用户名: 密码: 验证码:
提高盾叶薯蓣内生真菌Dzf12中螺二萘类化合物palmarumycins C_(12)和C_(13)产量的策略
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
药用植物内生真菌是新型天然活性物质的重要来源,其在农业、医药以及食品工业等领域具有潜在的应用前景。利用内生真菌发酵来实现活性物质的工业化生产,可以提高其产量,同时对减少野生药用植物多样性的破坏具有重要意义。螺二萘化合物是一类具有抗菌、抗癌、抗细胞毒和抗寄生虫等活性的萘醌类衍生物。前期研究发现,盾叶薯蓣内生真菌Dzfl2是一株螺二萘类化合物的高产菌株,具有良好的研究价值。本文以盾叶薯蓣内生真菌Dzf12为研究对象,分别制备了其宿主植物的多糖和寡糖,研究了多糖和寡糖对内生真菌Dzf12菌丝生长和螺二萘类化合物palmarumycins C12和C13产量的影响,评价了多糖的抗氧化活性,优化了水提多糖的提取制备工艺,同时探讨了表面活性剂和氧载体对内生真菌Dzf12菌丝生长和螺二萘类化合物palmarumycins C12和C13产量的影响。通过实验研究,以期为宿主植物与内生真菌之间相互关系的研究提供依据,为Dzf12菌株中活性产物palmarumycins C12和C13的大规模工业化生产打下基础,为盾叶薯蓣抗氧化活性多糖和寡糖的开发利用奠定基础。本研究获得的主要结果如下:
     1、通过制备盾叶薯蓣水提多糖(WEP)、碱提多糖(SEP)和酸提多糖(AEP)分别与内生真菌Dzfl2发酵共培养,发现WEP对内生真菌Dzf12的菌丝生物量和螺二萘类化合物palmarumycins C12和C13产量具有显著的促进作用。当添加400mg/L的WEP到培养了3d的培养液中,培养15d后可使palmarumycins C12和C13的产量分别达67.73和350.76mg/L,分别是对照的8.76和2.69倍。
     2、研究了寡糖对内生真菌Dzf12菌丝生长及次生代谢产物的影响。通过制备水提多糖(WEP)、碱提多糖(SEP)和酸提多糖(AEP)相应的寡糖(OW, OS和OA)与内生真菌Dzfl2共培养。在三种寡糖中,发现OW对内生真菌Dzfl2的菌丝生物量和螺二萘类化合物palmarumycins C12和C13产量的促进作用最显著。当在第3d添加300mg/L的OW到Dzfl2培养液中,培养15d后可使palmarumycins C12和C13的产量分别达87.96和422.28mg/L,分别是对照的9.83和3.24倍。
     3、对WEP、SEP和AEP的体外抗氧化活性进行了评价。发现盾叶薯蓣水提多糖WEP在DPPH自由基清除模型、Fe3+还原模型、Fe2+螯合模型和.OH自由基清除模型均表现出较好的活性,其EC50值分别为661.19、413.86、22.36和135.27μg/mL;SEP在Fe2+螯合模型和-OH自由基清除模型中的EC50分别为885.44和412.36μg/mL;AEP在Fe2+螯合模型和-OH自由基清除模型中的EC50分别为771.37和600.08μg/mL。
     4、对盾叶薯蓣水提多糖WEP的提取工艺过程进行了优化。通过单因素实验,确定了盾叶薯蓣水提多糖WEP得率有显著影响的取值范围,分别为:料液比1:20~1:60g:mL、提取温度60~100℃、提取时间60~180min。并且采用中心组合设计(CCD)和响应面分析方法(RSM)进一步优化了研究变量,建立了WEP得率与研究变量之间的二次多项回归方程,确定了WEP的最佳提取条件为:料水比为1:52g:mL、提取温度为94℃、提取时间为147min时,WEP得率达到最大值10.77%。
     5、研究了三种不同表面活性剂和氧载体对盾叶薯蓣内生真菌Dzf12产螺二萘类化合物的影响。结果表明,Tween-20(0.2%,v/v)和液体石蜡(4%,v/v)的效果最好,palmarumycins C12和C13的总产量分别是344.25和353.89mg/L;然后对其不同添加天数进行优化,发现在第6d添加,其总产量分别是350.71和373.69mg/L。在加入液体石蜡的同时,再加入表面活性剂Tween-20,palmarumycins C12和C13的总产量为402.09mg/L,与对照(138.50mg/L)相比,产量提高了2.90倍。
Plant endophytic fungi are an important and novel resource of natural bioactive compounds with great potential applications prospect in agriculture, medicine and food industry. The industrial productions of bioactive substances that make use of endophytic fungi are capable of increasing their yields. In the meantime, it is also very important in avoiding the damage to the diversity of wild medicinal plants. Spirobisnaphthalenes are a group of naphthaquinone derivatives with antimicrobial, antitumor, cytotoxic and antiparasite activities. Endophytic fungus Dzf12derived from Dioscorea zingiberensis C. H. Wright was found to be a high producer of spirobisnaphthalenes in our previous investigation, and it had a good development and utilization of value. This study takes Berkleasmium sp. Dzf12which were isolated from the rizhomes of D. zingiberensis as study object, polysaccharides and oligosaccharides were prepared from the rizhomes of D. zingiberensis. The effects of these saccharide elicitors on mycelia growth and palmarumycins C12and C13of Berkleasmium sp. Dzf12were investigated. The antioxidant activities of polysaccharides from D. zingiberensis were also evaluated. And the preparation process of polysaccharide possessing excellent biological activities was optimized. This study also discussed the enhancement of palmarumycins C12and C13production in liquid culture of the endophytic fungus Berkleasmium sp. Dzf12by surfactants and oxygen vector. This research could not only provide promising baseline information for the study of interaction between the host plant (D. zingiberensis) and the endophytic fungi, but also establish the foundation for the large-scale industrial production of active product(palmarumycins C12and C13) as well as for the exploitation and utilization of D. zingiberensis polysaccharides and oligosaccharides with excellent biological activities.The main results are as follows:
     1. In order to study the effects of the extracts of host plant D. zingiberensis on secondary metabolites in liquid culture of Berkleasmium sp. Dzf12, Three polysaccharides, namely water-extracted polysaccharide (WEP), sodium hydroxide-extracted polysaccharide(SEP) and acid-extracted polysaccharide(AEP) were sequentially prepared from the rhizomes of D. zingiberensis. Among them, WEP was found to be the most effective elicitor to enhance palmarumycins C12and C13production. When WEP was added to the medium at400mg/L on day3of culture, the maximal palmarumycins C12and C13yield (intracellular C13in mycelia plus extracellular C13in medium)of67.73and350.76mg/L on day15was achieved, which was about8.76-fold and2.69-fold in comparison with the control.
     2. To investigate further the effects of oligosaccharides from its host plant D. zingiberensis on secondary metabolites in liquid culture of Berkleasmium sp. Dzfl2. Three crude oligosaccharides were respectively prepared by acid hydrolysis of three polysaccharides, which were water-extracted polysaccharide (WEP), sodium hydroxide-extracted polysaccharide (SEP) and acid-extracted polysaccharide (AEP) from the rhizomes of D. zingiberensis. Among the three oligosaccharides, the crude oligosaccharide prepared by acid hydrolysis of WEP was found to be the most efficient elicitor to enhance the production of palmarumycins C12and C13in liquid culture of endophytic fungus Berkleasmium sp. Dzfl2. When OW was applied to the medium at300mg/L on day3of culture, the maximal yields of palmarumycin C12(87.96mg/L) and palmarumycin C13(422.28mg/L) were achieved on day15of culture, which were9.83and3.24-fold in comparison with control, respectively.
     3. The in vitro antioxidant acitivities of WEP、SEP and AEP were respectively evaluated. WEP from D. zingiberensis showed excellent activities in the DPPH radical scavenging activity, reducing Fe3+power, chelating Fe2+ability, and hydroxyl radical scavenging activity assays, with the corresponding EC50as661.19、413.86、22.36and135.27μg/mL. SEP also exhibited antioxidant activities in chelating Fe2+ability and hydroxyl radical scavenging activity assays, with the corresponding EC50values as885.44and412.36μg/mL; AEP also exhibited antioxidant activities in chelating Fe2+ability and hydroxyl radical scavenging activity assays, with the corresponding EC50values as771.37and600.08μg/mL.
     4. The extraction process of WEP from D. zingiberensis were optimized. The factors and their ranges which could significantly affect the yield of WEP were determined by single-factor experiments, which were respectively extraction ratio of water to raw materials1:20-60(g:mL), extraction temperature60-100℃, extraction time60~180min,. And then central composite design (CCD) and response surface methodology (RSM) were employed to optimize the tested variables and establish the second-order polynomial regression equation between the WEP yiled and the tested variables. The optimal extraction parameters for WEP extraction were determined as1:52(g:mL)for ratio of raw material weight (g) to water volume (mL),147min for extraction time and'94℃for extraction temperature, when the WEP yield arrived at the maximum10.77%.
     5. In order to investigate the effects of surfactants and oxygen vectors on mycelia growth and palmarumycins C12and C13in liquid culture of Berkleasmium sp. Dzfl2. While all organic liquids showed a positive effect, Tween-20(0.2%, v/v) and liquid paraffin (4%, v/v) was proved to be the most beneficial for the mycelia growth and palmarumycins C12and C13production, the maximal yield of palmarumycins344.25and353.89mg/L, respectively. And then, the addition time to the mycelial liquid culture of endophytic fungus Dzfl2were further evaluated and optimized. When the0.2%Tween-20and4%liquid paraffin were added to medium in each flask on day6, the palmarumycins yield was increased to350.71and373.69mg/L, respectively. The total palmarumycins yield(402.09mg/L) were2.90-fold in comparison with control (138.50mg/L) when Tween-20and liquid paraffin were used at the same time.
引文
[1]Zhou LG, Zhao JL, Shan TJ, et.al. Spirobisnaphthalenes from fungi and their biological activities. Mini Reviews in Medicinal Chemistry,2010,10 (10):977-989.
    [2]Cai YS, Guo YW, Krohn K. Structure, bioactivities, biosynthetic relationships and chemical synthesis of the spirodioxynaphthalenes. Natural Products Reports,2010,27 (12):1840-1870.
    [3]Krohn K. Natural products derived from naphthalenoid precursors by oxidative dimerization. Progress in the Chemistry of Organic Natural Products,2003,85,1-50.
    [4]Ogishi H, Chiba N, Mikawa T, et.al. Novel antibiotic MK 3018 substance-useful as antimicrobial agent. Jpn, Patent, JP01,294,686,1989.
    [5]Ravindranath N, Ravinder RM, Mahender G, et.al. Deoxypreussomerins from Jatropha curcas:are they also plant metabolites?. Phytochemistry,2004,65 (16):2387-2390.
    [6]Prajoubklang A, Sirithunyalug B, Charoenchai P, et.al. Bioactive deoxypreussomerins and dimeric naphthoquinones from Diospyros ehretioides fruits:deoxypreussomerins may not be plant metabolites but may be from fungal epiphytes or endophytes. Chemistry & Biodiversity,2005,2 (10):1358-1367.
    [7]Miyashita K, Imanishi T. Syntheses of natural products having an epoxyquinone structure. Chemical Reviews,2005,105 (12):4515-4536.
    [8]Liu XT, Schwan WR, Volk TJ, et.al. Antibacterial spirobisnaphthalenes from the North American cup fungus Urnula craterium. Journal of Natural Products,2012,75,1534-1538.
    [9]Bode HB, Zeeck A. UV mutagenesis and enzyme inhibitors as tools to elucidate the late biosynthesis of the spirobisnaphthalenes. Phytochemistry,2000,55 (4):311-316.
    [10]Schlingmann G, West RR, Milne L, et.al. Diepoxins, novel fungal metabolites with antibiotic activity. Tetrahedron Letters,1993,34 (45):7225-7228.
    [11]Schlingmann G, Matile S, Berova N, et.al. Absolute stereochemistry of the diepoxins. Tetrahedron, 1996,52 (2):435-446.
    [12]Thiergardt R, Hug P, Rihs G, et.al. Cladospirone bisepoxide-a novel fungal metabolite structure determination. Tetrahedron Letters,1994,35 (7):1043-1046.
    [13]Thiergardt R, Rihs G, Hug P, et.al. Cladospirone bisepoxide:definite structure assignment including absolute configuration and selective chemical transformations. Tetrahedron,1995,51 (3):733-742.
    [14]Singh SB, Zink DL, Liesch JM, et.al. Preussomerins and deoxypreussomerins:novel inhibitors of ras farnesyl-protein transferase. The Journal of Organic Chemistry,1994,59 (21):6296-6302.
    [15]Krohn K, Michel A, Florke U, et.al. Palmarumycins C1-C16 from Coniothyrium sp.:isolation, structure elucidation, and biological activity. Liebigs Annalen der Chemie,1994, (11):1099-1108.
    [16]Krohn K, Michel A, Florke U, et.al. Palmarumycins CP1-CP4 from Coniothyrium palmarum:isolation, structure elucidation, and biological activity. Liebigs Annalen der Chemie, 1994,(11):1093-1097.
    [17]Krohn K, Beckmann K, Florke U, et.al. New palmarumycins CP4a and CP5 from Coniothyrium palmarum:structure elucidation, crystal structure analysis and determination of the absolute configuration by CD calculations. Tetrahedron,1997,53 (9):3101-3110.
    [18]Chu M, Truumees I, Patel MG, et.al. Two new phospholipased inhibitors, sch 49211 and sch 49212, produced by the fungus nattrasia mangirferae. Bioorganic & Medicinal Chemistry Letters,1994,4 (12):1539-1542.
    [19]Chu M, Truumees I, Patel MG, et.al. Structure of Sch 49209:a novel antitumor agent from the fungus Nattrassia mangiferae. The Journal of Organic Chemistry,1994,59 (5):1222-1223.
    [20]Chu M, Truumees I, Patel MG, et.al. A novel class of antitumor metabolites from the fungus Nattrassia Mangiferae. Tetrahedron Letters,1994,35 (9):1343-1346.
    [21]Chu M, Patel MG, Pai JK, et.al. Sch 53823 and Sch 53825, novel fungal metabolites with phospholipase D inhibitory activity. Bioorganic & Medicinal Chemistry Letters,1996,6 (5): 579-584.
    [22]Chu M, Truumees I, Patel M, et.al. Sch 50673 and Sch 50676, two novel antitumor fungal metabolites. The Journal of Antibiotics,1995,48 (4):329-331.
    [23]Sakemi S, Inagaki T, Kaneda K, et.al. CJ-12,371 and CJ-12,372, two novel DNA gyrase inhibitors: fermentation, isolation, structural elucidation and biological activities. Journal of Antibiotics,1995, 48(2):134-142.
    [24]Bode HB, Walker M, Zeeck A. Cladospirones B to I from Sphaeropsidales sp. F-24'707 by variation of culture conditions. European Journal of Organic Chemistry,2000,3185-3193.
    [25]Jiao P, Swenson DC, Gloer JB, et.al. Decaspirones A-E, bioactive spirodioxynaphthalenes from the freshwater aquatic fungus Decaisnella thyridioides. Journal of Natural Products,2006,69 (12): 1667-1671.
    [26]Hu HJ, Guo HJ, Li EW, et.al. Decaspirones F-I, bioactive secondary metabolites from the saprophytic fungus. Journal of Natural Products,2006,69 (12):1672-1675.
    [27]Dai J, Krohn K, Elsasser B, et.al. Metabolic products of the endophytic fungus Microsphaeropsis sp. from Larix decidua. European Journal of Organic Chemistry,2007, (29):4845-4854.
    [28]Martinez-Luis S, Della-Togna G, Coley PD, et.al. Antileishmanial constituents of the Panamanian endophytic fungus Edenia sp. Journal of Natural Products,2008,71 (12):2011-2014.
    [29]Kanoh K, Okada A, Adachi K, et.al. Ascochytatin, a novel bioactive spirodioxynaphthalene metabolite produced by the marine-derived fungus, Ascochyta sp. NGB4. The Journal of Antibiotics,2008,61 (3):142-148.
    [30]Cai XY, Shan TJ, Li PQ, et.al. Spirobisnaphthalenes from the endophytic fungus Dzfl2 of Dioscorea zingiberensis and their antimicrobial activities. Natural Product Communications,2009, 4(11):1469-1472.
    [31]Weber HA, Baenziger NC, Gloer JB. Structure of preussomerin A:an unusual new antifungal metabolite from the coprophilous fungus Preussia isomera. Journal of the American Chemical Society,1990,112 (18):6718-6719.
    [32]Weber HA, Gloer JB. The preussomerins:novel antifungal metabolites from the coprophilous fungus Preussia isomera Cain. The Journal of Organic Chemistry,1991,56 (14):4355-4360.
    [33]Polishook JD, Dombrowski AW, Tsou NN, etl. Preussomerin D from the endophyte Hormonema dematioides. Mycologia,1993 85 (1):62-64.
    [34]Soman AG, Gloer JB, Koster B, et.al. Sporovexins A-C and a new preussomerin analog: antibacterial and antifungal metabolites from the coprophilous fungus Sporomiella vexans. Journal of Natural Products,1999,62 (4):659-661.
    [35]Krohn K, Florke U, John M, et.al. Biologically active metabolites from fungi. Part 16:New preussomerins J, K and L from an endophytic fungus:structure elucidation, crystal structure analysis and determination of absolute configuration by CD calculations. Tetrahedron,2001,57 (20):4343-4348.
    [36]Seephonkai P, Isaka M, Kittakoop P, et.al. Evaluation of antimycobacterial, antiplasmodial and cytotoxic activities of preussomerins isolated from the lichenicolous fungus Microsphaeropsis sp. BCC 3050. Planta Medica,2002,68 (1):45-48.
    [37]Macias-Rubalcava ML, Hernandez-Bautista BE, Jimenez-Estrada M, et.al. Naphthoquinone spiroketal with allelochemical activity from the newly discovered endophytic fungus Edenia gomezpompae. Phytochemistry,2008,69 (5):1185-1196.
    [38]Dong JY, Song HC, Li JH, et.al. Ymf 1029A-E, preussomerin analogues from the fresh-water-derived fungus YMF 1.01029. Journal of Natural Products,2008,71 (6):952-956.
    [39]McDonald LA, Abbanat DR, Barbieri LR, et.al. Spiroxins, DNA cleaving antitumor antibiotics from a marine-derived fungus. Tetrahedron Letters,1999,40 (13):2489-2492.
    [40]Wang T, Shirota O, Nakanishi K, et.al. Absolute stereochemistry of the spiroxins. Canadian Journal of Chemistry,2001,79 (11):1786-1791.
    [41]Wipf P, Hopkins TD, Jung JK, et.al. New inhibitors of the thioredoxin-thioredoxin reductase system based on a naphthoquinone spiroketal natural product lead. Bioorganic & Medicinal Chemistry Letters,2001,11 (19):2637-2641.
    [42]Bode HB, Walker M, Zeeck A. Structure and biosynthesis of mutolide, a novel macrolide from a UV mutant of the Fungus F-24'707. European Journal of Organic Chemistry,2000,1451-1456.
    [43]Chu M, Truumees I, Patel MG, et.al. A novel class of antitumor metabolites from the fungus Nattrassia Mangiferae. Tetrahedron Letters, J994,35 (9):1343-1346.
    [44]Pai J, Frank E, Blood C, et.al. Novel ketoepoxides block phospholipase D activation and tumor cell invasion. Anti-cancer Drug Design,1994,9 (4):363.
    [45]Petersen F, Moerker T, Vanzanella F, et.al. Production of cladospirone bisepoxide, a new fungal metabolite. The Journal of Antibiotics,1994,47 (10):1098-1103.
    [46]Dong JY, Song HC, Li JH, et.al. Two unusual naphthalene-containing compounds from a freshwater fungus YMF 1.01029. Chemistry & Biodiversity,2009,6 (4):569-577.
    [47]King I, Blood C, Chu M, et.al. Antitumor effect of keto-diepoxides isolated from the fungus Nattrassia mangiferae. Oncology Research,1995,7 (1):1-6.
    [48]周永平,申开泽,董锦艳,等.水生真菌YMF1.01029毒杀线虫活性代谢产物的研究.中国抗生素杂志,2009,34(2):74-78.
    [49]Wipf P, Jung JK, Rodriguez S, et.al. Synthesis and biological evaluation of deoxypreussomerin A and palmarumycin CP1 and related naphthoquinone spiroketals. Tetrahedron,2001,57 (2): 283-296.
    [50]许友卿,丁兆坤.用基因工程方法研制甘二碳六烯酸.中国生物工程杂志,2005,25(5):22-25.
    [51]Dornenburg H, Knorr D. Strategies for the improvement of secondary metabolite production in plant cell cultures. Enzyme and Microbial Technology,1995,17 (8):674-684.
    [52]Radman R, Saez T, Bucke C, et.al. Elicitation of plants and microbial cell systems. Biotechnology and Applied Biochemistry,2003,37 (1):91-102.
    [53]Pitta-Alvarez SI, Spollansky TC, Giulietti AM. The influence of different biotic and abiotic elicitors on the production and profile of tropane alkaloids in hairy root cultures of Brugmansia candida. Enzyme and Microbial Technology,2000,26 (2):252-258.
    [54]Adinarayana K, Ellaiah P, Srinivasulu B, et.al. Response surface methodological approach to optimize the nutritional parameters for neomycin production by Streptomyces marinensis under solid-state fermentation. Process Biochemistry,2003,38 (11):1565-1572.
    [55]Sharma D, Satyanarayana T. A marked enhancement in the production of a highly alkaline and thermostable pectinase by Bacillus pumilus dcsrl in submerged fermentation by using statistical methods. Bioresource Technology,2006,97 (5):727-733.
    [56]Tamerler C, Ariyo B, Bucke C, et.al. Effect of mannan and alginate oligosaccharides on production in bioreactors of penicillin G and its biosynthetic intermediates. Annual Microbiol.,2001,51 (1): 53-60.
    [57]Zhu LW, Tang YJ. Significance of protein elicitor isolated from Tuber melanosporum on the production of ganoderic acid and Ganoderma polysaccharides during the fermentation of Ganoderma lucidum. Bioprocess and Biosystems Engineering,2010,33 (8):999-1005.
    [58]Leung R, Poncelet D, Neufeld RJ. Enhancement of oxygen transfer rate using microencapsulated silicone oils as oxygen carriers. Journal of Chemical Technology and Biotechnology,1997,68 (1): 37-46.
    [59]Shih IL, Kuo CY, Hsieh FC, et.al. Use of surface response methodology to optimize culture conditions for iturin A production by Bacillus subtilis in solid-state fermentation. Journal of the Chinese Institute of Chemical Engineers,2008,39 (6):635-643.
    [60]Li Y, Liu Z, Zhao H, et.al. Statistical optimization of xylanase production from new isolated Penicillium oxalicum ZH-30 in submerged fermentation. Biochemical Engineering Journal,2007, 34 (1):82-86.
    [61]Ren J, Lin WT, Shen YJ, et.al. Optimization of fermentation media for nitrite oxidizing bacteria using sequential statistical design. Bioresource Technology,2008,99 (17):7923-7927.
    [62]Srinivas MRS, Chand N, Lonsane B. Use of Plackett-Burman design for rapid screening of several nitrogen sources, growth/product promoters, minerals and enzyme inducers for the production of alpha-galactosidase by Aspergillus niger MRSS 234 in solid state fermentation system. Bioprocess Engineering,1994,10 (3):139-144.
    [63]Reddy LVA, Wee YJ, Yun JS, et al. Optimization of alkaline protease production by batch culture of Bacillus sp. RKY3 through Plackett-Burman and response surface methodological approaches. Bioresource Technology,2008,99 (7):2242-2249.
    [64]Kennedy M, Krouse D. Strategies for improving fermentation medium performance:a review. Journal of Industrial Microbiology and Biotechnology,1999,23 (6):456-475.
    [65]陈斌,庄英萍,郭美锦,等.中心组合设计优化梅岭霉素发酵培养基.高技术通讯,2002,12:29-34.
    [66]Wang ZW, Liu XL. Medium optimization for antifungal active substances production from a newly isolated Paenibacillus sp. using response surface methodology. Bioresource Technology,2008,99 (17):8245-8251.
    [67]朱会霞,孙金旭.灵芝摇瓶发酵条件优化研究.中国酿造,2008,198(21):30-32.
    [68]王迪,沈畏,黄嘉欣,等.统计学分析方法应用于蛹虫草发酵培养基的优化.吉林大学学报(工学版),2009,39(1):366-370.
    [69]Yu R M, Wang Y, Ma L, et al. Production of active alkaloids by elicited Papaver nudicaule cell suspension cultures. Pharmaceutical Biotechnology,2003,10 (4):218-222.
    [70]李家儒,管志勇,刘曼西.Cu2+对红豆杉培养细胞中紫杉醇形成的影响.华中农业大学学报,1999,18(2):117-120.
    [71]Petruccioli M, Federici F, Bucke C, et al. Enhancement of glucose oxidase production by Penicillium variabile P16. Enzyme and Microbial Technology,1999,24 (7):397-401.
    [72]Zhao JL, Zheng BB, Li Y, et al. Enhancement of diepoxin ζ production by yeast extract and its fractions in liquid culture of Berkleasmium-like endophytic fungus Dzfl2 from Dioscorea zingiberensis. Molecules,2011,16 (1):847-856.
    [73]叶辉,王兆慧,陈佩林.微生物诱导子对诺卡氏菌属NO.5205菌株发酵的影响.生物技术,2004,14(6):57-58.
    [74]Han JR, Gao PP. Effect of several elicitors on sclerotia biomass and carotenoid yield of Penicillium sp. PT95 during solid-state fermentation of corn meal. World Journal of Microbiology and Biotechnology,2002,18 (4):371-375.
    [75]边猛.海洋真菌产生物碱代谢调节的研究.[学位论文].青岛科技大学,2007.
    [76]史强.真菌代谢产物中促进纳他霉素合成的诱导子的研究.[学位论文].江南大学,2010.
    [77]王镜岩,朱圣庚,徐长法.生物化学(第三版).北京:高等教育出版社,2002,380-430.
    [78]陈天寿.微生物培养基的制造与应用.北京:中国农业出版社,1995,18-20.
    [79]杨劲松,胡荣锁,徐绍成,等.金属离子对海洋青霉HN89产抗真菌抗生素的影响.工业微生物,2008,38(4):45-48.
    [80]彭虹,魏美燕,李尚德,等.九种金属离子对一株南海海洋真菌生长代谢影响的初步研究.广东微量元素科学,2010,17(2):26-29.
    [81]Xu F, Yuan QP, Zhu Y. Improved production of lycopene and β-carotene by Blakeslea trispora with oxygen-vectors. Process Biochemistry,2007,42 (2):289-293.
    [82]Lai LST, Tsai TH, Wang TC. Application of oxygen vectors to Aspergillus terreus cultivation. Journal of Bioscience and Bioengineering,2002,94 (5):453-459.
    [83]Long WJ. Enhancement of citric acid production by Aspergillus niger using n-dodecane as an oxygen-vector. Process Biochemistry,2000,35 (10):1079-1083.
    [84]Liu Y, Wu J. Use of n-hexadecane as an oxygen vector to improve Phaffia rhodozyma growth and carotenoid production in shake-flask cultures. Journal of Applied Microbiology,2006,101 (5): 1033-1038.
    [85]朱艳,袁其朋,王航.添加氧载体及表面活性剂对番茄红素发酵的影响.微生物学通报,2006,33(1):90-93.
    [86]陈长华,李振辉,张磊,等.前体对螺旋霉素发酵的影响.中国抗生素杂志,1995,20(5):392-393.
    [87]张亚妮,董兆麟.一株产紫杉醇真菌发酵条件的研究.西北大学学报(自然科学版),2002,32(3):310-312.
    [88]代文亮.产紫杉醇菌种的改良及若干种前体物质作用的研究.[学位论文],江南大学,2008.
    [89]夏仕文,尉迟力,李树本.水-有机溶剂两相体系中甲基单胞菌Z201催化丙烯环氧化的初步研究.生物工程学报,1997,13(4):446-449.
    [90]Blanc PJ, Loret MO, Goma G. Production of citrinin by various species of Monascus. Biotechnology Letters,1995,17 (3):291-294.
    [91]Saunders R, Cheetham P, Hardman R. Microbial transformation of crude fenugreek steroids. Enzyme and Microbial Technology,1986,8 (9):549-555.
    [92]Fernandes P, Cruz A, Angelova B, et al. Microbial conversion of steroid compounds:recent developments. Enzyme and Microbial Technology,2003,32 (6):688-705.
    [93]袁绍杰,梁艳丽,赵庆云,等.盾叶薯蓣的研究进展.西南农业学报,2004,17(B05):355-358.
    [94]Stone JK, Bacon CW, White J. An overview of endophytic microbes:endophytism defined. Microbial Endophytes,2000,3:29-33.
    [95]Strobel GA. Endophytes as sources of bioactive products. Microbes and Infection,2003,5 (6): 535-544.
    [96]Faeth SH. Are endophytic fungi defensive plant mutualists?. Oikos,2002,98 (1):25-36.
    [97]Whitmer S, van der Heijden R, Verpoorte R. Effect of precursor feeding on alkaloid accumulation by a tryptophan decarboxylase over-expressing transgenic cell line T22 of Catharanthus roseus. Journal of Biotechnology,2002,96 (2):193-203.
    [98]Redman RS, Sheehan KB, Stout RG, et.al. Thermotolerance generated by plant/fungal symbiosis. Science,2002,298 (5598):1581-1581.
    [99]Hesse U, Schoberlein W, Wittenmayer L, et.al. Effects of Neotyphodium endophytes on growth, reproduction and drought-stress tolerance of three Lolium perenne L. genotypes. Grass and Forage Science,2003,58 (4):407-415.
    [100]Ryder LS, Harris BD, Soanes DM, et.al. Saprotrophic competitiveness and biocontrol fitness of a genetically modified strain of the plant-growth-promoting fungus Trichoderma hamatum GD12. Microbiology,2012,158 (1):84-97.
    [101]Hermosa R, Viterbo A, Chet I, et.al. Plant-beneficial effects of Trichoderma and of its genes.' Microbiology,2012,158 (1):17-25.
    [102]Huang WY, Cai YZ, Xing J, et.al. A potential antioxidant resource:endophytic fungi from medicinal plants. Economic Botany,2007,61 (1):14-30.
    [103]Jacob M, Bhat D. Two new endophytic conidial fungi from India. Cryptogamie Mycologie,2000, 21 (2):81-88.
    [104]Yu H, Zhang L, Li L, et.al. Recent developments and future prospects of antimicrobial metabolites produced by endophytes. Microbiological Research,2010,165 (6):437-449.
    [105]Zhao JL, Mou Y, Shan TJ, et.al. Antimicrobial metabolites from the endophytic fungus Pichia guilliermondii isolated from Paris polyphylla var. yunnanensis. Molecules,2010,15 (11): 7961-7970.
    [106]Joseph B, Priya RM. Bioactive compounds from endophytes and their potential in pharmaceutical effect:a review. American Journal of Biochemistry and Molecular Biology,2011,1 (3):291-309.
    [107]Guo B, Wang Y, Sun X, et.al. Bioactive natural products from endophytes:a review. Applied Biochemistry and Microbiology,2008,44 (2):136-142.
    [108]Cozma LS. The role of antioxidant therapy in cardiovascular disease. Current Opinion in Lipidology,2004,15 (3):369-371.
    [109]Firakova S, Sturdikova M, Muckova M. Bioactive secondary metabolites produced by microorganisms associated with plants. Biologia,2007,62 (3):251-257.
    [110]Daisy BH, Strobel GA, Castillo U, et.al. Naphthalene, an insect repellent, is produced by Muscodor vitigenus, a novel endophytic fungus. Microbiology,2002,148 (11):3737-3741.
    [111]袁丽红,陆玉婷,许琳,等.与盾叶薯蓣细胞共生培养的内生真菌分离及其生物学特性.生物加工过程,2008,(6):72-78.
    [112]周生亮.薯蓣内生真菌生物活性及其与宿主细胞共培养的初步研究.[学位论文].南京师范大学,2005.
    [113]张瑞芬.盾叶薯蓣内生真菌对宿主生长及其薯蓣皂苷元产生的影响.[学位论文].中国农业大学,2008.
    [114]徐利剑.盾叶薯蓣内生芬芳镰刀菌Dzf2抗菌化合物及其白僵菌素生产的培养过程优化.[学位论文].中国农业大学,2009.
    [115]Gangadevi V, Sethumeenal S, Yogeswari S, et.al. Screening endophytic fungi isolated from a medicinal plant, Acalypha indica L. for antibacterial activity. Indian Journal of Science and Technology,2008,1 (5):1-6.
    [116]Kakolyris S, Agelidou A, Androulakis N, et.al. Cisplatin plus etoposide chemotherapy followed by thoracic irradiation and paclitaxel plus cisplatin consolidation therapy for patients with limited stage small cell lung carcinoma. Lung Cancer,2006,53 (1):59-65.
    [117]Pandi M, Manikandan R, Muthumary J. Anticancer activity of fungal taxol derived from Botryodiplodia theobromae Pat., an endophytic fungus, against 7,12 dimethylbenz (a) anthracene (DMBA)-induced mammary gland carcinogenesis in Sprague dawley rats. Biomedicine &' Pharmacotherapy,2010,64 (1):48-53.
    [118]周生亮,陈双林,房兴堂,等.薯蓣内生真菌的分离及其抑制植物病原真菌的活性.江苏农业科学,2007,4:64-67.
    [119]Xu LJ, Zhou LG, Zhao JL, et.al. Fungal endophytes from Dioscorea zingiberensis rhizomes and their antibacterial activity. Letters in Applied Microbiology,2008,46 (1):68-72.
    [120]单体江,赵江林,王蓟花,等.盾叶薯蓣内生真菌Dzf12挥发性成分及其抗细菌活性.天然产物研究与开发,2010,22(6):952-955,975.
    [121]蔡晓月,李培琴,单体江,等.盾叶薯蓣内生真菌Dzf13抗细菌活性成分.天然产物研究与开发,2010,(2):274-276,280.
    [122]周生亮,陈双林.薯蓣内生真菌抗氧化活性的初步研究.微生物学杂志,2006,26(1):40-43.
    [123]Li PQ, Luo C, Sun WB, et.al. In vitro antioxidant activities of polysaccharides from endophytic fungus Fusarium oxysporum Dzfl7. African Journal of Microbiology Research,2011,5 (32): 5990-5993.
    [124]Li PQ, Sun WB, Luo C, et.al. In vitro evaluation of antioxidant activities of polysaccharides from the endophytic fungus Berkleasmium sp. Dzfl2. African Journal of Microbiology Research,2012, 6 (2):471-477.
    [125]吴红利.盾叶薯蓣悬浮细胞与内生真菌共培养体系建立.[学位论文].南京工业大学,2005.
    [126]Xu LJ, Liu YS, Zhou LG, et.al. Enhanced beauvericin production with in situ adsorption in mycelial liquid culture of Fusarium redolens Dzf2. Process Biochemistry,2009,44 (10): 1063-1067.
    [127]Xu LJ, Liu YS, Zhou LG, et.al. Modeling of Fusarium redolens Dzf2 mycelial growth kinetics and optimal fed-batch fermentation for beauvericin production. Journal of Industrial Microbiology & Biotechnology,2011,38 (9):1187-1192.
    [128]Zhao JL, Zheng BB, Li Y, et.al. Enhancement of diepoxin ζ production by yeast extract and its fractions in liquid culture of Berkleasmium-like endophytic fungus Dzfl2 from Dioscorea zingiberensis. Molecules,2011,16 (1):847-856.
    [129]赵江林.内生真菌Ppf8和Ppf9抗菌活性成分及Dzf12生产diepoxin(?)培养过程的优化.[学位论文].中国农业大学,2011.
    [130]Zhao J, Li Y, Shan T, et.al. Enhancement of diepoxin ζ production with in situ resin adsorption in mycelial liquid culture of the endophytic fungus Berkleasmium sp. Dzfl2 from Dioscorea zingiberensis. World Journal of Microbiology & Biotechnology,2011,27 2753-2758.
    [131]Wang J, Zhang Z, Tan R. Stimulation of artemisinin production in Artemisia annua hairy roots by the elicitor from the endophytic Colletotrichum sp. Biotechnology Letters,2001,23(11):857-860.
    [132]Tang Z, Rao L, Peng G, Zhou M, Shi G, Liang Y. Effects of endophytic fungus and its elicitors on cell status and alkaloid synthesis in cell suspension cultures of Catharanthus roseus. Journal of Medicinal Plants Research,2011,5(11):2192-2200.
    [133]Zhang RF, Li PQ, Xu LJ, et.al. Enhancement of diosgenin production in Dioscorea zingiberensis cell culture by oligosaccharide elicitor from its endophytic fungus Fusarium oxysporum Dzfl7. Natural Product Communications,2009,4 (11):1459-1462.
    [134]阴春晖.盾叶薯蓣内生真菌Dzf2和Dzf12代谢产物对宿主培养物生长及其薯蓣皂苷元产生的影响.[学位论文].中国农业大学,2011.
    [135]Komaraiah P, Naga Amrutha R, Kavi Kishor PB, et.al. Elicitor enhanced production of plumbagin in suspension cultures of Plumbago rosea L. Enzyme and microbial technology,2002,31 (5): 634-639.
    [136]李祝,肖洋,梁宗琦.真菌多糖激发子对提高虫草菌素含量的影响.中国食用菌,2006,25(3):34-37.
    [137]Vanhulle S, Radman R, Parra R, et.al. Effect of mannan oligosaccharide elicitor and ferulic acid on enhancement of laccases production in liquid cultures of basidiomycetes. Enzyme and Microbial Technology,2007,40 (7):1712-1718.
    [138]Bian M, Tian L, Zhang JM, et. al. Effect of elicitors on alkaloid metabolism of a marine fungus Penicillium crustosum 2A4-Z15. Acta Oceanologica Sinica,2008,2:117-123.
    [139]Radman R, Bucke C, Keshavarz T. Elicitor effects on reactive oxygen species in liquid cultures of Penicillium chrysogenum. Biotechnology Letters,2004,26 (2):147-152.
    [140]Ak T, Giilcin I. Antioxidant and radical scavenging properties of curcumin. Chemico-biological interactions,2008,174 (1):27.
    [141]林桂兰,许学书,连文思.食用菇多糖提取物体外抗氧化性能研究.华东理工大学学报,2006,32(3):278-281.
    [142]Brawek B, Loffler M, Wagner K, et.al. Reactive oxygen species (ROS) in the human neocortex: role of aging and cognition. Brain Research Bulletin,2010,81 (4):484-490.
    [143]Bezerra MA, Santelli RE, Oliveira EP, et.al. Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta,2008,76 (5):965-977.
    [144]Gan CY, Manaf A, Hj N, et.al. Optimization of alcohol insoluble polysaccharides (AIPS) extraction from the Parkia speciosa pod using response surface methodology (RSM). Carbohydrate Polymers,2010,79 (4):825-831.
    [145]Jie HX, Wei C. Optimization of extraction process of crude polysaccharides from wild edible BaChu mushroom by response surface methodology. Carbohydrate Polymers,2008,72 (1): 67-74.
    [146]Liu Y, Wu J. Use of n-hexadecane as an oxygen vector to improve Phaffia rhodozyma growth and carotenoid production in shake-flask cultures. Journal of applied microbiology,2006,101 (5): 1033-1038.
    [147]Rols JL, Condoret JS, Fonade C, et.al. Mechanism of enhanced oxygen transfer in fermentation using emulsified oxygen-vectors. Biotechnology and Bioengineering,1990,35 (4):427-435.
    [148]Galaction AI, Cascaval D, Oniscu C, et al. Enhancement of oxygen mass transfer in stirred bioreactors using oxygen-vectors.1. simulated fermentation broths. Bioprocess and Biosystems Engineering,2004,26 (4):231-238.
    [149]Ho CS, Ju LK, F BR. Enhancing penicillin fermentations by increased oxygen solubility through the addition of n-hexadecane. Biotechnology and Bioengineering,1990,36 (11):1110-1118.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700