用户名: 密码: 验证码:
仲彬草属植物分子系统学及偃麦草属外源新种质分子细胞遗传学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小麦族(Triticeae Dumortier)是禾本科(Poaceae)植物中具有最重要的经济价值的一个植物类群,不仅包括小麦、大麦、黑麦三种重要的粮食作物,而且还有大量具有经济价值的多年生优质牧草,以及对于生态具有重要生态意义的其他物种。由于麦类作物是小麦族物种的一员,它们与小麦族其它物种有着一定的亲缘关系,故小麦族遗传资源作为巨大的基因库,在以遗传操作为手段导入外源有益基因的麦类作物改良中具有重要的潜在价值。事实上,利用小麦族野生近缘属物种中含有的优良基因改良现有小麦品种已经得到了广泛的应用。
     仲彬草属是一群生长在高海拔地区被毛的小麦族植物,生长于中亚与喜马拉雅地区。一些物种生长在非常严酷的生境之中,可能对禾谷作物的抗寒与抗旱改良作出贡献。偃麦草属是小麦族多年生的野生植物,具有小麦改良的许多重要有益性状,包括免疫或高抗小麦条锈病、叶锈病、秆锈病、白粉病等。因此,仲彬草属和偃麦草属植物与其他多年生小麦族植物一起形成了一个巨大的遗传资源基因库,可以用于一年生禾谷作物的遗传改良。本文围绕小麦族仲彬草属植物的系统进化关系和偃麦草属外源遗传物质的新种质的分子细胞遗传学进行相关研究,为进一步有效合理利用小麦族植物种质资源提供科学指导。其主要的研究结果如下:
     (1)利用Giemsa-C带技术分析了8个仲彬草属物种,研究结果显示这些物种具有不同的C带核型特征。Kengyilia gobicola、K. alatavica和K. batalinii的染色体具有明显的着丝粒带和不具带纹特征的染色体,而Kengyilia hirsuta、K. longiglumis、K. melanthera、K. rigidula和K. thoroldiana具有丰富的带纹特征,其中包括中间带和端带。不同的带型特征表明了仲彬草属植物在起源和进化上存在分化。
     (2)利用核基因ITS、alpha淀粉酶抑制因子序列对仲彬草属植物进行系统发育研究,研究结果显示仲彬草属植物与杜威草属、拟鹅观草属、鹅观草属和冰草属植物具有较近的亲缘关系。仲彬草属物种发生了明显的地理分化,地理来源相同或相近的物种亲缘关系较近。不同的鹅观草属物种和冰草属物种可能参与了仲彬草属物种的形成。仲彬草属物种的St和Y基因组具有密切的亲缘关系,但具有不同的起源。
     (3)对仲彬草属植物的叶绿体atpB-rbcL和线粒体CoxII内含子的核苷酸多态性分析,结果显示仲彬草属植物具有较高程度的核苷酸多态性。叶绿体atpB-rbcL和线粒体CoxⅡ内含子序列的系统发育分析在结果上存在一定的差异,但是总体上仲彬草属物种主要聚为两个分支,分别与不同的二倍体供体物种聚类在一起,表明仲彬草属植物在起源上具有不同的母本供体。
     (4)对采集于野外疑是属间杂种的小麦族植物进行染色体配对分析和ITS、atpB-rbcL和trnH-psbA序列系统发育分析。结果表明,NHZY6含有St、Y和P染色体组,可能是Kengyilia melanthera与鹅观草属物种的杂交种。NHZY7、NHZY8和NHZY9可能是K. rigidula与Elymus nutans的杂种,而NHZY2、NHZY3和NHZY5是K. melanthera与E. nutans的杂种。基于叶绿体序列的研究结果表明K. rigidula和K. melanthera作为母本供体参与到杂交过程。这些研究结果表明,仲彬草属物种与披碱草属、鹅观草属物种发生了天然杂交,进一步证实了小麦族植物复杂网络化的进化历史。同时,研究支持K. stenachyra是K. rigidula与E. nutans杂交形成的天然杂种的推论。
     (5)通过对普通小麦与偃麦草的杂交后代进行筛选,对获得的8个渗入系进行分子细胞遗传学研究。结果显示,渗入系染色体数目的变化范围从42到56不等,其中包括44、52、53和54条染色体,单价体频率从0.34到2.36,多价体频率不超过1%,细胞遗传学基本稳定。原位杂交结果表明,小麦的染色体条数从40到44不等,以及数目较多小麦与偃麦草的易位染色体。多色原位杂交的结果显示易位染色体包含了多个基因组之间的相互易位。赤霉病的抗性评价显示,渗入系的感染率从5.65%到11.46%,表明对赤霉病具有高水平的抗性。
     (6)利用叶绿体trnH-psbA来研究中间偃麦草的遗传多样性和母本起源,结果表明35份中间偃麦草材料形成了11个单倍型,具有较低的核苷酸多态性π0.00473±0.00037和较高的单倍性多态性Hd=0.733±0.061。系统发育分析显示,所有中间偃麦草材料分别与不同的二倍体物种聚类成2个分支,表明中间偃麦草的物种形成过程中至少有两个物种作为母本供体或是该物种经历了多次杂交起源的过程
     (7)对硬粒小麦与中间偃麦草的新种质08-47-50和08-53-55进行分子细胞遗传学研究。研究结果表明,这两个部分双二倍体含有42条染色体,细胞遗传学上基本稳定,具有不同的染色体组成。08-47-50的染色体组成为28DW+6St+4Ee+4Ee-St,08-53-55的染色体组成为28DW+4St+10Ee-St。这两个部分双二倍体对赤霉病、叶锈病和秆锈病具有高水平的抗性。
Triticeae Dumortier is a very important group in the Poaceae which includes three of the most important cereal crops, for example, wheat, barley, and rye, many economically valuable forage grasses as well as a number of significantly ecological importance specices. A clear phylogentic patterns would prompt the ulitization of speices as genetic resources for improving quality and genetic diversity. Because of the affinity between wheat and its relatives, the Triticeae tribe offers a vast gene pool from which traits of agronomic interest can be extracted to enrich the genetic diversity of wheat for disease resistance and quality improvement by genetic manipulation. In fact, a number of relatives to wheat have been to identify to have superior resistance gene and utilized in wheat breeding programme.
     Kengyilia Yen et J. L. Yang is a recently erected genus grown in high altitude areas. Some species lives in rigorous locality, which can contribute to the improvement of resistance to cold and drought in cereal crops. Elytrigia Desv. is a wild perennial genus in Triticeae tribe. It possesses numerous beneficial traits for wheat improvement including immune or high resistance to tripe rust, leaf rust, stem rust, powder mildew, aphid, salt tolerance and so on. Therefore, Kengyilia and Elytrigia together with other perennial relative species form a huge gene pool for improvement in cereal crops. In this study, the phylogeny of Kengyilia species was evaluated and the molecular cytogenetic characterization of new germplasm materials between wheat and Elytrigia were analyzed on the basis of GISH as well as disease resistance evaluation. The main results are as follows:
     (1) Giemsa C-banding analysis was implementd to characterize chromosomes of the Kengyilia species. Results indicated that the eight species of Kengyilia differed in C-banding patterns. K. gobicola, K. alatavica and K. batalinii had distinct centromeric bands and no banded chromosomes, while K. hirsuta, K. longiglumis, K. melanthera, K. rigidula and K. thoroldiana had more abundant and diagnostic C-bands with interstitial and terminal bands. The chromosome structural polymorphisims suggested the differentiation regarding the origin and evolution in Kengyilia.
     (2) Phylogenetic analysis was conducted based on nrDNA ITS and dimeric alpha amylase inhibitor sequences in species of Kengyilia together with those of relatives by the maximum parsimony and neighbor-joining distance methods. The results indicated that species of Kengyilia had close affinities to species of Douglasdeweya, Pseudoroegneria, Roegneria and Agropyron. The species in Kengyilia was identified as two subgroups corresponding to geographic distribution, suggesting that species from the same distribution had a closer phylogenetic relationship. It is possible that the Kenyilia species from Central Asia and adjacent regions and Qinghai-Tibetan Plateau have independent alloploid origin with different P genomic donor. The clear differentiation between the Y and St was detected, which provided additional evidence for the independent origin of the Y genome in alloplooid Roegneria and Kengyilia species.
     (3) The levels of nucleotide diversity for atpB-rbcL and CoxII intron were obtained. The results revealed relatively high nucleotide diversity. Employing atpB-rbcL and CoxII intron sequences, the phylogenetic relationships within Kengyilia and between Kengyilia and its closely related genera were examined. The maximum parsimony analysis demonstrated that Kengyilia species were positioned into two clades corresponding to different maternal genomic donor. These results indicated that there had been two phylogenetically divergent maternal donors within Kengyilia.
     (4) Seven accessions of putative natural hybrids between Kengyilia and Roegneria or Elymus from Sichuan and Gansu provinces of China were analyzed using sequences of ITS, atpB-rbcL, trnH-psbA combined with meiosis observation. In summary, NHZY6 was revealed to have St, Y and P genomes, and originated from hybridization between K. melanthera and the species of Roegneria. It is concluded that K. rigidula and E. nutans as parental donors contributed to NHZY7, NHZY8 and NHZY9, and K. melanthera and E. nutans as parental donors contributed to NHZY2, NHZY3 and NHZY5. Chloroplast DNA sequences data demonstrated that K. rigidula and K. melanthera acting as maternal donors were likely to be involved in the formation of the natural hybrids. Also, K. stenachyra was confirmed to be a natural hybrid derived from hybridization between K. rigidula and E. nutans.
     (5) As a potential source of resistance to Fusarium head blight (FHB), Elytrigia repens has been crossed with common wheat. A total of eight BC1F9 progeny lines were characterized in this study. The chromosome number of these derived lines ranged from 42 to 56, including the lines with 44,52,53, and 54 chromosomes. All of lines were cytologically stable in terms of meiotic configuration. The univalent frequency in these lines varied between 0.34 and 2.36. Similarly, the multivalent frequency did not exceed 1% in any of the lines. GISH analyses revealed that the number of intact wheat chromosomes in the various lines varied between 40 and 44. In all lines, numerous translocated chromosomes were detected, which were involved with chromosomal segments from wheat and El. repens. Trigenomic translocated chromosomes were examined by further investigation. Moreover, the fragments introgressed into wheat chromosomes included both terminal and interstitial type. The FHB resistance of the eight lines, following point inoculation varied from 5.65%infected florets to 11.46%compared to the check cultivars 'Roblin'and'Crocus'at 100%and 85%, respectively.
     (6) The non-coding intergenic region of trnH-psbA was performed to assess the genetic diversity and infer the maternal origin within Elytrigia intermedia accessions. Eleven haplotypes were distinguished among the thirty-five accessions of El. intermedia. It showed a relatively low nucleotide diversity (π) of 0.00473±0.00037 and a moderately high haplotype diversity (Ha) of 0.733±0.061 within El. intermedia. In the phylogenetic analysis all accessions of El. intermedia were positioned into two clades which were corresponded to the different diploid donors, suggesting that there were two phylogenetically divergent maternal donors in El. intermedia.
     (7) Two partial amphyploids,08-47-50 and 08-53-55, were developed from wide crosses between durum wheat and El. intermedia. Meiotic analysis indicated that the two lines were cytologically stable, containing 42 chromosomes. Genomic in situ hybridization revealed that the two partial amphiploids carried different chromosomal compositions. Line 08-47-50 had a chromosome complement of 28DW+6St+4Ee+4Ee-St, while the line 08-53-55 had a chromosome complement of 28DW+4St+10Ee-St. The evaluations of Fusarium head blight (FHB), leaf rust and stem rust indicated that the both lines had a high level of resistance.
引文
1. 蔡联炳.以礼草属的地理分布.植物分类学报,2001,39(3):248-259
    2. 蔡联炳.中国鹅观草属的分类研究.植物分类学报,1997,35:148-177
    3. 蔡联炳,崔大方.中国以礼草属新分类群.植物研究,1995,15(4):422-427
    4. 蔡联炳,智丽.以礼草属的分类研究.植物分类学报,1999,37:451-467
    5. 车永和.小麦族P基因组植物的遗传多样性与系统演化研究.西北农林科技大学博士论文.2004
    6. 陈佩度,王兆梯,王苏玲,等.将大赖草种质转移给普通小麦的研究-Ⅲ抗赤霉病异附加系选育.遗传学报,1995,22(3):206-210
    7. 陈守良,金岳杏,吴竹君.小麦族叶片表皮微形态特征及其分类意义的探讨.南京中山植物园研究论文集,1987,1-3
    8. 陈守良,徐克学.应用数量分类探讨鹅观草属的归属问题.植物分类学报,1989,27(3):190-196
    9. 陈守良,金岳杏,吴竹君.以礼草属(拟)Kengyilia Yen and J. L. Yang的叶片表皮微形态研究及其分类意义的探讨.南京中山植物园研究论文集,1991,1-6
    10.陈漱阳,侯文胜,张安静,等.普通小麦-华山新麦草异附加系的选育及细胞学研究.遗传学报,1996,23(6):447-452
    11.耿以礼,陈守良.国产鹅观草属Roegneria C. Koch之订正.南京大学学报,1963,3(1):60-64
    12.耿以礼.中国高等植物图说-禾本科.北京:科学出版社,1959,342-409
    13.郭本兆.中国植物志,第9卷3分册.北京:科学出版社,1987,51-401
    14.贾继增,张正斌.小麦21条染色体RFLP遗传多样性分析.中国科学C辑,2001,31(1):13-21
    15.雷东锋,马建岗,赵文明.小麦中子贮藏蛋白质研究进展.西北植物学报,2001,21(3):584-593
    16.李庆.小麦种质资源对禾谷缢管蚜的抗性评价及生化抗性机制研究.四川农业大学博士学位论文.2002
    17.李懋学,陈瑞阳.关于植物核型分析的标准化问题.武汉植物学研究,1985,3(4):267-302
    18.李玉京,李滨,刘建中,等.低磷营养胁迫对小麦-长穗偃麦草附加系酸性磷酸酯酶同工酶的影响.中国农业科学,1998,31(4):26-31
    19.李玉京,刘建中,李滨,等.长穗偃麦草基因组中与耐低磷营养胁迫有关的基因的染色体定位.遗传学报,1999,26,(6):703-710
    20.李振声.小麦远缘杂交.北京:科学出版社,1985
    21.刘成,杨足君,刘畅,等.小麦族中含St染色体组物种的特异分子标记的建立.遗传,2007,29(10):1271-1279
    22.刘大钧.向小麦转移外源抗病性的回顾与展望.南京农业大学学报,1994,17(3):1-7
    23.卢宝荣,Salomon B.种间杂种染色体配对所揭示的披碱草属植物StY基因组分化及其进化意义.生物多样性,2004,12(2):213-226
    24.卢宝荣.小麦族遗传资源的多样性及其保护.生物多样性,1995,3(2):63-68
    25.任正隆.黑麦种质导入小麦及其在小麦育种中的利用方式.中国农业科学,1991,24(3):18-25
    26.任正隆,张怀琼.一种改良的植物染色体C带技术.四川农业大学学报,1995,13(1):1-15
    27.时英,郭本兆,李健华.披碱草属6种植物的核型研究.植物分类学报,1989,27(3):215-221
    28.孙根楼,颜济,杨俊良.仲彬草属和鹅观草属几个种的核型研究.植物分类学报,1993,31(6):560-564
    29.孙善澄.小偃麦新品种与中间类型的选育途径、程序和方法.作物学报,1981,7(1):1-3
    30.王际睿,颜泽洪,魏育明,等.小麦抗虫α-淀粉酶抑制因子成熟蛋白编码基因序列.生物工程学报,2005,21(5):737-742
    31.王苏玲,齐莉莉,陈佩度,等.大赖草及近缘种染色体C-分带的研究.植物学报,1999,41(3):258-262
    32.万永芳,颜济,杨俊良,刘发圈.小麦近缘野生植物的赤霉抗性研究.植物病理学报,1997,27(2):107-111
    33.颜济,杨俊良,Baum B. R.小麦族生物系统学(第三卷).北京:农业出版社2006,3-117
    34.杨瑞武,周永红,郑有良.小麦族披碱草、鹅观草和猬草属模式种的C带研究.云南植物研究,2003,25(1):71-77
    35.杨锡麟.鹅观草属的部分组见解.内蒙古师范大学学报(自然版).1990,3:39-42
    36.汪小全,洪德元.植物分子系统学近五年的研究进展概况.植物分类学报,1997,35(5):465-480
    37.张国芳,王北洪,孟林,等.四种偃麦草光合特性日变化分析.草地学报,2005,13(4):344-348
    38.张荣琦,陈春环,赵晓农,等.八倍体小偃麦与普通小麦杂交选育抗旱小麦品种的研究.西北植物学报,1999,19(1):24-28
    39.张颖,周永红,张利,等.鹅观草属、披碱草属、猬草属和仲彬草属物种的RAMP分析及其系统学意义.西北植物学报,2005,25(2):368-375
    40.张颖,张利,张海琴,等.鹅观草属、披碱草属、猬草属和仲彬草属物种的醇溶蛋白分析.四川农业大学学报,2006a,3(24):256-262
    41.张颖,周永红,张利,等.小麦族鹅观草属、披碱草属、猬草属和仲彬草属细胞质基因组PCR-RFLP分析.遗传,2006b,28(4):449-457
    42.张利,周永红,丁春邦,等.应用ISSR标记研究仲彬草属植物的遗传变异.广西植物2006a,4(26):375-380
    43.张利,周永红,魏育明,等.应用RAMP分子标记探讨仲彬草属的种间关系.高技术通讯,2003,13(4):28-33
    44.张利,周永红,郑有良,等.仲彬草属6个物种的核型与进化研究.四川大学学报(自然科学版),2003,40(2):361-366.
    45.张利,周永红,郑有良,等.8个仲彬草属的核型研究.云南植物研究,2005,7(1):81-86.
    46.张利,周永红,郑有良,等.仲彬草属物种细胞质基因组PCR-RFLP分析.草业学报,2006b,3(15):115-122
    47.周永红.仲彬草属5种植物的核型研究.广西植物,1994,14(2):163-169.
    48.周永红,郑有良,杨俊良,等.利用RAPD分子标记评价仲彬草属的种间关系.植物分类学报,2000,38(5):515-521
    49.周永红,郑有良,杨俊良,等.鹅观草属、披碱草属、猥草属和仲彬草属植物的RAPD分析及其系统学意义.四川农业大学学报,2001,19(1):14-20
    50.朱光华,解新明,杨锡麟.鹅观草属与披碱草属属界划分的酯酶和过氧化物酶同工酶比较研究.西北植物学报,1990,10(1):43-53
    51. Alvarez L, Wendel JF. ribosomal ITS sequences and plant phylogenetic inference. Molecular Phylogenetic Evolution,2003,29:417-434
    52. Arnold ML. Natural hybridization and evolution. New York, NY: Oxford University Press,1997
    53. Assadi M, runemark H. Hybridization, genomic constitution, and generic delimitation in Elymus s. 1. (Poaceae:Triticeae). Plant Systematic and Evolution,1995,194:189-205
    54. Ayliffe M, Singh R, Lagudah E. Durable resistance to wheat rust needed. Current Opinion Plant Biology,2008,11:187-192
    55. Bai G, Shaner G. Scab of wheat:Prospects for control. Plant Disease,1994,78:760-766
    56. Bain JF, Jansen RK. Achloroplast DNA hairpin structure provides useful phylogenetic data within tribe Senecioneace (Asteraceae). Canadian Jornal of Botany,2006,84:862-868
    57. Ban T. Evaluation of resistance to Fusarium head blight in indigenous Japanese species of Agropyron(Elymus). Euphytica,1997,97:39-44.
    58. Baldwin BG, Sanderson MJ, Porter JM, et al. The ITS region of nuclear ribosome DNA:a valuable source of evidence on angiosperm phylogeny. Annals of The Missouri Botanical Garden,1995,82: 247-277
    59. Bao Y, Li X, Liu S, Cui F, et al. Molecular cytogenetic characterization of a new wheat-Thinopyrum intermedium partial amphiploid resistance to powdery mildew and stripe rust. Cytogenetic and Genome Research,2009,126:390-395
    60. Barkworht ME, Dewey DR. Thinopyrum intermedium. American Journal of Botany,1985,72:772
    61. Barkworth ME, Dewey DR. Genomically based genera in the perennial Triticeae of North America: Identification and Membership. American Journal of Botany,1985,72:767-776
    62. Baum BR, Bailey LG. The molecular diversity of the 5S rRNA gene in Kengyilia alatavica (Drobov) J. L. Yang, Yen, Baum (Poaceae:Triticeae):potential genomic assignment of different rDNA units. Genome,1997,40:215-228
    63. Baum BR, Bailey LG. The 5S rDNA units in Kengyilia (Poaceae:triticeae):diversity of the nontranscribed spacer and genomic relationships. Canadian Journal of Botany,2000,78(12): 1571-1579
    64. Baum BR, Yang JL, Yen C. Taxonomic separation of Kengyilia (Poaceae:Triticeae) in relation to nearest related Roegneria, Elymus and Agropyron based on some morphological characters. Plant Systematic and Evolution,1995,194:123-132
    65. Baum BR, Yen C, Yang JL. Roegneria:its generic limits and justification for its recognition. Canadian Journal of Botany,1991,69:282-294
    66. Bentham G, Hooker JD. Verbenaceae ad Lamiaceae in genera Plantarum 2. London,1876, pp, 1131-1223
    67. Brej T. Heavy metal tolerance in Aropyron repens (L.) P. Bauv. Populations from the Legnica copper smelter area, lower Silesia. Acta Societatis Botanicorum Poloniae,1998,67:325-333
    68. Buckler ESIV, Holtsford TP. Zea systematic:ribosomal ITS evidence. Molecular Biololgy and Evolution,1996 13:612-622
    69. Cai XW, Liu DJ. Identification of a 1B/1R wheat-rye chromosome translocation. Theoretical and Appllied Genetics,1989,77:81-83
    70. Cai XW, Jones SS, Murray TD. Molecualr cytogenetic characterization of Thinopyrum and wheat-Thinopyrum transclocated chromosomes in a wheat-Thinopyrum amphiploid. Chromosome Research,1998,6:183-189
    71. Catalano SA, Saidman BO, Vilardi JC. Evolution of small inversion in chloroplast genome:a case study from a recurrent inversion in angiosperms. Cladistics,2009,25:93-104
    72. Charles A, Robert S. Phylogenetic studies of mammillaria (cactaceae) insight from chloroplast sequence variation and hypothesis testing using the parametric bootstrap. American Journal of Botany,2004,91:1086-1098
    73. Chen Q. Detection of alien chromatin introgression from Thinopyrum into wheat using S genomic DNA as a probe-A landmark approach for Thinopyrum genome research. Cytogenetic and Genome Research,2005,109:350-359
    74. Chen Q, Conner RL, Laroche A, et al. Genomic in situ hybridization analysis of Thinopyrum chromatin in a wheat-Th. intermedium partial amphiploid and six derived chromosome addition lines. Genome,1999,42:1217-1223
    75. Chen Q, Conner RL, Sun SC, et al. Molecular cytogenetic discrimination and reaction to wheat streak mosaic virus and the wheat curl mite in Zhong series of wheat-Thinopyrum intermedium partial amphiploids. Genome,2003,46:135-145
    76. Chen Q, Eudes F, Conner RL, et al. Molecular cytogenetic analysis of a durum wheat x Thinopyrum distichum hybrid used as a new source of resistance to Fusarium head blight in the greenhouse. Plant Breeding,2001,120:375-380
    77. Chen Q, Friebe B, Conner RL, et al. Molecular cytogenetic characterization of Thinopyrum intermedium-derived wheat germplasm specifying resistance to wheat streak mosaic virus. Theor etical and Appllied Genetics,1998,96:1-7
    78. Corriveau JL, Coleman AW. Rapid screening method to detect potential biparental inheritance of plastid DNA and results for over 200 angiosperm species. American Journal of Botany,1988,75: 1443-1458
    79. Dewey DR. Cytogenetics of a polyhaploid Agropyron repens. Bulletin of the Torrey Botanical Club, 1974,101:266-271
    80. Dewey DR. The genome system of classification as a guide to intergeneric hybridization with the perennial Triticeae. In: Gene manipulation in plant improvement. Gustafson, JP (ed.). Plenum Press, New York.1984
    81. Dill-Macky R. Inoculation methods and evaluation of Fusarium head bilght resistance in wheat. In: Fusarium head blight of wheat and barley. Edited by KJ Leonard and WR. Bushnell. American Phytopathology Society, St Paul,2003, pp,184-210
    82. Dong YS, Zhou RH, Xu SJ, et al.. Desirable characteristics in perennial Trticeae collected in China for wheat improvement. Hereditas,1992,116:175-178
    83. Dou QW, Tanaka H, Nakata N, et al. Molecular cytogenetic analyses of hexaploid lines spontaneously appearing in octoploid Triticeae. Theoretical and Applied Genetics,2006,114: 41-47
    84. Doyle JJ, Davis JL, Soreng RJ, et al. Chloroplast DNA inversions and the origin of grass family (Poaceae). Proceedings of the National Academyof Sciences of USA,1992,89:7722-7726
    85. Doyle JJ, Doyle JS. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin,1987,19:11-15
    86. Doyle JJ, Doyle JL. The cytosolic glutamine synthetase gene family in Leguminosae:Gene phylogeny and evolution of its role in nodulation. American Journal of Botany,1997,84:188
    87. Ellneskog-Staam P, Merker A. Chromosome somposition, stability and fertility of alloploids between Triticum turgidum var. carthlicum and Thinopyrum junceiforme. Hereditas,2002,136: 59-65
    88. Ellstrand NC, Schierenbeck KA. Hybridization as a stimulus for the evolution of invasiveness in plants? Proceedings of the National Academy of Sciences of USA,2000,97:7043-7050
    89. Elspeth MH, Gwilym PL, Julie AH. A phylogenetic reappraisal of the peltophorum group (Caesalpinieae:leguminosae) based on the chloroplast trnL-F, rbcL and rps16 sequence data. American Journal of Botany,2005,92:1359-1371
    90. Fedak G. Alien species as sources of physiological traits for wheat improvement. Euphytica,1985, 34:673-680
    91. Fedak G. Molecular aids for integration of alien chromatin through wide cross. Genome,1999,42: 584-591
    92. Fedak G. Sources of resistance to Fusarium head blight. In:Proceeding of the International Symposium on Wheat Improvement for scab resistance,9-11 May 2000, Suzhou and Nanjing, China,2000
    93. Fedak G, Chen Q, Conner RL, et al. Characterization of wheat-Thinopyrum partial amphiploids by meiotic analysis and genomic in situ hybridization. Genome,2000,43:712-719
    94. Fedak G, Chen Q, Conner RL, et al. Characterization of wheat-Thinopyrum partial amphiploids for resistance to barley yellow dwarf virus. Euphytica,2001,120:373-378
    95. Fedak G, Coneau C, St-Pierre CA. Meiosis in Triticum aestivum x Elytrigia repens hybrids. Genome,1986,27:430-432
    96. Fedak G, Han F. Characterization of derivatives from wheat-Thinopyrum wide crossed. Cytogenetic and Genome Research,2005,109:360-367
    97. Feitoza LL, Felix LP, Castro AAJF, Carvalho R. Cytogenetics of Alismatales s.s.:chromosomal evolution and C-banding. Plant Systematics and Evolution,2009,280:119-131
    98. Franco OL, rigden DJ, Melo FR, et al. Plant a-amylase inhibitors and their intraction with insect a-amylase structure, function and potential for crop protein. European Journal of Biochemisty, 2002,269:397-412
    99. Friebe B. Nonhomoeologous wheat-rye translocaton conferring resistance to greenbug. Euphytica, 1995,84:121-125.
    100. Friebe B, Jiang JM, Gill BS, et al. radiation-induced nonhomoelogous wheat-Agropyron intermedium chromosomal translocations conferring resistance to leaf rust. Theoretical and Appllied Genetics,1993,86:141-149
    101. Friebe B, Mukai Y, Dhaliwal HS, et al. Identification of alien chromatin specifying resistance to wheat streak mosaic and greenbug in wheat germplasm by C-banding and in situ hybridization. Theoretical and Appllied Genetics,1991,81:381-389
    102. Friebe B, Zeller FJ, Mukai Y, et al. Characterization of rust-resistant wheat-Agropyron intermedium derivatives by C-banding, in situ hybridization and isozyme analysis. Theoretical and Appllied Genetics,1992,83:775-782
    103. Fu YX, Li WH. Statistical tests of neutrality of mutations. Genetics,1993,133,693-709
    104. Gill BS, Friebe B, Endo TR. Standard karyotype and nonmenclature system for description of chromosome bands and structual abbreation in wheat (Triticum aestivum L.). Genome,1991,34: 830-839
    105. Gill BS, Kimber G. The Giemsa C-banded karyotypr of rye. Proceedings of the National Academy of the Sciences of USA,1974,71:1247-1249
    106. Gould FW. Nomenclatrural changes on Elymus with a key to the Californian species. Madrono, 1947,9:120-128
    107. Gugerli F, Senn J, Anzidei M, et al. Chloroplast microsatellites and mitochondrial nadl intron 2 sequences indicate congruent phylogenetic relationships among Swiss stone pine(Pinus cembra), Siberian stone pine (Pinus sibirica), and Siberian dwarf pine (Pinus pumila). Molecular Ecology, 2001,10:1489-1497
    108. Haeckel E. Systemarische Phylogenie. Zweiter Theil:Systamatische Phylogenie der wirbellosen Thiere (Invertebrata). Verlag von Georg reimer, Berlin,1896, pp,1-720
    109. Han FP, Liu B, Fedak G, et al. Genomic constitution and variation in five partial amphiploids of wheat-Thinopyrum intermedium as revealed by GISH, multicolor GISH and seed storage protein analysis. Theoretical and Appllied Genetics,2004,109:1070-1076
    110. Harpke D, Peterson A.5.8S motifs for the identification of pseudogenic ITS regions. Botany,2008, 86:300-305
    111. Hart GE. Genetics and evolution of multiocus isozymes n hexaploid wheat. In, Isozyme-Current Topics in Biological and Medical Reseach. Alan, R. Liss, Inc., New York,1983,10:365-380
    112. He RL, Chang ZJ, Yang ZJ, et al. Inheritance and mapping of powdery mildew resistance gene Pm43 introgression from Thinopyrum intermeidum into wheat. Theoretical and Appllied Genetics, 2009,118:1173-1180
    113. He Y, Jones J, Armstrong M. The mitochondrial genome of xiphinema americanum sensu stricto (Nematoda:Enoplea):considerable economization in the length and structural features of encoded genes. Journal of Molecular Ecology,2005,61:819-833
    114. Hedrick PW. Perspective:highly variable loci and their interpretation in evolution and conservation. Evolution,1999,53:313-318
    115.Hegarty MJ, Hiscick SJ. Hybrid speciation in plants:New insights from molecular studies. New Phytologist,2005,165,411-423
    116. Hentschel J, Paton JA, Scneider H. Acceptacne of Liochlaenanees and Solenostoma Mitt., the systematic position of eremonotus pearson and noteson Jungermannia L. s.l. (Jungermanniidae) based on chloroplast DNA sequence data. Plant Systematics and Evolution,2007,46:549-553
    117. Hitchcock AS. Manual of the Grasses of the United States.2nd edition revised by Chase A. Washington DC:UADA Misc Pub 200 US Gov't Printing Offica.1951
    118. Hsiao C, Asaya KH, Dewey Dr. Cytogentic analysis of interspecific hybrids and amphiploids between two diploid crested wheatgrass, A. cristatum and A. mongolicum. Genome,1989,32: 1079-1084.
    119. Hsiao C, Chatterton NJ, Asay KH, et al. Phylogenetic relationships of the monogenomic species of the wheat tribe, Triticeae (Poaceae), inferred from nuclear rDNA (internal transcribed spacer) sequences. Genome,1995,38:221-223
    120. Hsiao C, Wang RR-C, Dewey DR. Karyotype analysis and genome relationships of 22 diploid species in the tribe Triticeae. Canadian Journal of Genetics and Cytology,1986,28:109-120
    121. Hu LJ, Li GR, Zeng ZX, Chang ZJ, Liu C, Zhou JP, Yang ZJ. Molecular cytogenetic identification of a new wheat-Thinopyrum substitution line with stripe rust resistance. Euphytica,2011,177: 169-177
    122. Huang SX, Sirikhachornkit A, Su SJ, et al. Genes encoding plastid acetyle-CoA carboxylase and 3-phosphoglycerate kinase of the TriticumlAegilops complex and the evolutionary history of polyploidy wheat. Proceedings of the National Academy of Sciences of USA,2002a,99: 8133-8138
    123. Huang SX, Sirikhachornkit A, Faris JD, et al. Phylogenetic analysis of the acetyl-CoA carboxylase and 3-phosphoglycerate kinase loci in wheat and other grasses. Plant Molecular Biololgy,2002b, 48:805-820
    124. Islam AKMR, Shepherd KW. Alien genetic variation in wheat improvement. In:Chromosome engineering in plants:genetics, breeding, evolution. Part A. PK Gupta and T Tsuchiya (eds). Elsevier, Amsterdam, Oxford, New York, and Tokoyo,1991, pp,291-312
    125. Jaaska V. Isoenzyme variation in the grass genus Elymus (Poaceae). Hereditas,1992,117:11-22
    126. Jauhar PP, Peterson TS. Hybrids between durum wheat and Thinopyrum junceiforme:Prospects for breeding for scab resistance. Euphytica,2001,118:127-136
    127. Jauhar PP, Peterson TS. Cytological analyses of hybrids and derivatives of hybrids between durum wheat and Thinopyrum bessarabicum, using multicolor fluorescent GISH. Plant Breeding,2006, 125:19-26
    128. Jauhar PP, Peterson TS, Xu SS. Cytogenetic and molecular characterization of a durum alien disomic addition line with enhanced tolerance to Fusarium head blight. Genome,2009,52: 467-483
    129. Jensen KB. Cytology, fertility, and morphology of Elymus kengii (Keng) Tzvelev and E. grandiglumis (Keng) A Love (Triticeae:Poaceae). Genome,1990a,33:563-570
    130. Jensen KB. Cytology and taxonomy of Elymus kengii, E. grandiglumis, E. alatavicus, and E. batalinii (Poaceae:Triticeae). Genome,1990b,33:668-673
    131. Jensen KB. Genome analysis of Eurasian Elymus thoroldianus, E. melantherus, E. kokonoricus (Triticeae:Poaceae). International Journal of Plant Sciences,1996,157 (1):136-141.
    132. Jensen KB, Chen SL. An overview:Systematic relationship of Elymus and Roegneria (Poaceae). Hereditas,1992,116:127-132
    133. Jensen KB, Redinbaugh M, Blood M, et al. Natural hybrids of Elymus elymoides × Leymus salinus subsp. salmonis (Poaceae:Triticeae). Crop Science,1999,39:976-982
    134. Jiang J, Chen P, Friebe B, et al. Alloplasmic wheat-Elymus ciliaris chromosome addition lines. Genome,1993,36:327-333
    135. Jiang J, Gill BS. A 'Zebra' chromosome arising from multiple translocations involving non-homologous chromosomes. Chromosoma,1993,102:612-617
    136. Jiang J, Morris KLD, Gill BS. Introgression of Elymus trachycaulus chromatin into common wheat. Chromosome Research,1994,2:3-13
    137. Jin Y, Singh RP. resistance in US wheat to recent eastern African isolated of Puccinia graminis f. sp. tritici with virulence to resistance gene Sr31. Plant Disease,2006,90:476-480
    138. Jin Y, Szabo LJ, Pretorious Z, et al. Detection of virulence to resistance gene Sr24 within race TTKS of Puccinia graminis f. sp. tritici. Plant Disease,2008,92:923-926
    139. Johnson DD, Flaskerud GK, Taylor rD, et al. Quantifying economic impacts of Fusarium head blight in wheat. In:Fusarium head blight of wheat and barley. KJ Leonard and WR Bushnell (eds). APS press, St Paul,2003, pp,461-483
    140. Johnson LA, Soltis DE. Phylogenetic inference in Saxifragaceae sensu stricto and Gilia (Polemoniaceae) using matK sequences. Annals of the Missouri Botanical Garden,1995,82: 149-175
    141. Jones TA, redinbaugh MG, Zhang Y. The western wheatgrass chloroplast genome originates in Pseudoroegneria. Crop Science,2000,40:43-47
    142. Kang HY, Chen Q, Wang Y, et al. Molecular cytogenetic characterization of the amphiploid between common wheat and Psathyrostachys huashanica. Genetic Resources and Crop Evolution, 2010,57:111-118
    143. Karvonen P. Genetic variation and structure of ribosomal DNA (rDNA) in Scots pine and Norway spruce. Acta University Ovluensis Series A Scientiae Return Naturalium,1995,10:1-68
    144. Kellogg EA, Apples R, Mason-Gamer RJ. When gene trees tell different stories:the diploid genera of Triticeae. Systematic Botany,1996,21:312-347
    145. Khan IA. Molecular and agronomic characterization of wheat-Agropyron intermedium recombinant chromosomes. Plant Breeding,2000,119:25-29
    146. Kilian B, Ozkan H, Deusch O, et al. Independent wheat B and G genome origins in outcrossing Aegilops progenitor haplotypes. Mol Biology and Evolution,2007,24:217-227
    147. Kim KJ, Lee HL. Widespread occurrence of small inversion in the chloroplast genomes of land plants. Molecular Cell,2005,19:104-113
    148. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution,1980,16:111-120.
    149. Kirschner J, Mes TH, Nijis JC. Principal features of the cpDNA evlution in Taraxacum (Asteraceae, Lactuceae):a conflict with taxonomy. Plant Systematics and Evolution,2003,242:231-255
    150. Koch MA, Dobes C, Thomas MO. Multiple hybrid formation in natural populations:concerted evolution of the internal transcribed spacer of nuclear ribosomal DNA (ITS) in north American Arabis divaricarpa (Brassicaceae). Molecular Biology and Evolution,2003,20(3):338-350
    151. Kolmer JA. Tacking wheat rust on a continental scale. Current Opinion in Plant Biology,2005,8: 441-449
    152. Lapitan N L V, Canal M W, Tanksley S D. Organization of the 5S ribosomal RNA genes in the genome of tomato. Genome,1991,34:509-514.
    153. LeCorre V, Krener A. Cumulative effects of founding events during colonisaon on genetic diversity and differentiation in an island stepping-stone model. Journal of Evolutionary Biology,1998,11: 495-512.
    154. Li HJ, Arberbum M, Jones SS, et al. resistance to eyepot of wheat, caused by Tapesia yallundae, derived from Thinopyrum intermedium homoelogous group 4 chromosomes. Theoretical and Appllied Genetics,2005,111:932-940
    155. Li HJ, Wang XM. Thinopyrum ponticum and Th. intermedium:the promising source of resistance to fungal and viral diseases of wheat. Journal of Genetics and Genomics,2009,36:557-565
    156. Linde-Laursen Ⅰ, Bothmer R von. Giemsa C-banded karyotype of two subspecies of Hordeum brevisubulatum from China. Plant Systematics and Evolution,1984,145:259-267
    157. Linde-Laursen Ⅰ, Bothmer R von, Jacobsen N. Giemsa C-banding in Asiatic taxa of Hordeum section Stenostachys with notes on chromsome morphology. Hereditas,1980,93:235-254
    158. Liu DJ, Weng YQ, Chen PD. Transfer of scab resistance from Roegneria C. Koch (Agropyron) species into wheat. In:Proc 2nd Int Symp Chrom Eng Plants. G Kimber (ed). University of Mossouri, Columbia, MO, USA,1990, pp,166-176
    159. Liu QL, Ge S, Tang HB, et al. Phylogenetic relationships in Elymus (Poaceae:Triticeae) based on the nuclear ribosomal internal transcribed spacer and chloroplast trnL-F sequences. New Phytologist,2006,170:411-420
    160. Liu QL, Lu BR, Zhang NN, et al. Polyploidy origin of wheatgrass Douglasdeweya wangii (Triticeae, Poaceae):evidence from nuclear ribosomal DNA internal transcribed spacer and chloroplast trnL-F sequences. Development Genes and Evolution,2010,220:173-178
    161. Liu ZW, Wang rr-C. Genome analysis of Elytrigia caespitose, Lophopyrum nodosum, Pseudoroegneria geneiculata ssp. scythica and Thinopyrum intermedium (Triticeae:Gramineae). Genome,1993,36:102-111
    162. Love A, Love D. Some nomenclatural changes in the European flora. I:Species and supraspecific categories. Botaniska Notiser,1961,114:33-47
    163. Love A. Generic evaluation of the wheatgrass. Biology Zentralbl,1982,101:199-212
    164. Love A. Conspectus of the Triticeae. Feddes Report,1984,95:425-521
    165. Lu BR. Biosystematic investigation of Asiatic wheatgrass Elymus L. (Triticeae:Poaceae). The Swedish University of Agricultural Sciences Svalov, Sweden,1993
    166. Lu BR. The genus Elymus L. in Asia:taxonomy and biosystematics with special reference to genomic relationships. In: Wang RR-C, Jensen KB, Jaussi C (eds). Proceedings of the 2nd International Triticeae Symposium, Logan, Utah, USA. The Utah State University Press,1994a, 219-233
    167. Lu BR. Morphological indentification of Elymus sibiricus, E. nutans, and E. burchanbuddae, and their genomic relationships. Acta Phytotaxonomica Sinica,1994b,32:504-513
    168. Lu BR, Bothmer r von. Intergeneric hybridization between Hordeum and Asiatic Elymus. Hereditas, 1990a,112:109-116
    169. Lu BR, Bothmer R von. Genomic constitution of Elymus parviglume and E. pseudonutans in the tribe Triticeae (Poaceae). Hereditas,1990b,113(1):109-119
    170. Lu BR, Salomon B. Differentiation of the StYgenomes in Eymus species as referred by meiotic pairing in interspecific hybrids and its evolutionary significance. Biodiversity Science,2004,12: 213-226
    171. Luan Y, Wang X, Liu W, et al. Production and identification of wheat-Agropyron cristatum 6P translocation lines. Plata,2010,232(2):501-510
    172. Luo PG, Luo HY, Chang ZJ, et al. Characterization and chromosomal location of Pm40 in common wheat:a new gene for resistance to powdery mildew derived from Elytrigia intermedium. Theoretical andAppllied Genetics,2009,118:1059-1064
    173. Mahelka V, Feherer J, Krahulec F, et al. recent natural hybridization between two allopolyploid wheatgrass(Elytrigia, Poaceae):Ecological and evolutionary implications. Annals of Botany,2007, 100:249-260
    174. Mahelka V, Kopecky D. Gene capture from across the grass family in the allohexaploid Elymus repens (L.) Gould (Poaceae, Triticeae) as evidenced by ITS, GBSSI, and molecular cytogenetics. Molecular Biology and Evolution,2010,27:1370-1390
    175. Maki M. Genetc differentiation within and among island population of the endangered plant Aster miyagii (Asteraceae), an endemic to the Ryukyu Islands. American Journal of Botany,2001,88: 2189-2194
    176. Malysheva L, Sjakste T, Matzk F, et al. Molecular cytogenetic analysis of wheat-barley hybrids using genomic in situ hybridization and barely microsatellite markers. Genome,2003,46:314-322
    177. Malone CL, Knapp Cr, Taylor JF, et al. Genetic consequences of Pleistocene fragmentation: isolation, drift, and loss of diversity in rock iguanas (Cylura). Conservation Genetics,2003,4:1-15
    178. Marhold K, Lihova J, Perny M, et al. Natural hybridization in Cardamine (Brassicaceae) in the Pyrenees:evidence from morphological and molecular data. Botanical Journal of the Linnean Society,2002,139:275-294
    179. Mason-Gamer RJ. Reticulate evolution, introgression, and intertribal gene capture in an allohexaploid grass. Systematic Biology,2004,53:25-37
    180. Mason-Gamer RJ, Burns MM, Naum M. Phylogenetic relationships and reticulation among Asian Elymus (Poaceae) allotetraploids:analysis of three nuclear genes. Molecular Phylogenetics and Evolution,2010a,54:10-22
    181. Mason-Gamer RJ, Burns MM, Naum M. reticulate evolutionary history of a omplex group of grass: phylogeny of Elymus StStHH allotetraploids based on three nuclear genes. Plos One,2010b,5(6) doi:10.1371/journal.pone.0010989
    182. Mason-Gamer RJ, Kellogg EA. Chloroplast DNA analysis of the monogenomic Triticeae: phylogenetic implications and genome-specific markers. In:Jauhar PP (ed). Methods of Genome Analysis in Plants. CrC Press, Boca raton, FLA,1996,310-325
    183. Mason-Gamer RJ, Weil CF, Kellogg EA. Granule-bound starch synthase:structure, function, and phylogenetic utility. Molecualr Biology and Evolution,1998,15:1658-1673
    184. Mason-Gamer RJ, Orme NL, Anderson CM. Phylogenetic analysis of North American Elymus and the monogenomic Triticeae (Poaceae) using three chloroplast DNA data sets. Genome,2002,45: 991-1002
    185. Matzke MA, Scheid OM, Matzke AJM. rapid structural and epigenetic changes in polyploid and aneuploid genomes. Bioessays,1999,21:761-767
    186. McCallum B, Seto-Goh P. Physiological specialization of wheat leaf rust (Puccinia triticina) in Canda in 2002. Canadian Journal of Plant Pathology,2005,27:90-95
    187. McIntosh RA, Devos KM, Dubcovsky J, et al. Catalogue of gene symbols for wheat:2008 supplement. Available at http://wheat.pw.usda.gov/ggpages/wgc/2008upd.pdf
    188. McMillan E, Sun GL. Genetic relationship of tetraploid Elymus species and their donor species inferred from polymerase chain reaction-restriction length polymorphism analysis of chloroplast gene regions. Theoretical and Appllied Genetics,2004,108:535-542
    189. Mitton JB, Kreiser BR, Latta RG. Glacial refugia of limber pine (Pinus flexilis James) inferred from the population structure of mitochondrial DNA. Molecular Ecology,2000,9:91-97
    190. Molnar I, Benavente E, Molnar-Lang M. Detection of intergenomic chromosome rearrangements in irradiated Triticum aestivum-Aegilops biuncialis amphiploids by multicolor genomic in situ hybridization. Genome,2009,52:156-165
    191. Moody ML, Les DH. Evidence of hybridity in invasive watermilfoil (Myriophyllum) populations. Proceedings of the National Academy of Sciences of USA,2002,99:14867-14871.
    192. Morris KLD, Gill BS. Genomic affinities of individual chromosome based on C-and N-banding analysis of tetraploid Elymus species and their diploid progenitor species. Genome,1987,29:247-252
    193.Mulcai Y, Nakahara Y, Yamamoto M. Simultaneous discrimination of the three genomes in hexaploid wheat by multicolor fluorescence in situ hybridization using total genomic and highly repeated DNA probes. Genome,1993,36:489-494
    194. Nei M, Li WH. Mathermatical model for studying genetic variation in terms of restriction endonucleases. Proceedings of the National Academy of Sciences of USA,1979,72:2038-2056
    195. Nevski SA. Uber das system der tribe Hordeae Benth. Flora et Systematica Plantae vasculares. Ser 1. Fasc 1, Leningrad,1933:9-32
    196. Nevski SA. Tribe Hordeae Benth. In:Komarov VL, Roshevits RY, Shishkin BK (eds). Flora USSR. Leningrad, Academy of Science Press USSR,1934,2:590-728
    197. Nishikawa T, Salomon B, Komatsuda T, et al. Molecular phylogeny of the genus Hordeum using three chloroplast DNA sequences. Genome,2002,45:1157-1166
    198. Novaes rML, Filho JPL, Ribeiro RA, et al. Phylogeography of Plathymenia reticulate (Leguminosae) reveals patterns of recent range expansion towards northeastern Brazil and southern Cerrados in Eastern Tropical South America. Molecular Ecology,2010,19:985-998
    199. Ohm HW, Anderson JM, Sharma HC, et al. registration of yellow dwarf viruses resistant wheat germplasm line P961341. Crop Science,2005,45:805-806
    200. Okaura T, Harada K. Phylogeographical structure revealed by chloroplast DNA variation in Japanese Beech (Fagus crenata Blume). Heredity,2002,88:322-329
    201. Oliver RE, Cai X, Xu SS, et al. Wheat-alien species derivatives:a novel source of resistance to Fusarium Head Blight in wheat. Crop Science,2005,45:1353-1360
    202. Oliver RE, Xu SS, Stack RW, et al. Molecular cytogenetic characterization of four partial wheat-Thinopyrum ponticum amphiploids and their reaction to Fusarium head blight, tan spot, Stagonospora nodorum blotch. Theoretical and Appllied Genetics,2006,112:1473-1479
    203.Orgaard M, Anamthawat-Jonsson K. Genome discrimination by in situ hybridization in Icelandic species of Elymus and Elytrigia (Poaceae:Triticeae). Genome,2001,44:275-283.
    204. Pretorius ZA, Singh RP, Wagorie WW, et al. Dectection of virulence to wheat stem rust resistance gene Sr31 in Puccinia graminis f. sp. tritici in Uganda. Plant Disease,2000,84:203
    205. Qi LL, Pumphrey MQ, Friebe B, et al. Molecular cytogenetic characterization of alien introgressions with gene Fhb3 for resistance to Fusarium head blight disease of wheat. Theoretical and Appllied Genetics,2008,117:1155-1166
    206. Qi ZJ, Du P, Qian BL, et al. Characterization of a wheat-Thinopyrum bessarabicum (T2JS-2BS center dot 2BL) translocation line. Theoretical and Appllied Genetics,2010,121:589-597
    207. Qiu YL, Cho Y, Cox JC, et al. The gain of three mitochondrial introns identifies liverworts as the earliest land plants. Nature,1998,394:671-674
    208. Qiu YL, Lee J, Bemasconi-Quadroni F, et al. The earliest angiosperms:evidence from mitochondrial, plastid and nuclear genomes. Nature,1999,402:404-407
    209. Rajora OP, Mosseler A. Challenges and opportunities for conservation of forest genetic resources. Euphytica,2001,118:197-212
    210. Reed DH, Frankham r. Correlation between fitness and genetic diversity. Conservation Biology, 2003,17:230-237
    211. Redinbaugh MG, Jones TA, Zhang Y. Ubiquity of the St chloroplast genome in St-containing Triticeae polyploids. Genome,2000,43:846-852
    212. Rieseberg LH. Hybrid origins of plant species. Annual Review of Ecology and Systematics, 1997,28:359-389
    213. Rieseberg LH, Ellstrand NC. What can molecular and morphological markers tell us about plant hybridization? Critical Reviews in Plant Sciences,1993,12:213-241
    214. Rozas J, Sanchez-DelBarrio JC, Messeguer X, et al. DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics,2003,19:2496-2497
    215. Runcmark H, Heneen WK. Elymus and Agropyron, a problem of generic delimitation. Botaniska Votiser,1968,21:51-79
    216. Sakamoto S. Cytogenetic studies in the tribe Triticeae I:a polyhaploid plant of Agropyron tsukusheinsis var. transiens Ohwi found in a state of nature. Japanese Journal of Genetics,1964,39, 393-400
    217. Sakamoto S, Muramatsu M. Cytogenetics studies in the tribe Triticeae Ⅲ. Pentaploid Agropyron hybrids and genome relationships among Japanese and Nepalese species. Japanese Journal of Genetics,1966,41:155-168
    218. Scheen AC, Brochmann C, Brysting AK, et al. Northern hemisphere biogeography of Cerastium (Caryphyllaceae):insights from phylogenetic analysis of noncoding plastid nucleotide sequences. American Journal of Botany,2004,91:943-952
    219. Schubert Ⅰ, rieger r, Kunzel G. Karyotype reconstruction in plants with special amphasis on Vicia faba L. In: Chromosome engineering in plants:genetics, breeding, evolution. Part A. Edited by PK Gupta and T Tsuchiya. Elsevier, Amsterdam, Oxford, New York, and Tokyo,1991, pp,113-140.
    220. Sears Er. Transfer of alien genetic material to wheat. In:Evans LT, Peacook WJ (eds). Wheat Science Today and Tomorrow. Cambridge University Press,1981,75-89
    221. Sepsi A, Molnar Ⅰ, Szalay D, et al. Characterization of a leaf rust-resistant wheat-Thinopyrum ponticum partial amphiploid BE-1. using sequential multicolor GISH and FISH. Theoretical and Appllied Genetics,2009,116:85-834
    222. Sha LN, Fan X, Yang RW, et al. Phylogenetic analysis of Leymus (Poaceae:Triticeae) inferred from nuclear rDNA ITS sequences. Biochemical Genetics,2008,46:605-619
    223. Sharma HC, Gill BS. Current status of wide hybridization in wheat. Euphytica,1983,32:17-31
    224. Shaw J, Lickey EB, Beck JT, et al. The tortoise and the hare. II. Relative utility of 21 non-coding chloroplast DNA sequences for phylogenetic analysis. American Journal of Botany,2005,92: 142-166
    225. Silva MC, Da M, Crossi MF, et al. Analysis of structural and physic-chemical parameters involved in the specificity of binding between a-amylase and their inhibitors. Protein Engineering,2000,13: 167-177
    226. Smith SE. Biparental inheritance of organelles and its implications in crop improvement. In:Janick J (ed). Plant Breeding reviews, vol 6. Timber Press, Portland-Ore, pp,361-393
    227. Soltis DE, Soltis PS. Allopolyploid speciation in Tragopogon:insights from chloroplast DNA. American Journal of Botany,1989,76:1119-1124
    228. Song KM, Osborn TC. Polyphyletic origins of Brassica napus:new evidence based on organelle and nuclear rFLP analyses. Genome,1993,35:992-1001
    229. Stack RW. History of Fusarium head blight with emphasis on North America. In:Fusarium head blight of blight wheat and barley. In: Leonard KJ, Bushnell Wr (eds). APS Press, St paul, MN, 2003, pp 1-34
    230. Stakman EC, Stewart DM, Loegering WQ. Identification of physiological races of Puccinia graminis var. tritici. US Department of Agricultural Publications E617. USDA, Washington, D.C. 1962
    231. Stebbins G L. Chromosomal Evolution in Higher Plants. London:Edward Arnold.1971
    232. Stokstad E. Deadly wheat fungus threatens world's breakbaskes. Science,200,315:1786-1787
    233. Sozinov AA, Novosolskaya AY, Lushnikova AA, et al. Cytological and biochemical analysis of bread wheat variants with 1B/1R substitutions and translocation in karyotype. Tsitologiya Genetika, 1987,21:256-261
    234. Su Y, Wang T, Zheng B. Population genetic structure and phylogeographical pattern of a relict tree fern, Alsophila spinulosa (Cyatheaceae), inferred from cpDNA atpB-rbcL intergenic spacers. Theoretical and Appllied Genetics,2004,109:1459-1467
    235. Sun GL, Ma XZ. Nucleotide diversity and minisatellite in chloroplast Asp (GUC)-Thr (GGU) region in Elymus trachycaulus complex, Elymus alaskanus and Elymus caninus. Biochemical Systematics and Ecology,2009,37:67-75
    236. Sun GL, Ni Y, Daley T. Molecular phylogeny of RPB2 gene reveals multiple origin, geographic distribution of H genome, and the relationship of the Y genome to other genomes of Elymus species. Molecular Phylogenetics and Evolution,2008,46:897-907
    237. Sun GL, Komatsuda T. Origin of the Y genome in Elymus and its relationship to other genomes in Triticeae based on evidence from elongation factor G (EF-G) gene sequences. Molecular Phylogenetics and Evolution,2010,56:727-733.
    238. Swofford DL. PAUP*:Phylogenetic analysis using parsimony (*and other method) Version 4.0b10. Sinauer Associates, Sunderland, Massachusetts, USA,2003.
    239. Sybenga J. Cytogenetics in plant breeding. Springer, Berlin, Heidelberg, and New York,1992
    240. Tajima F. Evolutionary relationship of DNA sequences in finite populations. Genetics,1983,105: 437-460
    241. Tajima F. Statistical method for testing the neutral mutation of hypothesis by DNA polymorphism. Genetics,1989,123:585-595
    242. Tamura K, Dudley J, Nei M, et al. MEGA4:Molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular Biology and Evolution,2007,24:1596-1599
    243. Teoh SB, Miller TE, reader SM. Intraspecific variation in C-banded chromosome of Aegilops species. Theoretical and Appllied Genetics,1983,65:31-40
    244. Thompson JD, Plewniak F, Poch O. A comprehensive comparison of multiple sequences alignment programs. Nucleic Acids Research,1999,27:2682-2690
    245. Tomoaki N, Paul GW, Masanori K. Chloroplast phylogeny indicates that Bryophytes are monophyletic. Molecular Biology and Evolution,2004,21:1813-1819
    246. Tzvelev NN. Tribe 3. Triticeae Dum. Poaceae URSS. Leningrad:Nauka,1976
    247. Viana AJC, Zouza MM. Identification of the pattern of heterochromatin distribution in Passiflora species with C-banding. Genetics and Molelar Research,2010,9:1908-1913
    248. Vilatersana R, Brysting AK, Brochmann C. Molecular evidence for hybrid origins of the invasive polyploids Carthamus creticus and C. turkestanicus (Cardueae, Asteraceae). Molecualr Phylogenetics and Evolution,2007,44:610-621.
    249. Volker K. The mitochondrial DNA of land plants:peculiarities in phylogenetic perspective. Current Genetics,2004,46:123-139
    250. Wang LS, Chen PD, Wang XE. Molecular cytogenetic analysis of Triticum aestivum-Leymus racemosus reciprocal chromosomal translocation. Chinese Science Bulletin,2010,55:1026-1031
    251. Wang QX, Xiang JS, Gao AN, et al. Analysis of chromosomal structural polymorphisms in the St, P and Y genomes of Triticeae (Poaceae). Genome,2010,53:241-249
    252. Wang RR-C, Bothmer R von, Dvorak J, et al. Genome symbols in the Triticeae (Poaceae). Proceeding of the 2nd International Trititceae Symposium. Utah, USA. Utah: Utah State University, 1994, pp,29-34
    253. Wang XE, Chen PD, Liu DJ, et al. Molecular cytogenetic characterization of Roegneria ciliaris chromosome additions in common wheat. Theoretical and Appllied Genetics,2001,102:651-657
    254. Watterson GA. On the number of segregation sites in genetic models without recombination. Theoretical Population Biology,1975,7:256-276
    255. Wendel JF, Doyle JJ. Phylogenetic incongrence:window into genome history and molecular evolution. In:Soldis DE, Soltis PS, Doyle JJ (eds). Molecular systematic of plants II:DNA sequencing. Dordrecht, the Netherlands:Kluwer,1998, pp,265-296
    256. Wendel JF, Schnable A, Seelanan T. Bi-direction interlocus concerted evolution following allopolyploid speciation in cotton (Gossypium). Proceedings of the National Academy of Sciences of USA,1995,92:280-284
    257. Wan YF, Yen C, Yang JL. The diversity of head-scab resistance in Triticeae and their relation to ecological conditions. Euphytica,1997,97:277-281
    258. Wu YH. Kengyilia zadoiensis, a new species (Gramieae, Triticeae) from Qinghai, China. Novon, 2009,19:263-265
    259. Xia X, Xie Z. DAMBE:Data analysis in molecular biology and evolution. Journal of Heredity, 2001,92:371-373
    260. Xu SS, Jin Y, Klindworth DL, et al. Evaluation and characterization of seedling resistances to stem rust Ug99 races in wheat-alien species derivatives. Crop Science,2009,49:2167-2175
    261. Yang JL, Yen C, Baum BR. Kengyilia: synopsis and key to species. Hereditas,1992,116:25-28
    262. Yen C, Yang JL. Kengyilia gobicola, a new taxon from west China. Canadian Journal of Botany, 1990,68:1894-1897
    263. Yen C, Yang JL, Baum BR. Douglasdeweya:a new genus, with new species and a new combination (Triticeae:Poaceae). Canadian Journal of Botany,2005,83:413-419
    264. Yin P, Kang JQ, He F, et al. The origin of populations of Arabidopsis thaliana in China based on the chloroplast DNA sequences. BMC Plant Biology,2010,10:22
    265. Zhang C, Fan X, Yu HQ, et al. Different maternal genome donor to Kengyilia (Poaceae:Triticeae) species inferred from chloroplast trnL-F sequences. Biologia Plantarum,2009,53:759-763
    266. Zhang HQ, Fan X, Sha LN, et al. Phylogeny of Hystrix and related genera (Poaceae:Triticeae) based on nuclear rDNA ITS sequences. Plant Biology,2008,10:635-642
    267. Zhang HQ, Yang RW, Zhang L, et al. Genetic diversity and phylogeny in Hystrix (Poaceae, Triticeae) and related genera inferred from Giemsa C banded karyotypes. Genetics and Molecular Biology,2009,32:521-527
    268. Zhang XQ, Yen C, Yang JL, et al. Cytogenetic analysis of Kengyilia laxiflora (Poaceae:Triticeae). Plant Systematics and Evolution,1998,212:79-86.
    269. Zhang XQ, Yang JL, Yen C, et al. Cytogenetic analysis of Kengyilia mutica (Keng) J. L. Yang, Yen and Baum (Poaceae:Triticeae). Genetic Resources and Crop Evolution,1999a,46:331-336.
    270. Zhang XQ, Yang JL, Yen C, et al. Cytogenetic and systematic analyses of Kengyilia gobicola, K zhaosuensis and K. batalinii var. nana (Poaceae). Genetic Resources and Crop Evolution,2000,47: 451-454.
    27'1. Zhang XQ, Yang JL, Yen C, et al. Biosystematic studies of Kengyilia melanthera and K. kokonorica (Poaceae:Triticeae). Acta Phytotaxonomica Sinica,1999b,37:117-124
    272. Zhang XY, Koul A, Petroski r, et al. Molecular verification and characterization of BYDV-resistant germplasm derived from hybrids of wheat with Thinopyrum poniticum and Th. intermedium. Theoretical and Appllied Genetics,1996,93:1033-1039
    273. Zhou RC, Shi SH, Wu CI. Molecular criteria for determining new hybrid species-An application to the Sonneratia hybrids. Molecualr Phylogenetics and Evolution,2005,35:595-601.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700