,黄霞.厌氧膜-生物反应器中超声控制膜污染研究.环境污染治理技术与设备,2006,7(4):25-19.
    [34]王志伟,吴志超,顾国维,俞国平.厌氧膜生物反应器膜污染特性研究.膜科学与技术, 2006,26(1):11-14.
    [35]王志伟,吴志超,顾国维,俞国平.一体式厌氧膜生物反应器膜材质选择的试验研究.膜科学与技术,2006,26(2):18-21.
    [36]王志伟,吴志超,顾国维,俞国平.厌氧膜生物反应器抽吸模式对膜过滤性能的影响.环境科学学报,2005,25(4):535-539.
    [37]吴志超,王志伟,顾国维,俞国平.厌氧膜生物反应器污泥组分对膜污染的影响.中国环境科学,2005,25(2):226-230.
    [38]王志伟,吴志超,顾国维,俞国平.厌氧膜生物反应器抽吸压力对膜过滤性能的影响.环境工程,2005增刊,23-26.
    [39]Ma B C,Lee Y A,Park J S,et al.Correlation between dissolved oxygen concentration,microbial community and membrane permeability in a membrane bioreactor.Process Biochemistry,2006,41(5):1165-1172.
    [40]Ahn Y T,Kang S T,Chae S R,et al.Simultaneous high-strength organic and nitrogen removal with combined anaerobic upflow bed filter and aerobic membrane bioreactor.Desalination,2007,202(1-3):114-121.
    [41]Shin J H,Lee S M,Jung J Y,el al.Enhanced COD and nitrogen removals for the treatment of swine wastewater by combining submerged membrane bioreactor(MBR)and anaerobic upflowbed filter(AUBF)reactor.Process Biochemistry,2005,40(12):3769-3776.
    [42]Canziani R,Emondi V,Garavaglia M,et al.Effect of oxygen concentration on biological nitrification and microbial kinetics in a cross-flow membrane bioreactor(MBR)and moving-bed biofilm reactor(MBBR)treating old landfill leachate.Journal of Membrane Science,2006,286(1-2):202-212.
    [43]Cho J W,Song K G,Lee S H,et al.Sequencing anoxic/anaerobic membrane bioreactor(SAM)pilot plant for advanced wastewater treatment.Desalination,2005,178(1-3):219-225.
    [44]Vallero M V G,Lettinga G,Lens P N L.High rate sulfate reduction in a submerged anaerobic membrane bioreactor(SAMBR)at high salinity.Journal of Membrane Science,2005,253(1-2):217-232.
    [45]Jeison D,Lier van J B.Cake layer formation in anaerobic submerged membrane bioreactors(AnSMBR)for wastewater treatment.Journal of Membrane Science,2006,284(1-2):227-236.
    [46]Padmasiri S I,Zhang J Z,Fitch M,et al.Methanogenic population dynamics and performance of an anaerobic membrane bioreactor(AnMBR)treating swine manure under high shear conditions.Water Research,2007,41(1):134-144.
    [47]Rezania B,Oleszkiewicz J A,Cicek N.Hydrogen-dependent denitrification of water in an anaerobic submerged membrane bioreactor coupled with a novel hydrogen delivery system.Water Research,2007,41(5):1074-1080.
    [48]Li H Y,Yang M,Zhang Y,et al.Nitrification performance and microbial community dynamics in a submerged membrane bioreactor with complete sludge retention.Journal of Biotechnology,2006,123(1):60-70.
    [49]李红岩,杨敏,吴成强.无排泥条件下HRT对膜生物反应器硝化性能的影响及其生物群落结构分析.环境科学学报,2005,25(1):109-112.
    [50]Ji L,Zhou J T.Influence of aeration on microbial polymers and membrane fouling in submerged membrane bioreactors.Journal of Membrane Science,2006,276(1-2):168-177.
    [51]孟凡刚,张捍民,于连生,等.活性污泥性质对短期膜污染影响的解析研究.环境科学,2006,27(7):1348-1352.
    [52]臧倩,孙宝盛,张海丰,等.胞外聚合物对一体式膜生物反应器过滤特性的影响.天津工业大学学报,2005,24(5):41-44.
    [53]郝爱玲,陈永玲,顾平.膜生物反应器去除原水中微量苯酚的研究.中国给水排水,2006,22(5):102-105.
    [54]Ahmed Z,Cho J,Lim B R,et al.Effects of sludge retention time on membrane fouling and microbial community structure in a membrane bioreactor.Journal of Membrane Science,2007,287(2):211-218.
    [55]Lapara T M,Klatt C G,Chen R.Adaptations in bacterial catabolic enzyme activity and community structure in membrane-coupled bioreactors fed simple synthetic wastewater.Journal of Biotechnology,2006,121(3):368-380.
    [56]Choi J H,Lee S H,Fukushi K,et al.Comparison of sludge characteristics and PCR-DGGE based microbial diversity of nanofiltration and microfiltration membrane bioreactors.Chemosphere,2007,67(8):1543-1550.
    [57]Choi H,Zhang K,Dionysiou D D,et al.Effect of activated sludge properties and membrane operation conditions on fouling characteristics in membrane bioreactors.Chemosphere,2006,63(10):1699-1708.
    [58]Le-Clech P,Marselina Y,Ye Y,et al.Visualisation of polysaccharide fouling on microporous membrane using different characterization techniques.Journal of Membrane Science,2007,290(1-2):36-45.
    [59]Wever D H,Weiss S,Reemtsma T,et al.Comparison of sulfonated and other micropollutants removal in membrane bioreactor and conventional wastewater treatment.Water Research,2007,41(4):935-945.
    [60]Gonzalez S,Petrovic M,Barcel(?),D.Removal of abroad range of surfactants from municipal wastewater-Comparison between membrane bioreactor and conventional activated sludge treatment.Chemosphere,2007,67(2):335-343.
    [61]Bernhard M,Miiller J,Knepper P T.Biodegradation of persistent polar pollutants in wastewater:Comparison of an optimized lab-scale membrane bioreactor and activated sludge treatment.Water Research,2006,40(18):3419-3428.
    [62]Jang N,Ren X H,Kim G,et al.Characteristics of soluble microbial products and extracellular polymeric substances in the membrane bioreactor for water reuse.Desalination,2007,202(1-3):90-98.
    [63]Drews A,Vocks M,Iversen V,et al.Influence of unsteady membrane bioreactor operation on EPS formation and filtration resistance.Desalination,2006,192(1-3):1-9.
    [64]Rosenberger S,Laabs C,Lesjean B,et al.Impact of colloidal and soluble organic material on membrane performance in membrane bioreactors for municipal wastewater treatment.Water Research,2006,40(4):710-720.
    [65]Drews A,Lee C H,Kraume M.Membrane fouling-a review on the role of EPS.Desalination,2006,200(1-3):186-188.
    [66]Holakoo L,Nakhla G,Yanful K E,et al.delating properties and molecular weight distribution of soluble microbial products from an aerobic membrane bioreactor.Water Research,2006,40(8):1531-1538.
    [67]Cho J,Song K S,Ahn K H.The activated sludge and microbial substances influences on membrane fouling in submerged membrane bioreactor:unstirred batch cell tests.Desalination,2005,183(1-3):425-429.
    [68]Nuengjamnong C,Kweon H J,Cho J,et al.Membrane fouling caused by extracellular polymeric substances during microfiltration processes.Desalination,2005,179(1-3):117-124.
    [69]Tarnacki K,Lyko S,Wintgens T,et al.Impact of extra-cellular polymeric substances on the filterability of activated sludge in membrane bioreactors for landfill leachate treatment.Desalination,2005,179(1-3):181-190.
    [70]Park J S,Yeon K M,Lee C H.Hydrodynamics and microbial physiology affecting performance of new MBR,membrane-coupled high-performance compact reactor.Desalination,2005,172(2):181-188.
    [71]Liang S,Liu C,Song L F.Soluble microbial products in membrane bioreactor operation:Behaviors,characteristics,and fouling potential.Water Research,2007,41(1):95-101.
    [72]刘旭东,王召玲.滑石粉对MBR法处理造纸废水的影响.沈阳建筑大学学报,2006,22(5):821-825.
    [73]李筱焕,吕淑瑜.应用膜生物反应器处理焦化废水的试验研究.浙江冶金,2006,2:36-38.
    [74]李超,孟庆波.应用膜生物反应器处理焦化污水.工业水处理,2005,25(4):37-39.
    [75]迟娟,黄全辉,李敏哲,等.内电解-MBR工艺处理制药废水的研究.工业水处理,2006,26(1):27-29.
    [76]刘小雷,任南琪,张颖.电控反冲SMBR处理中药废水试验研究.哈尔滨工业大学学报,2006,38(6):881-885.
    [77]孙京敏,袁怀雨.膜生物反应器(MBR)处理青霉素废水试验研究.环境工程,23(4):12-14.
    [78]张萍,陈晓宇,宋立群,等.应用MBR处理电厂锅炉酸洗废水的研究.工业水处理,2006,26(5):44-46.
    [79]王科理,孙迎雪,张风.膜生物反应器处理医院污水及氯消毒效果评价.中国公共卫生,2006,22(9):1103-1104.
    [80]臧倩,孙宝盛,魏青.膜生物反应器用于医院废水处理.水处理技术,2006,32(9):85-87.
    [81]杨宗政,顾平,刘静文.好氧序批式MBR处理高浓氨氮废水.中国给水排水,2005,21(3):53-56.
    [82]李方,陈季华,陈青,等.己内酰胺废水生物处理工艺的比较研究.东华大学学报,2006,32(2):108-111.
    [83]张春会,刘涛.膜生物反应器(MBR)在化纤污水处理中的应用.黑龙江环境通报,2005,29(4):91-94.
    [84]孙选举,陈季华,杨期勇,等.复合式MBR处理涤纶碱减量废水的试验研究.工业水处理,2006,26(3):36-38.
    [85]金攀瑞,朱振亚,王琼瑶.MBR处理印染废水的膜污染及清洗研究.中国给水排水,2006,22(5):106-108.
    [86]卿春霞,张建民,同帜.膜生物反应器处理印染废水技术研究.环境科学与管理,2006,31(3):84-86.
    [87]申欢,陈建,崔喜勤,等.浸没式厌氧膜生物法处理垃圾渗滤液试验研究.环境科学与技术,2005,28(5):71-73.
    [88]汪进辉,汪永辉,吴艳侠.MBR在垃圾渗滤液处理中的研究.广州化工,2005,33(6):54-56.
    [89]任艳双,谭欣,赵林,等.内循环膜生物反应器处理啤酒废水.化工进展,2005,24(9):1054-1058.
    [90]左金龙,崔福义,田禹.MBR与二段式SBR处理酱油废水的对比分析.哈尔滨商业大学学报,2005,21(6):706-710.
    [91]Visvanathan C,Choudhary M K,Montalbo M T,el al.Landfill leachate treatment using thermophilic membrane bioreactor.Desalination,2007,204(1-3):8-16.
    [92]Laitinen N,Luonsi A,Vilen J.Landfill leachate treatment with sequencing batch reactor and membrane bioreactor.Desalination,2006,191(1-3):86-91.
    [93]Rahman M M,Al-Malack H M.Performance of a crossflow membrane bioreactor(CF-MBR)when treating refinery wastewater.Desalination,2006,191(1-3):16-26.
    [94]Brik M,Schoeberl P,Chamam B,et al.Advanced treatment of textile wastewater towards reuse using a membrane bioreactor.Process Biochemistry,2006,41(8):1751-1757.
    [95]Alberti F,Bienati B,Bottino A,el al.Hydrocarbon removal from industrial wastewater by hollow-fiber membrane bioreactors.Desalination,2007,204(1-3):24-32.
    [96]Kurian R,Nakhla G,Bassi A.Biodegradation kinetics of high strength oily pet food wastewater in a membrane-coupled bioreactor(MBR).Chemosphere,2006,65(7):1204-1211.
    [97]Bohdziewicz J,Sroka E.Application of hybrid systems to the treatment of meat industry wastewater.Desalination,2006,198(1-3):33-40.
    [98]Hai I F,Yamamoto K,Fukushi K.Development of a submerged membrane fungi reactor for textile wastewater treatment.Desalination,2006,192(1-3):315-322.
    [99]Cinar O,Hasar H,Kinaci C.Modeling of submerged membrane bioreactor treating cheese whey wastewater by artificial neural network.Journal of Biotechnology,2006,123(2):204-209.
    [100]刘江锋.不同水质及膜材质平板膜-生物反应器运行特性研究[申请同济大学工学硕士学位论文].上海:同济大学,2007.
    [101]Ergas S J,Rheinheimer D E.Drinking water denitrification using a membrane bioreactor.Water Research,2004,38(14-15):3225-3232.
    [102]McAdam E J,Judd S J.A review of membrane bioreactor potential for nitrate removal from drinking water.Desalination,2006,196(1-3):135-148.
    [103]张鹏.膜分离在剩余活性污泥浓缩中应用的研究[申请同济大学工学硕士学位论文].上海:同济大学,2003.
    [104]刘明明.平板膜在剩余活性污泥浓缩与减量处理中应用基础研究[申请同济大学工学硕士学位论文].上海:同济大学,2004.
    [105]Yoon S H,Kim H S,Lee S.Incorporation of ultrasonic cell disintegration into a membrane bioreactor for zero sludge production.Process Biochemistry,2004,39(12):1923-1929.
    [106]Yoon S H.Important operational parameters of membrane bioreactor-sludge disintegration(MBR-SD)system for zero excess sludge production.Water Research,2003,37(8):1921-1931.
    [107]李刚,樊耀波,吴琳琳,等.气升循环分体式膜生物反应器处理厕所废水.水处理技术,2006,32(3):49-53.
    [108]樊耀波,徐慧芳,郭海明.气升循环分体式膜生物反应器污水处理与回用技术.环境污染治理技术与设备,2004,5(7):70-75.
    [109]Chae S R,Kang S T,Watanabe Y,et al.Development of an innovative vertical submerged membrane bioreactor(VSMBR)for simultaneous removal of organic matter and nutrients.Water Research,2006,40(11):2161-2167.
    [110]Chae S R,Shin H S.Characteristics of simultaneous organic and nutrient removal in a pilot-scale vertical submerged membrane bioreactor(VSMBR)treating municipal wastewater at various temperatures.Process Biochemistry,2007,42(2):193-198.
    [111]Xing C H,Yamamoto K,Fukushi K.Performance of an inclined-plate membrane bioreactor at zero excess sludge discharge.Journal of Membrane Science,2006,275(1-2):175-186.
    [112]Farizoglu B,Keskinler B.Sludge characteristics and effect of crossflow membrane filtration on membrane fouling in a jet loop membrane bioreactor(JLMBR).Journal of Membrane Science,2006,279(1-2):578-587.
    [113]Yeon K M,Park J S,Lee C H.Membrane coupled high-performance compact reactor:A new MBR system for advanced wastewater treatment.Water Research,2005,39(10):1954-1961.
    [114]申欢,金奇庭.高氨氮对厌氧生物法处理城市垃圾渗滤液的影响.环境污染治理技术与设备,2005,6(7):40-43.
    [115]Lin C N,Wu S Y,Lee K S,et al.Integration of fermentative hydrogen process and fuel cell for on-line electricity generation.International Journal of Hydrogen Energy,2007,32(7):802-808.
    [116]Gassanova L G,Netrusov A I,Teplyakov V V,et al.Fuel gases from organic wastes using membrane bioreactors.Desalination,2006,198(1-3):56-66.
    [117]Yang W,Cicek N,Ilg J.State-of-the-art of membrane bioreactors:Worldwide research andcommercial applications in North America.Journal of Membrane Science,2006,270(1-2):201-211.
    [118]Atkinson S(editor).Research studies predict strong growth for MBR markets.Membrane Technology,2006,2006(2):8-10.
    [119]BCC Corporation.Strong growth forecast for membrane technology.Membrane Technology,2007,2007(2):5.
    [120]北京碧水源科技股份有限公司.碧水源成功中标顺义温榆河水资源工程.http://www.originwater.com/newsdetailcom.asp?id-309,2007/03/09.
    [121]国家环保局.水和废水监测分析方法(第三版).北京:中国环境科学出版社,1989.
    [122]刘粤梅,朱怀荣.生物化学实验教程.人民卫生出版社,1997.
    [123]Chang I S,Lee C H.Membrane filtration characteristics in membrane-coupled activated sludge system-the effect of physiological states of activated sludge on membrane fouling.Desalination,1998,120(3):221-233.
    [124]Hiemenz P C.Principles of colloid and surface chemistry,2~(nd)edition.Marcel Dekker,Newyork,1986.
    [125]Zydney A L,Colton C K.A concentration polarization model for the filtrate flux in cross-flow microfiltration of particulate suspension.Chemical Engineering Communication,1986,47:1-21.
    [126]Gregory J.The role of colloid interactions in solid-liquid separations.Water Science and Technology,1993,27:1-17.
    [127]Song L,Elimelech M.Particle deposition onto a permeate surface in laminar flow.Journal of Colloid Interface Science,1995,173:165-180.
    [128]Choo K.H,Lee C H.Hydrodynamic behavior of anaerobic biosolids during crossflow filtration in the membrane anaerobic bioreactor.Water Research,1998,32(11):3387-3397.
    [129]Madaeni S S,Fane A G,Wiley D E.Factors influencing critical flux in membrane filtration of activated sludge.Journal of Chemical Technology and Biotechnology,1999,74(6):539-543.
    [130]郑鹏飞.一体式平板膜生物反应器处理生活污水的研究[申请同济大学工学硕士论文].上海:同济大学,2004.
    [131]Barker D J,Struckey D C.A review of soluble microbial products(SMP)in wastewater treatment systems.Water Research,1999,33(14):3063-3082.
    [132]van der Roest H F,Lawrence D P,van Bentem A G N.Membrane bioreactor for municipal wastewater treatment.IWA publishing,Alliance House,London,UK,2002.pp 35-53.
    [133]Chen YG,GuGW.Preliminary studies on continuous chromium(Ⅵ)biological removal from wastewater by anaerobic-aerobic activated sludge process.Bioresource Technology,2005,96(15):1713-1721.
    [134]章非娟.水污染控制工程试验(第2版).北京:高等教育出版社,1993.
    [135]郭亚丽.循环水中亚硝酸盐异常升高的原因分析及措施.http://water-nx.com/show,aspx?id=567&cid=33.2006/10/7.
    [136]齐唯,李春杰,何义亮.浸没式膜生物反应器的同步硝化反硝化效应.中国给水排水,2003,19(7):8-11.
    [137]邹联沛,刘旭东,王宝贞,等.MBR中影响同步硝化反硝化的生态因子.环境科学,2001,22(4):51-55
    [138]张自杰.排水工程(下册).北京:中国建筑工业出版社,2000.pp306-308.
    [139]Benefield L D,Clifford W R.Activated sludge and its process modification.In:Biological Process Design for Wastewater Treatment.Prentice-Hall,Englewood Cliffs,NJ,USA,1980.[140]Hao X,Doddema H J,van Groenestijn J W.Conditions and mechanisms affecting simultaneous nitrification and denitrification in a Pasveer oxidation ditch.Bioresource Technology,1997,59(2/3):207-215.
    [141]Pochana K,Keller J.Study of factors affecting simultaneous nitrification and denitrification(SND).Water Science and Technology,1999,39(6):61-68.
    [142]李丛娜,吕锡武.同步硝化反硝化脱氮研究.给水排水,2001,27(1):22-24.
    [143]谢珊,李小明,曾光明等.SBR系统中好氧颗粒污泥脱氮特性研究.中国环境科学,2004,24(3):355-359.
    [144]Pochana K,Keller J.Model development for simultaneous nitrification and denitrification.Water Science and Technology,1999,39(1):235-243
    [145]姜信真.气液反应理论与应用基础.北京:烃工业出版社,1989.
    [146]张成芳.气液反应和反应器.北京:化学工业出版社,1985.
    [147]冯绪胜,刘洪国,郝京诚.21世纪化学丛书-胶体化学.北京:化学工业出版社,2005.
    [148]Abbassi B,Dullstein S,Rabiger N.Minimization of excess sludge production by increase of oxygen concentration in activated sludge flocs:experimental and theoretical approach.Water Research,2000,34(1):139-146.
    [149]Liu Y,Tay J H.Strategy for minimization of excess sludge production from the activated sludge process.Biotechnology Advances,2001,19(2):97-107.
    [150]Rosenberger S,Kraume M.Filterability of activated sludge in membrane bioreactors.Desalination,2002,146(1-3):373-379.
    [151]Ross W R,Barnard J P,Roux le J,et al.Application of ultrafiltration membrane for solids-liquid separation in anaerobic digester systems:The ADUF process.Water SA,1990:16:85-91.
    [152]Rosenberger S,Kubin K,Kraume M.Rheology of activated sludge in membrane bioreactors.Engineering Life and Science,2002,2(9):269-275.
    [153]Nagaoka,H,Ueda S,Miya A.Influence of extracellular polymers on the membrane separation activated sludge process.Water Science and Technology,1996,34(9):165-172.
    [154]Wingender J,New T R,Flemming H C.Microbial extracellular polymeric substances,characterization,structure and function.Berlin:Springer,1999.
    [155]Stumm W,Morgan J J.Aquatic Chemistry,2nd ed.,PP.510-511.John Wiley & Sons,New York,1981.
    [156]Nagaoka H,Yamanishi S,Miya A.Modeling of biofouling by extracellular polymers in a membrane separation activated sludge system.Water Science and Technology,1998,38(4-5):496-504.
    [157]Cho B D,Fane A G.Fouling transients in nominally sub-critical flux operation of a membrane bioreactor.Journal of Membrane Science,2002,209(2):391-403.
    [158]Hodgson P A,Leslie G L,Schneider R P,el al.Cake resistance and solute rejection in bacterial microfiltration:the role of the extracellular matrix.Journal of Membrane Science,1993,79(1):35-53.
    [159]Lin W W,Chen G W,Lee D J.Capillary suction time(CST)as a measure of sludge dewaterability.Water Research,1996,34(3-4):443-448.
    [160]Higgins M J,Novak J T.The effect of cations on the settling and dewatering of activated sludges:laboratory results.Water Environment Research,1997a,69(2):215-224.
    [161]Ng How Y,Hermanowicz Slawomir W.Membrane bioreactor operation at short solids retention times:performance and biomass characteristics.Water Research,2005,39(6):981-992.
    [162]Lee W,Kang S,Shin H.Sludge characteristics and their contribution to microfiltration in submerged membrane bioreactors.Journal of Membrane Science,2003,216(1-2):217-227.
    [163]Defrance L,Jaffrin Y M,Gupta B,et al.Contribution of various constituents of activated sludge to membrane bioreactor fouling.Bioresource Technology,2000,73(2):105-112.
    [164]Bouhabila E H,Aim R B,Buisson H.Fouling characterisation in membrane bioreactors,Separation and Purification Technology,2001,22-23(1-3):123-132.
    [165]Wisniewski C,Grasmick A.Membrane bioreactor for treatment of polluted effluents:Biological performance and advantages.Med.Fac.Landbouw.Univ.Gent,1996,61(4b):2017-2024.
    [166]吴金玲,黄霞,李海涛,等.活性污泥混合液性质对膜过滤性的影响.膜法水处理技术国际研讨会,北京,2005/10.pp 96-102.
    [167]Wu J L,Chen F T,Huang X,et al.Using inorganic coagulants to control membrane fouling in a submerged membrane bioreactor.Desalination,2006,197(1-3):124-136.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700