用户名: 密码: 验证码:
薄壁构件与桁架结构的抗撞性优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
汽车碰撞安全性是现代汽车工业研究的最关键内容之一,而如何提高汽车在碰撞事故中的抗撞性能是汽车安全性能设计中的核心问题。作为最传统、最有效的吸能元件---金属薄壁构件,在车身吸能装置中已得到了广泛的应用,但其吸能性能不仅与构件的材料性能有关,而且与构件的截面形状和几何尺寸、触发方式和加载条件等因素紧密相关。因此,研究车身中抗撞性构件与上述因素之间的关系将对汽车碰撞安全性的设计起到至关重要的指导作用,具有十分重要的工程意义和学术价值。由于车身结构多为框架结构,根据轻量化要求,在抗撞性能不变的情况下,如何减小框架结构的质量也是学者关心的课题。本文在已有研究的基础上,基于有限元仿真技术,响应面近似理论和渐进结构优化法对薄壁构件和框架结构进行抗撞性优化和设计。
     基于已有的抗撞性优化问题的研究,综述了薄壁构件抗撞性的理论与仿真研究现状、薄壁构件抗撞性优化研究现状和桁架结构的拓扑研究现状。为了克服构件碰撞仿真数值优化中数值分析的不稳定性、不确定性和高度非线性等技术难题,本文采用了代理模型理论和与之相应的优化方法,结合现有商业碰撞仿真分析软件,提出了针对汽车碰撞安全性的优化方法和优化流程。基于上述优化流程,以汽车前纵梁前端的薄壁方管为吸能元件,从吸能能力和轻量化角度出发,以比吸能为优化目标函数,分析薄壁方管的几何参数对其比吸能的影响,并对其几何参数进行优化。
     基于安全性和轻量化的设计理念,以汽车前纵梁前端的薄壁方管吸能元件为研究对象,在方形截面薄壁管的基础上,设计了多元胞截面和附缘截面两种截面形状的薄壁构件,并以薄壁构件的比吸能为目标函数,基于代理模型和响应面法对两种截面模型的截面尺寸进行了抗撞性优化,分析了两种截面的几何参数对其能量吸收和比吸能的影响,得到了各个截面构件的最优化模型和参数;以部分锥形薄壁方管的安全装置作为研究对象,综合考虑薄壁管结构能量吸收、碰撞力、质量等相关优化因素,并考虑到最大碰撞力一般为初始碰撞力峰值,提出了以结构吸收的能量、比吸能和初始碰撞力峰值为多目标的抗撞性优化问题,通过理想点法来求解多目标优化问题,分析了锥形薄壁方管各几何参数对其能量吸收、比吸能和初始碰撞力峰值的影响,最终得到给定权系数下的最优模型。
     基于静力学桁架结构拓扑优化理论,采用渐进结构优化方法对受冲击载荷作用下桁架结构进行拓扑优化设计。优化中使用显式有限元软件LS-DYNA分析得到桁架结构的变形和应变能,采用各梁单元应变能与最大应变能的比值为因子来决定材料的相对使用效率,采用桁架结构的比吸能来决定优化是否达到设计要求,最后给出算例,验证了渐进结构优化方法在桁架结构抗撞性拓扑问题中的可行性和有效性。
     论文研究表明:在构件碰撞安全性的仿真优化设计中,本文提出的基于代理模型的优化方法和优化流程是十分有效的,依据该方法和流程,选择合适的代理模型和优化算法,能够快速、经济、准确地解决构件抗撞性优化问题;同时本文首次将渐进结构优化方法引入到碰撞问题中,验证了渐进结构优化方法解决桁架结构抗撞性拓扑优化问题的可行性和有效性,这些对汽车碰撞安全性的优化设计具有重要的参考价值和借鉴意义。
Vehicle passive safety is one of the key problems for the automobile industry. How to improve the crashworthiness of vehicles has been the key issue of the automotive safety. The thin-walled metallic components---the most conventional and effective energy-absorbed device,have been widely used in the automotive design and manufacture. The energy-absorbed characteristics of the components not only have close relation with their characteristics but also are significantly affected by other parameters such as the cross-sectional shape and geometric size of the components, and the type of trigger as well as the way of loading. Therefore, the crashworthiness research on the relationship between thin-walled metallic components and the above parameters that affect its energy-absorbed characteristics have an important guidance on the design of the automotive crash safety. And there are notable engineering significance and academic value to seek one optimal design method. Based on the existing research achievements and by use of the explicit finite element technique, response surface method and evolutionary structure optimization method, the thin-walled components and frame structures under impact load have been investigated and optimized in this thesis.
     Base on the existing research achievements on the crashworthiness optimization, the recent developments of theories and simulations for thin-walled structures and frame structures are briefly summarized. In order to overcome difficulties in numerical optimization analysis such as instability, uncertainty and high nonlinearity, based on the surrogate model theory and the related optimization method as well as the crash software the optimization method and process for automotive crash safety are presented. Based on the above process, crashworthiness optimization for a thin-walled tube with uniform square section is taken as an example to test the optimization process, and the results show the feasibility and validity of this method.
     In terms of the crash energy absorption and weight efficiency, a multi-cell cross-section tube and an adhesive flange cross-section tube are designed and optimized respectively. The optimization process with the target of maximizing the Specific Energy Absorption (SEA) has been successfully carried out, and the new structures show dramatic improvements over the conventional square tube. Then, the tapered thin-walled square tube is optimized. The geometric parameters of the tapered tube are chosen as design variables. The maximization of the energy absorbed by the structure, the maximization of the Specific Energy Absorption (SEA), and the minimization of the initial force peak are considered as the multi-objective functions. The objective functions are constructed based on the response surface method. The multi-objective optimization for the tapered thin-walled square tube is presented by using the ideal point method and introducing weighted coefficients characterizing the priority of each objective function in the design.
     According to the theories of frame structure topological optimization under static loading, the evolutionary structure optimization method is firstly introduced into the frame structure topological optimization under impact loading. In this method, the ratio of elemental strain energy to the highest strain energy is adopted as a factor to determine the relative efficiency of material usage, and the ratio of total stain energy to total structural weight is established in order to decide whether an optimum has been reached. The feasibility and efficiency of the evolutionary structure optimization have been tested by an example of 2D-frame structure crash optimization.
     The results of this thesis indicate: the optimization method and the process based on surrogate model are quite effective in the automotive crash safety. If choosing the appropriate surrogate model and optimization methodology according to the above method and process, the puzzle of the automotive passive safety optimization can be solved quickly, economically and exactly, which has a significant use in the reference to the automotive crash safety design optimization.
引文
[1] Jones N. Recent studies on the dynamic plastic behavior structures. Mech.Review, 1989(42): 95-115
    [2] Mamalis AG, Manolakos D, Demosthenous G. Crashworthiness of composite thin-walled structural components. Technomic Publishing Company Inc., 1998
    [3] 杜星文,宋宏伟. 圆柱壳冲击动力学及抗撞性设计. 北京: 科学出版社, 2004
    [4] 乘用车后碰撞燃油系统安全要求.北京:中国国家标准化管理委员会,2006
    [5] Remensperger R, Klamser H, Schelkle E. Digital prototyping: a successful development strategy applied in the design of the Boxster body structure, First European LS-DYNA Conference, 1997
    [6] 张立玲,高峰. 金属薄壁吸能结构抗撞性研究进展. 机械工人热加工. 2006, 56(1): 76-78
    [7] Alexander J M. An approximate analysis of the collapse of thin cylindraical shells under axial load. Quarterly Journal of Mechanics and Applied Mathematics. 1969, 13: 10-15
    [8] Al-Hassani S T S, Johnson W and Lowe W T. Characteristics of inversion tubes under axial loading. J. Mechanical Engineering Sciences, 1972,14: 370-381
    [9] Johnson W, Soden P D ,Al-Hassani S T S. Inextensional collapse of thin-walled tubes under axial compression. J. Strain Analysis, 1977, 12: 317-330
    [10] Wierzbicki T, Akerstrom T. Dynamic crushing of strain sensitive box columns. SEA Paper No. 770592, Proc. 2nd Int. Conf. Vehicle Struct. Mech., Southfield, Mich., Apr. 1977: 18-20
    [11] Wierzbicki T, Abramowicz. On the crushing mechanics of thin-walled structures. Journal of Applied Mechanics, 1983, 50: 727-734
    [12] Wierzbicki T. Crushing analysis of metal honeycombs. Int. J. of Impact Engineering, 1983, 1(2):157-174
    [13] Reid S R, Reddy T Y. Static and dynamic crushing of tapered sheet metal tubes of rectangular cross-section. Int. J. Mech. Sci., 1986,28(9): 623-637
    [14] Reid S R, Reddy T Y, Gray M D. Static and dynamic axial crushing of foam filled sheet metal tubes. Int. J. Mech. Sci., 1986,28: 295-322
    [15] Karagiozova D, Jones N. Dynamic pulse buckling of a simple elastic-plasticmodel including axial inertia. International Journal of Solids and Strutures, 1992, 29(10): 1255-1272
    [16] Li S, Reid S R. On the symmetry conditions for laminated fibre-reinforced composite structures. International Journal of Solids and Strutures, 1992, 29(23): 2867-2880
    [17] Abramowicz W. Extremal paths in progressive plasticity. International Journal of Impact Engineering, 1996, 18(7-8): 753-764
    [18] Sigalas I, Kumosa M, Hull D. Trigger mechanisms in energy-absorbing glass cloth/epoxy tubes. Composite Science and Technology, 1991, 40: 265-287
    [19] Czaplicki M, Robertson R, Thornton P H. Non-axial crushing of E-glass/polyester pultruded tubes. Journal of Composite Materials, 1990, 24: 1077-1100
    [20] Ramakrishna S, Hamada H. Energy absorption characteristics of crash worth structural composite materials. Key Engineering Materials, 1998, 141: 585-620
    [21] Fleming D, Vizzini J A. The effect of side loads on the energy absorption of composite structures. Journal of Composite Materials, 1992, 26: 486-499
    [22] Hull D. A unified approach to progressive crushing of fibre-reinforced composite tubes. Composite Science and Technology, 1991, 40: 377-421
    [23] Gupta N, Velmurugan R, Gupta S. An analysis of axial crushing of composite tubes. Journal of Composite Materials, 1997, 31: 1262-1286
    [24] Hanefi E H, Wierzbicki T. Axial resistance and enery absorption of externally reinforced metal tubes. Composite Part B, 1996, 27:387-394
    [25] Song Hongwei, Wan Zhimin, Xie Zhimin. Axial impact behavior and energy absorption efficiency of composite wrapped metal tubes. International Journal of Impact Engineering , 200, 24: 385-401
    [26] Wang X, Lu G. Axial crushing force of externally fibre-reinforced metal tubes. Proceedings of the Insititution of Mechanical Engineers Part C- Journal of Mechanical Engineering Science, 2002, 216: 863-874
    [27] Bouchet J, Jacquelin E, Hamelin P. Dynamic axial crushing of combined composite aluminum tube: the role of both reinforcement and surface treatments. Composite Structures, 2002, 56:87-96
    [28] Bouchet J, Jacquelin E, Hamelin P. Static and dynamic behavior of combined composite aluminium tube for automotive applications. Composites Science and Technology, 2000, 60: 1891-1900
    [29] Thornton P H, Edwards P J. Energy absorption in composite tubes. Journal ofComposite Materials, 1982, 16: 521-545
    [30] Mamalis A G, Yuan Y B, Viegelahn G L. Collapse of thin wall composite sections subjected to high speed axial loading. International Journal of Vehicle Design, 1992, 13: 564-579
    [31] Farley G L, Jones R M. Crushing characteristics of composite tubes with ‘near-elliptical’ cross sections. Journal of Composite Materials, 1992,26: 1741-1751
    [32] Yamazaki K, Han J. Maximization of the crushing enery absorption of tubes. Structural Optimization, 1998, 16: 37-46
    [33] Yamazaki K, Han J. Maximization of the crushing enery absorption of cylindrical shells. Advance in Engineering Software, 2000, 31: 425-434
    [34] Anghileri M, Chirwa E C, Lanzi L, Mentuccia F. An inverse approach to identify the constitutive model parameters for crashworthiness modeling of composite structures. Composite Structures, 2005, 68: 65-74
    [35] Han J, Yamazaki K, Nishiyama S. Optimization of the crushing characteristics of triangulated aluminum beverage cans. Structural and Multidisciplinary Optimization, 2004,28: 47-54
    [36] Kim C H, Mijar A R, Arora J S. Development of simplified models for design and optimization automotive structures for crashworthiness. Structural and Multidisciplinary Optimization, 2001, 22: 307-321
    [37] Cho Y B, Bae C H, Suh M W, Sin H C. A vehicle front frame crash design optimization using hole-type and dent-type crush initiator. Thin-walled Structures, 2006, 44: 415-428
    [38] Kim H S. New extruded multi-cell aluminum profile for maximum crash energy absorption and weight efficiency. Thin-walled Structures, 2002, 40: 311-327
    [39] Chen W G, Wierzbicki T. Relative merits of single-cell, multi-cell and foam-filled thin-walled structures in energy absorption. Thin-walled Structures, 2001, 39: 287-306
    [40] Chow C L, Jie M, Yao Y. Design optimization of metallic hexagonal cross section. International Journal of Crash, 2004, 9(1): 25-33
    [41] Yamashita M, Gotoh M. Impact behavior of honeycomb structures with various cell specifications-numerical simulation and experiment. International Journal of Impact Engineering, 2005,32: 618-630
    [42] Nagel G M, Thambiratnam D P. Computer simulation and energy absorption of tapered thin-walled rectangular tubes. Thin-walled Structures, 2005,43:1225-1242
    [43] Nagel G M, Thambiratnam D P. A numerical study on the impact response and energy absorption of tapered thin-walled tubes. International Journal of Mechanical Sciences, 2004, 46: 201-216
    [44] Nagel G M, Thambiratnam D P. Dynamic simulation and energy absorption of tapered thin-walled tubes under appliqué impact loading. International Journal of Impact Engineering, 2006, 32: 1595-1620
    [45] Santosa S, Wierzbicki T, Hanssen A G, Langseth M. Experimental and numerical studies of foam-filled sections. International Journal of Impact Engineering, 2000, 24(5): 509-534
    [46] Chen W G, Wierzbicki T, Breuer O, Kristiansen K. Torsional crushing of foam-filled thin-walled square columns. Internationa Journal of Mechanical Sciences, 2001,43: 2297-2317
    [47] Hall I W, Guden M, Claar T D. Transverse and longitudinal crushing of aluminum-foam filled tubes. Scripta Materialia, 2002, 46: 513-518
    [48] Borvik T, Hopperstad O S, Reyes A, Langseth M, Solomos G, Dyngeland T. Empty and foam-filled circular aluminum tubes subjected to axial and oblique quasi-static loading. International Journal of Crash, 2003, 8(5): 481-494
    [49] Song H W, Fan Z J, Yu G, Wang Q C, Tobota A. Partition energy absorption of axially crushed aluminum foam-filled hat sections. International Journal of Solids and Structures, 2005, 42: 2575-2600
    [50] 薛量,姜正旭,林中钦. 汽车碰撞仿真中的连接失效模拟. 机械科学与技术,2000, 19(2): 304-307
    [51] 吴阳年,姜平,杨士钦. 汽车薄壁杆件的轴向抗撞性分析. 合肥工业大学学报, 2000, 23(4): 542-545
    [52] 刘金朝,王成国,房加志. 薄壁圆柱在轴向冲击作用下的动力学响应. 中国铁道科学, 2004, 25(4): 18-24
    [53] 钱立军,杨士钦,马恒永. 具有诱导结构的汽车薄壁杆件的抗撞性研究. 设计计算研究, 2001, 6: 9-11
    [54] 范兵,严斌,秦明. 薄壁梁碰撞仿真中时间步长问题的研究. 计算机应用,2005, 2: 32-36
    [55] 周宇,雷正保,杨兆. 基于预变形控制理论的汽车前纵梁仿真设计. 长沙理工大学学报, 2005, 2(4):34-38
    [56] 刘中华,程秀生,杨海庆,柴晓磊,刘兴兴. 薄壁直梁撞击时的变形与吸能特性. 吉林大学学报, 2006, 36(1): 25-30
    [57] 郝琪,吴胜军. 基于数值模拟的薄壁构件碰撞性能研究及焊接影响. 湖北汽车工业学院学报, 2006, 20(1): 6-9
    [58] 桂良进,范子杰,王青春. 泡沫填充圆管的轴向压缩能量吸收特性. 清华大学学报,2003, 43(11): 1526-1529
    [59] 桂良进,范子杰,王青春. 泡沫填充圆管的动态轴向压缩吸能特性. 清华大学学报,2004, 44(5): 709-712
    [60] S.-Y. Chen. An approach for impact structure optimization using the robust genetic algorithm, Finite Elements in Analysis and Design,2001,37:431-446
    [61] L. Knap, J. Holnicki-Szulc, Optimal design of adaptive structures for the best crashworthiness, Paper of the 3rd World Congress of Structural and Multidisciplinary Optimization, Buffalo, NY, USA, 1999
    [62] J.S. Arora, C.H. Kim, A.R. Mijar. Simplified models for automotive crash simulation and design optimization, Paper of the 3rd World Congress of Structural and Multidisciplinary Optimization, Buffalo, NY, USA, 1999
    [63] A.R. Diaz, C.A. Soto. Lattice models for crash resistant design and optimization, Paper of the 3rd World Congress of Structural and Multidisciplinary Optimization, Buffalo, NY, USA, 1999
    [64] K. Yamazaki, J. Han. Maximization of the crushing energy absorption of stiffened and unstiffened square tubes, Paper of the 3rd World Congress of Structural and Multidisciplinary Optimization, Buffalo, NY, USA, 1999
    [65] R.R. Mayer, N. Kukichi, R.A. Scott. Application of topological optimization techniques to structural crashworthiness, International Journal for Numerical Methods in Engineering,1996,39:1383-1403
    [66] Yajima H, Yu Q, Shiratori M, Dokko Y,et al. Application of the statistical design support system toward optimization of vehicle safety equipment, JSME International Journal Series A-Solid Mechanics and Material Engineering, 2000, 43 (3): 227-233
    [67] Dias JP, Pereira MS. Design for vehicle crashworthiness using multibody dynamics, International Journal of Vehicle Design ,1994,15 (6): 563-577
    [68] Cho S, Choi KK. Design sensitivity analysis and optimization of non-linear transient dynamics, Part I-sizing design, International Journal for Numerical Methods in Engineering ,2000, 48(3): 351-373
    [69] Cho S, Choi K. K.. Design sensitivity analysis and optimization of non-linear transient dynamics, Part II - configuration design, International Journal for Numerical Methods in Engineering,2000, 48 (3): 375-399
    [70] Yamazaki K, Han J. Maximization of the crushing energy absorption of tubes, Structural Optimization,1998,16 (1): 37-46
    [71] Yamazaki K, Han J. Maximization of the crushing energy absorption of cylindrical shells, Advances in Engineering Software ,2000, 31(6): 425-432
    [72] Shi Q, Hagiwara I. Optimal design method to automobile problems using holographic neural network's approximation, Japan Journal of Industrial and Applied Mathematics,2000, 17 (3):321-339
    [73] Lust R. Structural optimization with crashworthiness constraints, Structural Optimization.1992, 4(2): 85-89
    [74] L.T.Kisielewicz, S. Goto, Y. Matsuoka. Structural crashworthiness optimization of large vehicles using detailed models, PUCA’98, 193-205
    [75] Dickson, K. R., Afzal M. Airbag restraint system design by mathematical crash simulation and design of experiment. 1990, SAE paper 901717
    [76] Hou, J. F, Tomas J. Optimization of driver-side airbag and restraint system by occupant dynamic simulation. 1995, SAE paper 952703
    [77] Rajiv, P., James C. Integration of vehicle interior models into crash up-front process with optimization. 1995,SAE paper 951107
    [78] T. Ebisugi, H. Fujita, G. Watanabe. Study of optimal structure design method for dynamic nonlinear problem, JSAE Review 19, 1998
    [79] Yamazaki K, Han J. Maximization of the crushing energy absorption of cylindrical shells. Advance in Engineering Software, 2000, 31: 425-434
    [80] Kurtaran H, Eskandarian A, Marzougui D, Bedewi N E. Crash-worthiness design optimization using successive response surface approximations. Computational Mechanics, 2002, 29: 409-421
    [81] Lee S H, Kim H Y, Oh S I. Cylindrical tube optimization using response surface method based on stochastic process. Journal of Materials Processing Technology, 2002, 130-131: 490-496
    [82] Redhe M, Forsberg J, Jansson T, Marklund P O, Nilsson L. Using the response surface methodology and the D-optimality criterion in crashworthiness related problems. Struct. Multidisc.Optim., 2002, 24: 185-194
    [83] Redhe M, Giger M, Nilsson L. An investigation of structural optimization in crashworthiess design using a stochastic approach. Struct. Multidisc. Optim., 2004, 27: 446-459
    [84] Forsberg J, Nilsson L. Evaluation of response of surface methodologies used in crashworthiness optimization. Int. J. of Impact Engineering, 2006, 32: 759-777
    [85] Avalle M, Chiandussi G, Belingardi G. Design optimization by response surface methodology: application to crashworthiness design of vehicle structures. Struct. Multidisc. Optim., 2002, 24: 325-332
    [86] Xiang Y J, Wang Q, Fan Z J, Fang H B. Optimal crashworthiess design of a spot-welded thin-walled hat section. Finite Element in Analysis and Design, 2006, 42: 846-855
    [87] Chen W G, Wierzbicki T, Santosa S. Bending collapse of thin-walled beams with ultralight filler: numerical simulation and weight optimization. Acta Mechanica, 2002, 153: 183-206
    [88] Kim H S, Chen W G, Wierzbicki T. Weight and crash optimization of foam-filled three-dimensional “S” fram. Computational Mechanics, 2002, 28: 417-424
    [89] Zarei H R, Kroger M. Multiobjective crashworthiness optimization of circular aluminum tubes. Thin-walled Structures, 2006, 44: 301-308
    [90] 解跃青, 方瑞华,雷雨成. 基于碰撞数值模拟的汽车纵梁焊点布置方法. 焊接学报,2003, 24(1): 73-77
    [91] 雷雨成, 严斌,程昆. 车辆典型薄壁梁碰撞仿真中接触摩擦问题的研究. 机械设计与制造,2004, 3: 109-111
    [92] Michell A G M. The limits of economy of material in framestructures. Philosophical Magazine, 1904, 8(6)
    [93] Cox H L. The design of structures of least weight. Oxford: Pergamon, 1965
    [94] Hegemier G A, Prager W. On Michell trusses. International Journal of Mechanical Science, 1969, 11(2): 209-215
    [95] Rozvany G I N. Partial relaxation of the orthogonality requirement for classical Michell trusses. Structural Optimization, 1997, 13(4): 271-274
    [96] Hemp W S. Optimum Structure. Oxford: Clarendon Press, 1973: 70-101
    [97] Rozvany G I N, Gollub W, Zhou M. Exact Michell layouts for various combinations of line supports-Part II. Structural Optimization, 1997, 14(2-3): 138-149
    [98] Bendsoe M P, Kikuchi N. Generating optimal topologies in structural design using a homogenization method. Comp. Mech. Appl. Mech. Engrg., 1998, 71: 197-224
    [99] Hassani B, Hinton E. A review of homogenization and topology optimization I-homogenization theory for with periodic structure. Computers and Structures, 1998, 707-717
    [100] Sigmuud O. On the design of compliant mechanisms using topologyoptimization. TU Enmark, 1996
    [101] Hassani B, Hinton E. A review of homogenization and topology optimization II- analytical and numerical solution of homogenization equations. Computers and Structures, 1998, 719-738
    [102] Xie Y M, Steven G P. A simple evolutionary procedure for structural optimization. Computers and Structures, 1993, 49: 885-896
    [103] Hassani B, Hinton E. A review of homogenization and topology optimization III-topology optimization using optimality criteria. Computers and Structures, 1998, 739-7756
    [104] Sigmuud O. Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima. Structural Optimization, 1998, 16: 68-75
    [105] Svanberg K. The method of moving asymptotes- A new method for structural optimization. International Joural for Numerical Methods in Engineering, 1987, 24: 359-373
    [106] Fukuo K. Development of the ultra-low-fuel-consumption hybrid car ---Insight. JSAE Review, 2001, 22: 95-103
    [107] Lee Y W, Wierzbicki T. Effect of material distribution on axial and bending response of extruded aluminum profiles. Impact and crashworthiness laboratory report 56, 2001, Massachusetts Institute of Technology
    [108] Pedersen C B W. Topology optimization design of crushed 2D-frames for desired energy absorption history. Struct Multidisc Optim, 2003, 25: 368-382

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700