用户名: 密码: 验证码:
泡沫铝填充结构汽车车架耐撞性及动态特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
汽车车架是车辆最主要的承载和吸能部件,其耐撞性及动态特性的优劣直接关系着汽车的舒适性、平顺性和碰撞安全性。为了进一步提高车架结构的耐撞性和动态性能,考虑将新型吸能结构材料泡沫铝填充到车架结构中,以期提高结构耐撞性和动态特性。因此,本文将泡沫铝填充到汽车车架结构中主要的吸能部件——薄壁方管中,以其简化的泡沫铝填充方管模型为研究对象,采用实验、理论分析和数值模拟技术围绕其能量吸收性能和阻尼性能进行了深入研究。在此研究的基础上,利用有限元数值模拟方法对泡沫铝填充汽车车架结构耐撞性和动态性能进行了研究。主要研究的内容和得出的结论如下:
     综合采用实验、有限元模拟和理论分析的方法,分别对空方管和泡沫铝填充方管结构的轴向压缩和三点弯曲性能进行了研究,建立了泡沫铝填充方管结构静动态压缩和弯曲力学行为和能量吸收性能的理论模型,并利用实验结果验证了有限元模拟结果和理论分析结果。研究结果表明,泡沫铝材料的填充显著提高了方管结构轴向压缩和弯曲的承载能力和能量吸收性能。采用粘胶的连接方式能进一步提高了填充结构的抗弯刚度及承载能力,但使得填充结构在较小的转角就发生了破坏。
     综合运用实验、有限元模拟的方法,分别对空方管、无粘胶和有粘胶两种形式的泡沫铝填充方管的阻尼性能进行了研究,并分析了其阻尼作用机制。研究结果表明,实验结果与有限元模态分析结果基本一致,泡沫铝材料的填充提高了空方管的阻尼性能,而粘胶的连接方式影响了泡沫铝填充方管阻尼性能的发挥。
     以某皮卡车的车架结构为原型,设计了泡沫铝填充结构车架。应用Hypermesh软件建立了泡沫铝填充车架的有限元模型。以我国NCAP中正面碰撞刚性壁障的指标为依据,应用LS-DYNA软件对泡沫铝填充车架的整车碰撞安全性进行了模拟分析。分析结果表明,汽车车架结构中填充泡沫铝材料使得车架纵梁吸收了更多的碰撞冲击能,变形幅度减小碰撞加速度降低,从而提高了整车的碰撞安全性。
     利用有限元仿真的方法对原型车架和泡沫铝填充结构汽车车架的自由模态和约束模态进行了分析,并将模态结果进行对比分析。分析结果表明泡沫铝填充结构车架的自由和约束模态的动态特性参数较原车架有所改善。在车架约束模态分析的基础上,对泡沫铝填充结构车架和原车架在随机路面输入功率谱激励作用下的振动响应进行了有限元分析。分析结果表明,原车架和泡沫铝填充结构车架共振频率分别为其结构对应的第一阶和第九阶固有频率,而泡沫铝填充结构车架的共振响应要低于原车架的响应。填充泡沫铝材料是提高车架的动态特性,并由此提高汽车行驶平顺性的一种有效方法,具有广阔的应用前景。
The vehicle frame is the most important bearing and energy-absorbing parts, which crashworthiness and dynamic characteristics is directly related to comfort, ride performance and crash safety of car. In order to further improve the crashworthiness and dynamic characteristic of frame structure, the new type energy-absorption material foam aluminum is considered to fill into the frame structure. Therefore, the foam aluminum is filled into the thin-walled square tube, which is the main energy-absorbing component of automobile frame structure. And square tube filled with foam aluminum is taken as the research object to further research its energy-absorbing and damping performance by using experiment, theoretical analysis and numerical simulation method. Based on the research above, the crashworthiness and dynamic performance of car frame filled with foam aluminum are studied by using finite element numerical simulation method. The main contents and conclusions of this dissertation are as follows:
     The axial compression and three-point bending performance of square empty tube and square tube filled with foam aluminum are studied by comprehensive using experiment, finite element simulation and theoretical analysis method, respectively. The mechanical behavior and energy absorption property theoretical model of square tube filled with foam aluminum are established under static and dynamic compression and bending. And the results of finite element simulation and theoretical analysis are verified by using experiment results. The results show that the foam aluminum filling can significantly improve the bearing and energy absorption performance of square tube structure under compression and bending deformation. The adhesive connection mode can further improve the bearing capacity of filling structure, but it also make the structure destroyed in a smaller angular easily.
     The damping properties of empty square tube, two forms of foam aluminum filling square tube (with glue and without glue) are studied by using experiment and finite element simulation method, respectively. And the mechanism of damping is also analyzed. The results show that the experiment and finite element modal analysis results are basically the same. The foam aluminum filling can improve the damping performance of square empty tube. And the adhesive connection mode has a bad influence on the damping performance of square tube filled foam aluminum.
     By taking a certain type frame structure of pickup truck as a prototype, the frame structure filled with foam aluminum has been designed. And the finite element model of frame filled with foam aluminum is established by using Hypermesh software. Based on the parameters of frontal crash against a rigid wall in C-NCAP, the crash safety of whole vehicle which contains frame filled with foam aluminum is simulated by using LS-DYNA software. The results show that the longitudinal beam filled with foam aluminum can absorb more impact energy than original frame type, and the deformation amplitudes and collision accelerations of filled structure frame are reduced. Thus, the filled structure can improve the crash safety of vehicles. The free and constraint modal of original and foam aluminum filling frame are analyzed by using finite element simulation method. Through the comparison of the modal results of two type structure of frames, it shows that the free and constraint modal dynamic characteristics of frame filled with foam aluminum are better than the original frame structure. Based on the analysis of constraint modal, the vibration responses of original frame and frame filled with foam aluminum are analyzed under the excitations of random road input power spectrum by using finite element analysis. The results show that the resonance frequency of original frame and frame filled with foam aluminum are corresponding to the first and ninth-order natural frequency of its structure. But the resonant response of frame filled with foam aluminum is lower than the original frame. So, the dynamic characteristics of frame can be improved by filling foam aluminum. And it is also an effective method to improve the ride performance of vehicles, which has a broad application prospects.
引文
[1]钟志华,张维刚,曹立波,等.汽车碰撞安全技术[M].北京:机械工业出版社,2003:1-5.
    [2]刘运通.道路交通安全指南[M].北京:人民交通出版社,2004:8-13.
    [3]宋健,王伟玮,李亮,等.汽车安全技术的研究现状和展望[J].汽车安全与节能学报,2010,1(2):98-106.
    [4]公安部交通管理局.中华人民共和国道路交通事故统计年报(2009年度)[M].无锡:公安部交通管理科学研究所,2010:131-135.
    [5]赵福全,吴成明,潘之杰,等.中国汽车安全技术的现状和展望[J]汽车安全与节能学报,2011,2(2):111-121.
    [6]Ramin H, Mahmood M S, Larry B L. Parametric study of automotive composite bumper beams subjected to low-velocity impacts[J]. Composite Structures,2005(6):419-427.
    [7]谢晓鹏,王喜顺.汽车碰撞中的安全问题研究[J].汽车技术,2005,(1):18-22.
    [8]乔维高.汽车被动安全研究现状与发展[J].汽车科技,2008,(4):1-4.
    [9]黄世霖,张金换,王晓东.汽车碰撞与安全[M].北京:清华大学出版社,2000:75-81.
    [10]辛勇,董学勤.汽车车架碰撞下的安全性设计与仿真[J].机械科学与技术,2011,30(3):359-362.
    [11]王鹏.汽7车车架碰撞变形及安全改进措施[J].机械工程与自动化,2012,2:202-203.
    [12]胡清寒.适用于更轻量化车辆的泡沫铝材料[J].汽车工艺与材料,2008,5:28-31.
    [13]John Banhart. Aluminium foams for lighter vehicles[J].International Journal of Vehicle Design, 2005,37(2):114-125.
    [14]Benedyk J C. Light metals in automotive applications[J]. Light Metal Age,2000,10(1):34-35.
    [15]彭迎风,辛勇.多孔结构材料在汽车碰撞安全中的应用研究[J].中国制造业信息化,2006,35(3):54-58.
    [16]Kathryn A Dannemann, James Lankford Jr. High strain rate compression of closed-cell aluminum foams[J]. Materials Science and Engineering A,2000,293:157-164.
    [17]于英华,余国军.泡沫铝填充结构钢球磨煤机隔声罩降噪性能研究[J].煤炭学报,2012,37(1):158-161.
    [18]姜斌,赵乃勤.泡沫铝的制备方法及应用进展[J].金属热处理,2005,30(6):36-40.
    [19]李斌潮,赵桂平,卢天健.高孔隙率闭孔泡沫铝的地应变率压缩行为[J].力学学报,2011,43(1):122-133.
    [20]何其健,宋宏伟,谢季佳,等.基于原位观测的泡沫金属细观与宏观压缩实验研究[J].实验力学,2007,22(6):617-624.
    [21]凤仪,朱震刚,潘艺,等.泡沫铝的动态力学性能研究[J].稀有金属材料与工:程,2005,34(4):544-547.
    [22]何其健,宋宏伟,谢季佳,等.基于原位观测的泡沫金属细观与宏观压缩实验研究[J].实验力学,2007,22(6):617-622.
    [23]于英华,刘建英,徐平.泡沫铝材料在机床工作台中的应用研究[J].煤矿机械,2004,7:20-21
    [24]石少卿,刘仁辉.钢板-泡沫铝-钢板新型复合结构降低爆炸冲击波性能研究[J].振动与冲击,2008,27(4):143-146.
    [25]刘建英,方月.泡沫铝夹芯柱体汽车保险杠碰撞的计算机仿真[J].河南工程学院学报:自然科学版,2008,20(1):37-38.
    [26]Degischer H P, Kriszt B. Cellular Foam Metals[M].Beijing:Chemical Industry Press,2005.
    [27]王松林,凤仪,徐屹,等.泡沫铝填充圆管纵向和横向压缩力学性能研究[J].材料热处理学报,2007,28(1):9-13.
    [28]寇玉亮,陈常青,卢天健.泡沫铝率相关本构模型及其在三明治夹芯板冲击吸能特性的应用研究[J].固体力学学报,2011,32(3):217-225.
    [29]刘春盟.泡沫铝吸能特性及其在汽车保险杠中的应用研究[D].哈尔滨:哈尔滨工业大学硕士学位论文,201].
    [30]李锋.基于泡沫金属材料的新型填充式防护结构撞击特性研究[D].哈尔滨:哈尔滨工业大学硕士学位论文,2009.
    [31]程涛,向宇,李健,等.泡沫铝异型件的制备技术和工艺[J].机械设计与制造,2010(6):259-261.
    [32]祖国胤,张敏,姚广春,等.轧制复合-粉末冶金发泡工艺制备泡沫铝夹心板[J].过程工程学报,2006,6(6):973-977.
    [33]张敏,祖国胤,姚广春.新型泡沫铝三明治板的弯曲性能[J].过程工程学报,2007,7(3):628-631.
    [34]Hanssen A G, Langseth M, Hopperstad O S. Static and dynamic crushing of square aluminum extrusions with aluminum foam filler[J]. International Journal of Impact Engeering,2000,24(5):347-383.
    [35]Santosa S, Wierzbicki T. Crash behavior of box columns filled with aluminum honeycomb or foam[J]. Computers and Structures,1998,68(4):343-346.
    [36]Kavi H, Toksoy A K, Guden M. Predicting energy absorption in a foam-filled thin-walled aluminum tube based on experimentally determined strengthening coeffieient[J]. Materials & Design,2006,27:263-269.
    [37]Santosa S, Wierzbieki T, Hanssen A G, Langseth M. Experimental and numerical studies of foam-filled sections[J]. International Jounal of Impact Engineering,2000,24:509-534.
    [38]Hanssen A G, Langseth M, Hopperstad O S. Optimum design for energy absorption of square aluminum columns with aluminum foam filler[J]. International Journal of Mechanical Sciences,2001,43(1):153-176.
    [39]Hanssen A G, Langseth M, Hopperstad O S. Static and dynamic crushing of circular aluminum extrusions with aluminum foam filler[J]. International Journal of Impact Engineering,2000,24(5):475-507.
    [40]Santosa S P, Wierzbicki T. On the modeling of crush behavior of closed-cell aluminum foam structure[J]. Mesh Phys Solids,1998,46(4):645-669.
    [41]Reyes A, Hopperstad O S, Hanssen A G, et al. Modeling of material failure in foam-based components[J]. International Joural of Impact Engineering,2004,30(7):805-834.
    [42]Reyes A, Hopperstad O S, Berstad T, et al. Implementation of a constitutive model for aluminum foam including fracture and statistical variation of density[C]. In Eighth LS-DYNA International Users Conferenee,2004,Detroit.
    [43]Reyes A, Hopperstad O S, Langseth M. Aluminum foam-filled extrusions subjected to oblique loading:experimental and numerieal study[J]. International Journal of Solids and Structures,2004(41):1645-1675.
    [44]桂良进,范子杰,王青春.泡沫填充圆管的动态轴向压缩吸能特性[J].清华大学学报:自然科学版,2004,44(5):709-712.
    [45]桂良进,范子杰,王青春.泡沫填充圆管的轴向压缩能量吸收特性[J].清华大学学报:自然科学版,2003.43(11):1526-1529.
    [46]刘建英,方月.泡沫铝夹芯柱体汽车保险杠碰撞的计算机仿真[J].河南工程学院学报:自然科学版,2008,20(1):37-39.
    [47]宋宏伟,虞钢,范子杰,等.多孔材料填充薄壁结构吸能的相互作用效应[J].力学学报,2005,37(6):697-703.
    [48]王青春,范子杰,宋宏伟,等.泡沫铝填充帽型结构轴向压缩吸能特性的实验研究[J].机械工程学报,2004,40(11):709-712.
    [49]李志斌,虞吉林,郑志军,等.薄壁管及其泡沫金属填充结构耐撞性的实验研究[J].实验力学,2012,27(1):78-86.
    [50]杨智春,袁潘.填充泡沫铝的多层铝管动态压溃吸能特性研究[J].振动工程学报,2012,25(1):12-16.
    [51]Santosa S, Wierzbieki T. Effect of ultralight metal filler on the bending collapse behavior of thin-walled prismati colutmns[J]. International Journal of Mechanieal Seienees,1999,41:995-1019.
    [52]Santosa S, Banhart J. Wierzbicki T. Experimental and numerical analysis of bending of foam-filled sections[J]. Acta Mechnica,2001,148:199-213.
    [53]Hanssen A G, Hopperstad O S, Langseth M. Bending of square aluminum extrusions with aluminum foam filler[J]. AetaMechanica,2000,142:13-31.
    [54]许坤,寇东鹏,王二恒,虞吉林.泡沫铝填充薄壁方形铝管的静态弯曲崩毁行为[J].固体力学学报,2005,26(3):261-266.
    [55]谢中友,李剑荣,虞吉林.泡沫铝填充薄壁圆管的三点弯曲实验的数值模拟[J].固体力学学报,2007,28(3):261-264.
    [56]虞吉林,王二恒,李剑荣.泡沫金属材料和结构的冲击力学行为[C].应用力学进展论文集,2004:63-74.
    [57]张春基,凤仪,徐雅晨等.泡沫铝部分填充铝管的弯曲性能研究[J].兵器材料科学与工程,2010,33(2):86-90.
    [58]刘伟明.开孔泡沫铝夹芯管压缩与弯曲力学行为的研究[D].合肥:合肥工业大学硕士学位论文,2009:33-44.
    [59]张春基.泡沫铝及其填充结构的制备和力学性能研究[D].合肥:合肥工业大学,2010:39-51.
    [60]Baumeister J, Weber M. Damping properties of aluminum foams[J]. Materials Science and Engineering.1996,A(205):221-228.
    [61]I.S. Golovin, H.R. Sinning, I.K. Arhipov, etc. Damping in some cellular metallic materials due to micro plasticity[J]. Materials Science and Engineering,2004,37(4):531-536.
    [62]余兴泉,何德坪.泡沫金属机械阻尼性能研究[J].机械工程材料,1994,4:26-32.
    [63]魏健宁,黄天成,胡孔刚,等.泡沫铝材料的阻尼机制[J].机械工程材料,2007,3l(12):27-29.
    [64]邵国鑫,屠永清,沈洪.泡沫铝填充钢管构件阻尼性能的实验研究[J].煤矿机械,2008,29(2):49-51.
    [65]Mikkelson L P. A numerical ax symmetric collapse analysis of viscoplasticcy lindrical shells under axial compression[J]. Solids and Structures,1999,36(5):643-668.
    [66]Ashby M F,Evans A G,Fleck N A,刘培生,王习述,李言祥,译.泡沫金属设计指南[M].北京:冶金工业出版社,2006:157-162.
    [67]曾顺民,王雪雁.泡沫铝材在汽车车门轻量化中应用[J].材料工艺,2004(11),35-36.
    [68]李晓豁,白帅伟,胡延涛,等.纵梁填充泡沫铝SUV车架的正面碰撞仿真研究[J].广西大学学报:自然科学版,2012,37(5):903-906.
    [69]刘春盟.泡沫铝吸能特性及其在汽车保险杠中的应用研究[D].威海:哈尔滨工业大学硕士学位论文,2011.
    [70]刘建英.泡沫铝夹芯结构汽车保险杠的研究及结构优化[D].辽宁阜新:辽宁工程技术大学硕士学位论文,2005:21-25.
    [71]朗国军.泡沫铝吸能器在汽车正面碰撞安全中应用的仿真研究[D].辽宁阜新:辽宁工程技术大学硕士学位论文,2007:10-14.
    [72]于英华,宋海,吴雪娜,等.泡沫铝填充汽车车架的抗振性研究[J].材料导报,2012,26(5):144-146.
    [73]宋海.泡沫铝填充结构汽车车门防撞梁研究[D].辽宁阜新:辽宁工程技术大学硕十学位论文,2012:7-10.
    [74]于英华,梁冰.基于网络交织复合材料预测泡沫铝/环氧树脂复合材料的有效弹性模量[J].机械工程材料,2008,32(11):90-92.
    [75]于英华,梁冰.泡沫铝齿轮阻尼环减振降噪特性分析[J].沈阳工业大学学报,2004,26(3):247-249.
    [76]徐平,肖振,于英华.泡沫铝夹芯结构告诉移动工作台研究[J].机械设计,2012,29(3):65-68.
    [77]陈涛.6470型SUV车架的静态、动态特性及最优化分析[D].兰州:兰州理工大学硕士学位论文,2010:5-18.
    [78]McNay I I, Gene H. Numerical modeling of tube crash with experimental comparison[C]. SAE Passenger Car Meeting and Exposition, America:SAE,1988:123-134.
    [79]Mukul K Verma. Relationship of crash test procedures to vehicle compatibility[C]. SAE paper,2003-01-0900.
    [80]刘林华.汽车车架耐撞性分析及其结构优化设计研究[D].南昌:南昌大学硕士学位论文,2011:28-32.
    [81]Lorna J Gibson, Michael F Ashby,刘培生,译.多孔固体结构与性能[M].北京:清华大学出版社,2003.
    [82]Seitzberger M, Rammerstorfer F G, et al. Experimental studies on the quasi-static axial crushing of steel columns filled with aluminum foam[J]. International Journal of Solids and Strucutres,2000,37:4125-4147.
    [83]郭刘伟,虞吉林,杨国栋.泡沫铝夹芯双圆管结构的准静态轴向压缩性能研究[J].实验力学,2011(2):181-189.
    [84]郭刘伟,虞吉林.泡沫铝夹芯双方管结构准静态轴压性能的实验研究[J].实验力学,2010,25(3):271-278.
    [85]黄西成,陈裕泽,蒋家桥,等.撞击作用下泡沫铝填充结构吸能特征[J].解放军理工大学学报:自然科学版,2007,8(5):470-473.
    [86]王松林,凤仪,徐屹,等.泡沫铝层合圆管纵向和横向压缩力学性能研究[J].材料热处理学报,2007,28(1):10-15.
    [87]Qu J, Dabboussi W, Nemes J, et al. High Strain Rate Deformation Behavior of Advanced High Strength Steels For Automotive Application[C]. SAE 2006 World Congress & Exhibition,2006-01-1430.
    [88]王鹏祥,徐立伟,张亮,等.薄壁直梁件碰撞诱导变形模拟分析[J].汽车工:程,2008,30(11):990-992.
    [89]武和全.汽车车架碰撞安全性分析及其优化设计[D].南昌:南昌大学博士学位论文,2009:35-41.
    [90]GB/T 7314-2005,金属材料室温压缩实验方法[S]
    [91]Onck P R, Andrews E W, Gibson L J. Size effects in ductile cellular solids Part I:experimental results[J]. International Journal of Mechanical Sciences,2001,43:681-699.
    [92]Andrews E W, Gioux G, Onck P R, Gibson L J. Size effects in ductile cellular solids Part II: experimental results[J]. International Journal of Mechanical Sciences,2001,43:701-713.
    [93]潭继锦.汽车有限元法[M].北京:人民交通出版社,2005:2-4.
    [94]武和全,辛勇,董学勤.某越野车车架有限元建模与刚度分析[J].机械设计与制造,2008,(6):15-17.
    [95]胡国良,任继文.有限元分析入门与提高[M].北京:国防工业出版社,2009:42-50.
    [96]柳艳杰.汽车低速碰撞吸能部件的抗撞性能研究[D].哈尔滨:哈尔滨工程大学博土学位论文,2012:38-42.
    [97]LS-DYNA KEYWORD USER'S MANUAL (Version 971)[M]. LIVERMORE SOFTWARE TECHNOLOGY CORPORATION,2007.
    [98]胡玉梅,李晓红,邓兆祥.微型客车正面碰撞仿真技术,[J].重庆大学学报,2003,26(9):64-68.
    [99]龚剑PAM-CRASH碰撞模拟中主要控制参数影响的分析[J].振动与冲击,2002,21(3):18-21.
    [100]Jones N. Structure Impact[M]. Cambridge:Cambridge University Press,1989:211-247.
    [101]胡昌明,贺红亮,胡时胜.45号钢的动态力学性能研究[J].爆炸与冲击,2003,22(2):
    [102]王自力,顾永宁.应变率敏感性对船体结构碰撞性能的影响[J].上海交通大学学报,2000,34(12):1704-1707.
    [103]Hequan Wu, Yong Xin. True Stress-Strain Curves Used in Finite Element Vehicle Model[C]. IEEE Vehicle Power and Propulsion Conference (VPPC),2008:1-4.
    [104]荆友录.货车与乘用车正面碰撞相容性的研究[D].南京:南京航空航天大学博士学位论文,2009:37-40.
    [105]敬霖.强动载荷作用下泡沫金属夹芯壳结构的动力学行为及其失效机理研究[D].太原:太原理工大学博士学位论文,2012:105-110.
    [106]张雄.轻质薄壁结构耐撞性分析与设计优化[D].大连:大连理工大学博士学位论文,2007:84-90.
    [107]王青春,范子杰.利用LS-DYNA计算结构准静态压溃的改进方法[J].力学与实践,2003,25(3):20-23.
    [108]Hanssen G A, Langseth M, Hopperstad S O. Static and dynamic crushing of circular aluminum extrusions with aluminum foam filler[J]. International Journal of Impact Engineering,2000,24(5):475-507.
    [109]Wierzbieki T, Abramowiez W. On the crushing mechanics of thin-walled structures[J]. Journal of Applied Mechanics, Transactions ASME,1983,50(4a):727-734.
    [110]Wierzbieki T, Recke L, Abramowiez W, et al. Stress profiles in the thin-walled prismatic columns subjected to crush loading-I, Compression[J]. Computers and Structures,1994,51(6):611-623.
    [111]Abramowiez W, Wierzbicki T. Axial crushing of multicorner sheet metal columns[J]. Journal of Applied Mechanics, Transactions ASME,1989,56(1):113-120.
    [112]Santosa S, Wierzbicki T, Hanssen A G, et al. Axial compression of foam-filled thin-walled circular tubes[J]. International Journal of Impact Engineering,2000,24(5):509-534.
    [113]H. P. Degischer, B. Kriszt,左孝青,周芸,译.多孔泡沫金属[M].北京:化学工业出版社,2005:153-155.
    [114]于英华.泡沫铝/环氧树脂复合材料力学行为及应用研究[D].阜新:辽宁工程技术大学博十论文,2007:26-28.
    [115]Abramowicz W, Wierzbicki T. Axial crushing of foam filled columns[J].Mesh Sci.1998,30(34):263-271.
    [116]余同希,卢国兴,华云龙,译.材料与结构的能量吸收:耐撞性、包装、安全防护[M].北京:化学工业出版社,2006:128-131.
    [117]Abrmaowiez W, Jones N. Dynamic progressive buckling of circular and square tubes. International Journal of Impact Engeering,1986,10(4):243-270.
    [118]于英华,杨春红,梁冰.泡沫铝填充管汽车保险杠的研究[J].辽宁工程技术大学学报,2006,25(6):907-910.
    [119]唐友名.乘用车两车侧面碰撞的兼容性研究[D].长沙:湖南大学博十学位论文,2010:2-10.
    [120]Wierzbiekl T, Recke L, Abramowiez W, et al. Stress profiles in the thin-walled prismatic columns subjected to crush loading-II, Bending[J]. Computers and Structures,1994,51 (6):625-641.
    [121]YB/T 5349-2006,金属弯曲力学性能实验方法[S]
    [122]Kecman D. Bending collapse of rectangular and square section tubes[J]. International Journal of Mechanical Sciences,1983,25:623-636.
    [123]叶瑞汶.机床大件焊接结构设计[M].北京:机械工业出版社,1986:14-18.
    [124]Rhodes J, Harvey J M. Design of thin walled beams[C]. Conference Exp Stress Analysis in Design, London,1971:159-167.
    [125]余同希,邱新明.冲击动力学[M].北京:清华大学出版社,2011:20-34.
    [126]Norman Jones. Plastic failure of ductile beams loaded dynamically[J]. Journal of Manufacturing Science and Engineering,1976,98(1):131-136.
    [127]韩宝坤,刘伟,武同华,等.泡沫铝消声器的优化与仿真分析[J].噪声与振动控制,2012,5:185-187.
    [128]徐平,杨昆,于英华.泡沫铝/环氧树脂填充结构机床工作台的模拟研究[J].兵器材料科学与工程,2013,36(1):70-73.
    [129]黄金陵.汽7车车身设计[M].北京:机械工业出版社,2007.
    [130]孙宏图,申国哲,胡平,等.考虑碰撞安全性的汽车车身轻量化设计[J].机械科学与技术,2010,29(3):379-382.
    [131]徐大伟.世界汽车安全性技术法规与标准的研究[D].武汉:武汉理工大学硕士学位论文,2007:85-95.
    [132]C-NCAP(中国新车评价规程)管理规则.中国汽车技术研究中心,2012版:15-18.
    [133]薛量,姜正旭,林忠钦.汽车碰撞仿真中的连接失效模拟[J].机械科学与技术,2000,19(2):304-307.
    [134]何文,张维刚,钟志华.汽车碰撞仿真研究中点焊连接关系的有限元模拟[J].机械工程学报,2005,41(9):73-77.
    [135]Pedersen C B W. Topology optimization design of crushed 2D-frames for desired energy absorption history[J]. Structural and Multidiseiplinary Optimization,2003,25:368-382.
    [136]杨华.电动汽车正面碰撞仿真分析[D].武汉:武汉理工大学,2008:35-37.
    [137]孙立清,王望予,林逸.等.国外汽车碰撞中人体损伤及人体模拟研究概述[J].中国公路学报,1995,8(Z1):58-63.
    [138]陈南,张建润,孙蓓蓓.等.汽车振动与噪声控制[M].北京:人民交通出版社,2005:148-171.
    [139]黄天泽,黄金陵.汽车车身结构与设计[M].北京:机械工业出版社,1989:7-12.
    [140]杨忠炯,赵晓海,王宇奇.重型矿用汽车车架模态分析及改进[J].机械传动.2009,33(3):97-99.
    [141]杨中明.EQ1040型汽车架结构性能研究[D].武汉:华中科技大学硕士学位论文,2005:
    [142]刘林华,辛勇,汪伟.基于折衷规划的车架结构多目标拓扑优化设计[J].机械科学与技术,2011,30(3):382-385.
    [143]冯国胜.汽车车架动特性分析及应用[J].汽车技术,1994,(8):9-12.
    [144]于海霞,汤文成.客车车身骨架动应力研究的现状与未来[J].应用力学学报,2001,18(3):8-13.
    [145]赵峰.BJ3043E型自卸汽车车架静动态有限元分析及结构改进[D].济南:山东大学硕士学位论文,2004:30-32.
    [146]郭立群.商用车车架拓扑优化轻量化设计方法研究[D].长春:吉林大学博士学位论文,2011:15-40.
    [147]郭立群,王登峰.车架刚度对商用车乘坐舒适性的影响[J].吉林大学学报:自然科学版,2010,40(4):911-914.
    [148]张朝辉.ANSYS11.0结构分析工程应用实例解析[M].北京:机械工业出版社,2008:262-265.
    [149]魏胜君,孙蓓蓓,张晓阳.基于集中质量的铰接式自卸车平顺性仿真研究[J].机械制造与研究,2008,37(1):40-41.
    [150]LEEYE, KOCERF. Minimize driveline gear noise by optimization technique[J]. SAE Paper,2003-01-1482.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700